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Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism
for intercellular communication. We report the isolation and characterization of MVs
from the probiotic strain Lactobacillus casei BL23. MVs were characterized using
analytical high performance techniques, DLS, AFM and TEM. Similar to what has been
described for other Gram-positive bacteria, MVs were on the nanometric size range
(30–50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins.
Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively
present in the MVs. The MVs content included cell envelope associated and secretory
proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural
components of the ribosome, membrane transporters, cell wall-associated hydrolases
and phage related proteins. In particular, we identified proteins described as mediators
of Lactobacillus’ probiotic effects such as p40, p75 and the product of LCABL_31160,
annotated as an adhesion protein. The presence of these proteins suggests a role
for the MVs in the bacteria-gastrointestinal cells interface. The expression and further
encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria
could represent a scientific novelty, with applications in food, nutraceuticals and clinical
therapies.

Keywords: microvesicles, Lactobacillus casei BL23, probiotics, vesicle size distribution, CFSE, proteomics

INTRODUCTION

Functional foods benefit human health beyond their basic nutritional properties (Ferguson, 2009).
They are consumed in a normal diet and contain biologically active components that can offer
health benefits and reduce the risk of disease. Micronutrients, vitamins and minerals are well-
established functional ingredients. Probiotics together with prebiotics, lipids and phytonutrients
belong to the new generation of active ingredients (Jankovic et al., 2010). Probiotics are live
microorganisms which, when administered in adequate amounts, confer a health benefit on the
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host (Hill et al., 2014). They are included in cheese, yogurts and
fermented milks, or available as dietary supplements in the form
of a dehydrated product (Stanton et al., 2001).

Research conducted on probiotics over the past 25 years
has supported the beneficial effects of probiotics (Jankovic
et al., 2010). They have been associated with the treatment or
prevention of allergic diseases (Prescott et al., 2007) as well as
with a positive effect in the regulation of endocrine, nervous,
circulatory and digestive system in humans (O’Mahony et al.,
2005; Benton et al., 2007; Rincón et al., 2014; Mayer et al., 2015).
The popularity of probiotic use has increased dramatically in
the last decades, blossoming into a $25 billion per year global
industry, with widespread use, not only in clinical care, but
also in healthy individuals wishing to maintain a healthy gut
microbiome (Fleming et al., 2016; Islam, 2016). The turnover
value of the global probiotics market is projected to reach a
value of US$46.55 billion by 2020. This market is dominated
by probiotics producing companies, nutritional supplements and
food companies (O’Toole et al., 2017).

There is a wide variety of genera and species of
microorganisms as potential probiotics, being the most
commonly used the genera Lactobacillus and Bifidobacterium
(Ross et al., 2005). These Gram-positive bacteria are regular
residents of the mammalian gastrointestinal microbiome and
have long been used in food fermentations, being awarded
the status of “Generally Recognized As Safe” (GRAS) (Dunne
et al., 2001). Probiotics must survive food processing or product
maturation and shelf-life for successful delivery in foods. A wide
variety of species of the genus Lactobacillus are technologically
more fitted for food applications than Bifidobacterium (Ross
et al., 2005; Lee and Salminen, 2008). Moreover, due to the
capacity to survive in the gastrointestinal tract and the adhesion
to the intestine, Lactobacillus have emerged as a mucosal
delivery system being a potential alternative to others, such as
nanoparticles, liposomes, microspheres, immunomodulating
complexes, and attenuated pathogens (Wang et al., 2016;
Kuczkowska et al., 2017).

Extracellular vesicles are a form of intracellular and
extracellular communication used by archae, bacteria and
eukaryotes (Deatheragea and Cooksona, 2012; Al-Nedawi et al.,
2014; Yáñez-Mó et al., 2015; Pathirana and Kaparakis-Liaskos,
2016). Extracellular vesicles are spherical bilayered membrane
sacs. Production of membrane vesicles has been reported in
Gram-positive bacteria and despite its nanometric size, between
10 and 400 nm, they are known as microvesicles (MVs) (Brown
et al., 2014). They contain cytoplasmic components such as
DNA, RNA and proteins. The conditions modulating MVs
formation remain elusive, although some reports showed that
they are constantly shedding from bacteria (Brown et al., 2014).
So far, little is known regarding their production and their
cargo.

Concerning to the genus Lactobacillus, MVs production has
only been described for L. rhamnosus (JB-1) and L. plantarum
(Al-Nedawi et al., 2014; Li et al., 2017). Immune regulation by
MVs from lactic acid bacteria has been proposed to be involved
in signaling between probiotic intestinal bacteria and their
mammalian hosts (Al-Nedawi et al., 2014). On the other hand,

L. casei BL23 is an extensively studied model strain (Watterlot
et al., 2010; Bermúdez-Humarán et al., 2011) proposed as
probiotic due to its anti-inflammatory effects (Rochat et al., 2007)
and its ability to prevent experimental colitis in mouse models
(Foligne et al., 2007). Additionally, L. casei BL23 orally inoculated
mice have shown a decrease of Listeria monocytogenes systemic
dissemination (Archambaud et al., 2012) and a modulation of the
host immune response protecting mice against induced colorectal
cancer (Lenoir et al., 2016).

In the present study we report the isolation of MVs
from L. casei BL23. MV cargo and morphology were also
characterized. To our knowledge, there are no previous reports
of MVs production by this probiotic strain. We analyzed MV
particle size, surface charge, topography and microstructural
morphology, and their nucleic acid and protein contents
were quantified including a detailed proteomic analysis by
LC-MS.

MATERIALS AND METHODS

Cultures and Microvesicles Isolation
Lactobacillus casei BL23 strain was a kind gift of Dr. Gaspar Pérez
Martínez (Instituto de Agroquímica y Tecnología de Alimentos,
Valencia, Spain). L. casei BL23 was grown in Man-Rogosa-Sharpe
(MRS, Biokar Diagnostics) medium at 37◦C for 48 h (800 ml).
MVs were isolated according to the protocol represented in
Figure 1 which is a modified method of that proposed by Rivera
et al. (2010) and Pospichalova et al. (2015).

Cultures were spun at 4,000 × g for 25 min at 4◦C to
remove cells. The resulting supernatant was then filtered through
a series of decreasing pore-size membranes: 0.8, 0.65, and
0.45 µm (GE Osmonics membranes, Lenntech) to remove
exopolysaccharide (EPS) and cellular debris. Concentration of
the filtrate fraction was done using a Centricon ultrafiltration
system with 100 kDa cut-off filter (Sartorius). The concentrate
was subjected to further filtration through a 0.45 µm filter for
removing of aggregated material. The filtered supernatant was
then centrifuged at 110,000× g for 120 min at 4◦C in a SW 41 Ti
rotor (Beckman Optima L-80, Beckman Coulter, United States)
and washed with phosphate buffered saline solution (PBS). The
pellet containing the vesicles was resuspended in PBS or Quick-
Zol reagent (Kalium Technologies) and finally stored at −80◦C.
Concentrated MVs were stored under those conditions until
their use.

MRS without added bacteria was used as negative control.
Bacillus subtilis 168, was obtained from the Bacillus Genetic Stock
Center and grown in brain heart infusion (BHI, Merck Millipore)
medium at 37◦C under continuous agitation at 200 rpm for 18 h
(100 ml). This species was used as positive control because of its
high production capacity of MVs (Brown et al., 2014; Kim et al.,
2016).

Microstructural Analysis of MVs
Size Determinations
Dynamic light scattering experiments were carried out in a
dynamic laser light scattering (DLS) (Zetasizer Nano-Zs, Malvern
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FIGURE 1 | Schematic representation of the protocol used to isolate L. casei BL23 MVs. Cells were removed from the culture by centrifugation and subsequent
filtration through a series of decreasing pore membranes: 0.8, 0.65, and 0.45 µm. Cell free supernatant was then concentrated using a 100 kDa filter membrane.
Finally, the concentrated supernatant was spun at 110,000 g to pellet MVs while the soluble proteins remained in the supernatant.

Instruments, United Kingdom) with a measurement range of
0.6 nm to 6 µm, provided with a He-Ne laser (633 nm) and a
digital correlator Model ZEN3600. Measurements were achieved
at a fixed scattering angle of 173◦. Samples were in a disposable
polystyrene cuvette. The sample is illuminated with a laser beam
and the intensity of the resulting scattered light produced by the
particles fluctuates at a rate that is dependent upon the size of
the particles. Analysis of these intensity fluctuations yields the
diffusion coefficient of the particle and therefore the particle size
using de Stokes-Einstein equation:

d(H) = k T/6 π η D (1)

where, d(H): hydrodynamic diameter; D: translational diffusion
coefficient; k: Boltzmann’s constant; T: absolute temperature; η:
viscosity.

CONTIN method was used to obtain size information by
mean the data concerning to percentile distribution of particle
or aggregate sizes. This size distribution is a plot of the relative
intensity of light scattered by particles in various size classes and
it is known as an intensity size distribution. Using Mie theory,

it is possible to convert the intensity distribution to volume
distribution, that is important to analyze the relative significance
of each peak. Since the peaks of higher size generate greater
intensity than the smaller ones, the intensity is proportional to
the square of the molecular weight. The assay was performed on
quadruple independently isolated samples. Polydispersity Index
(PDI) is also informed. The PDI is dimensionless and scaled such
that values lower than 0.05 are rarely observed other than with
highly monodisperse standards. Values greater than 0.7 suggest
that the sample has a very broad size distribution and is probably
not appropriate for the this technique (Instruments Malvern,
2011). We determined the Z- average, which represents the mean
diameter of the particles, and it is beneficial when comparing
one average value with a monomodal distribution, but clearly
inadequate for describing distribution in polydisperse systems
(Camino et al., 2009).

Surface Charge Measurements
Surface charge measurements were evaluated as ζ-potential
measurements and also performed in a dynamic DLS instrument
(Zetasizer Nano–Zs, Malvern Instruments, United Kingdom).
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The ζ-potential was evaluated from the electrophoretic mobility
of the particles. The processing of the measured electrophoretic
mobility data into ζ–potential was done using Henry’s equation

Ue = 2ε ζ f(Ka)/3η (2)

where Ue is the electrophoretic mobility, ε the dielectric constant,
η the sample viscosity and f (Ka) the Henry’s function (Pérez et al.,
2014).

The reported values correspond to the average and standard
deviation from measurements of each of three MV isolation
process.

Atomic Force Microscopy
The topography corresponding to MVs was obtained by atomic
force microscopy (AFM) analysis. It was performed under
tapping mode AFM (Nanoscope IIIa, Veeco, United States)
applying special TM AFM tips (model RTESP-300 Bruker) with
nominal radius of curvature 10 nm. A typical force constant of
21.84 N/m, and resonant frequency of 250 kHz was applied. MVs
from L. casei BL23 and B. subtilis 168 were seeded onto cleaved
glass. The surfaces were dried under a sterile air-flow cabinet
for 30 min at room temperature. Both topography and shaded
topography images were recorded using NanoScope software.
Topography images were processed with Gwyddion software
(Czech Metrology Institute) and NanoScope Analysis (Veeco)
software (Abuin et al., 2010).

Transmission Electron Microscopy
Isolated MVs from L. casei BL23 were placed onto a grid
for 10 min and mixed with an equal quantity of 2% aqueous
solution of uranylacetate for 3 min. The mixture was washed
in distilled water and then the surface was dried under a sterile
air-flow cabinet at room temperature. MVs were observed under
a Zeiss EM 109-T appliance (Zeiss, Germany) and images were
obtained with a coupled Gatan ES1000W CCD camera (Durante
et al., 2015). Image processing was performed with ImageJ
software (NIH).

Confocal Laser Scanning Microscopy
Lactobacillus casei BL23 cells were stained with
carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen)
at 10 µM final concentration in PBS for 30 min at 37◦C. The
bacteria were washed three times in PBS at 4000 g for 5 min
at 4◦C. Labeled bacteria were fixed with paraformaldehyde
(4% prepared in PBS) for 30 min at room temperature. Slides
were coated with poly-D-lysine (100 µg/ml) for 1 h at 37◦C.
Labeled bacteria were mounting with Mowiol and examined
by confocal laser scanning microscopy using an Olympus FV
1000 module (Olympus, Japan). Fluorescent images consisted
of 1024 × 1024 pixels and were taken at PLAPON 60X water
objective NA = 1.42 (1 µm = 19.3 pixel). Isolated MVs were
stained with CFSE with the same protocol.

CFSE has a peak excitation of 494 nm and peak emission of
521 nm, which is measured using 488 nm laser excitation (blue)
and 535/35 band pass filter for detection (green) (Pospichalova
et al., 2015). Confocal laser scanning microscopy images are

representative of three independent experiments. Images were
taken of at least ten fields of view and processing with FIJI
(ImageJ) software (NIH).

Biochemical Analysis
DNA, RNA and Protein Quantification
Total DNA, RNA and protein were isolated from L. casei BL23
microvesicles using 1 ml of Quick-Zol (Kalium Technologies)
reagent following the manufacturer’s instructions. DNA and RNA
were quantified by UV absorbance using a NanoDrop 2000/2000c
(Thermo Fisher Scientific, United States). The protein content
was quantified by Lowry’s method (Lowry et al., 1951). The
reported values correspond to the average and standard deviation
of three measurements.

SDS Polyacrylamide Gel Electrophoresis and
Proteomic Analysis
Proteins were separated on a SDS-PAGE gel (12% resolving gel)
followed by Coomassie blue staining (n = 5). Extracted
proteins of MVs and bacteria were digested with trypsin
and analyzed by nano-HPLC coupled to mass spectrometry
with Orbitrap technology (LC-MS) (Wada et al., 2014). The
protein spectrum was analyzed against L. casei BL23 proteome
obtained from the genome sequence (NC_010999.1) (Mazé
et al., 2010). Data were filtered using the Proteome Discoverer
2.1 software to obtain maximum protein and peptide false
discovery rate of 1% calculated by employing a reverse database
strategy. Raw data was deposited in EVpedia (evpedia.info/)
(Kim et al., 2015).

RESULTS

Isolation of L. casei BL23 MVs
MVs from L. casei BL23 and B. subtilis 168, used as
positive control, were isolated from liquid cultures according
to the protocol described in Section “Materials and Methods”
(Figure 1). The aspect, morphology and color of the pellet
containing the MVs resulted different for both species.
Concentration of B. subtilis 168 culture supernatants produced a
bigger brown vesicle pellet, whereas processing of L. casei BL23
culture supernatant resulted in a smaller and lighter pellet. As
expected, no pellet was observed in a negative control using MRS
media alone (Figure 2). MVs have been purified from Gram-
positive bacteria during the late exponential or stationary growth
phases (Kim et al., 2016). In this study, MVs were collected from
stationary phase cultures. Moreover, concentrated supernatants
from L. casei BL23 at 24 h (early stationary phase) produced a
smaller MV pellet in comparison to 48 h (late stationary phase)
(data not shown), so for further characterization the MVs were
collected at this later time point.

Microstructural Analysis
Size Characterization of L. casei BL23 MVs
Particle size distribution of isolated MVs from L. casei BL23
and B. subtilis 168 cultures was studied comparatively using
DLS (Figure 3). DLS revealed one population, i.e., monomodal
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FIGURE 2 | Macroscopic aspect of L. casei BL23 and B. subtilis 168 pellets
containing MVs.

FIGURE 3 | Particle size distribution curves of L. casei BL23 and B. subtilis
MVs as determined based on DLS data. Each point represents the
mean ± SD of independently isolation processes (n = 4).

distribution, with a peak between 26 and 70 nm for MVs obtained
from L. casei BL23 (Table 1). On the other side, B. subtilis
168 MVs particle size also revealed only one population of
approximately 71 and 245 nm, larger than those of L. casei BL23
(Table 1).

MV’s Membrane Potential
To gain insight into the stability of the MV particles in terms
of aggregation, flocculation or dispersion, we measured the
zeta potential of MVs. Dynamic light scattering can measure
the MVs surface charge as represented by the ζ-potential
(Sokolova et al., 2011). The ζ-potential determination of MV’s
preparations from L. casei BL23 and B. subtilis 168 revealed
negative values in PBS (pH: 7.4) for both species at 25◦C
(Table 1).

Atomic Force Microscopy
In atomic force microscopy a mechanical cantilever is passed
over a surface, with deviations indicating the presence of surface
structures. With the possibility of sub-nanometer resolution,
AFM is particularly adequate to assessments of extracellular
vesicles morphology (Witwer et al., 2013). Topography of MVs
by AFM from culture supernatants of L. casei BL23 and B. subtilis
168 is shown in Figures 4A,B. AFM phase images reveal MVs
with similar morphology for L. casei BL23 and B. subtilis 168.
Even in most cases MVs were observed with a spherical shape,
“cup-shape” morphology (with MV center indentation) was also
seen between regular MVs. 3D-reconstruction of AFM images
confirms that MVs might have a shape ranging from spherical
to a “cup-shape” (Figures 4A,B). Negative control was also
analyzed by AFM, no MVs were observed (Supplementary
Figure S1).

The values of the edge-to-edge diameter of MVs from L. casei
BL23 were determined analyzing AFM images. Figure 4C shows
a histogram with the quantitative analysis of MVs diameter. The
mean size for particle distribution by AFM was 33 ± 3 nm for
L. casei BL23 and 310 ± 5 nm for B. subtilis 168 MVs (Table 1).
The size distribution of B. subtilis 168 MVs resulted higher than
those obtained by DLS.

Transmission Electron Microscopy
To complement the analysis of MVs within the sub-nanometer
resolution, we used transmission electron microscopy (TEM)
to elucidate details refereed to shape and ultrastructure. TEM
images of MVs from culture supernatants of L. casei BL23 and
B. subtilis 168 are shown in Figures 5A,B. Electron microscopy
examination of L. casei BL23 MVs showed a near-spherical shape
and a “cup-shape,” (Figure 5A) with bilayered membranes and
an electron-dense luminal content; which is consistent with the
notion that vesicles present bioactive cargo such as proteins or
nucleic acids (Table 1). However, B. subtilis 168 MVs did not
always show a central electron-dense core (Figure 5B).

The values of the edge-to-edge diameter of MVs were
determined analyzing TEM images. From the analysis, only one
population with a size of 48 ± 3 nm for L. casei BL23 and
of 52 ± 3 nm for B. subtilis 168 was identified (Table 1 and
Figure 5C).

Formation and Release of MVs
The formation and shedding of MVs was investigated using
fluorescence microscopy. CFSE is a fluorogenic dye usually used
to label cytoplasmic proteins in living cells. The non-fluorescent
dye, when added to live cells, diffuses across the cell membrane
where intracellular esterases cleave its acetate group, forming
fluorescent CFSE, which is not permeable and is thereby
confined to the cytoplasm. This fluorogenic dye reacts to form a

TABLE 1 | ζ-potential (mean ± SEM), PDI (polydispersity index) and diameter measured by DLS, AFM, and TEM (mean ± SEM) (n = 4).

ζ-potential (mV) PDI Diameter DLS (nm) Diameter AFM (nm) Diameter TEM (nm)

L. casei BL23 −8.7 ± 1,9 0.38 ± 0.04 47 ± 3 33 ± 3 48 ± 3

B. subtilis 168 −18.2 ± 1,7 0.61 ± 0.06 142 ± 14 310 ± 5 52 ± 3
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FIGURE 4 | Atomic force microscopy (AFM) topography of MVs. Phase images and 3D reconstruction of MVs of L. casei BL23 (A) and B. subtilis 168 (B).
Size-frequency measurements of MVs expressed as a histogram (C).

FIGURE 5 | Transmission electron microscopy (TEM) images of MVs from L. casei BL23 (A) and B. subtilis 168 (B). Size-frequency measurements of MVs were
expressed as a histogram (C).
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covalent bond with lysines and other primary amines resulting in
covalently labeled fluorescent proteins in the cellular cytoplasm
(Atwal et al., 2016). This protein-specific fluorescent dye is an
effective and popular mean to monitor cell division. The capacity
of this fluorogenic dye to label cells and MVs with a high
fluorescent intensity, combine with its low cell toxicity, make it an
excellent dye to measure formation and release of MVs (Nguyen
et al., 2016).

Confocal laser scanning microscopy images of L. casei BL23
after staining with CFSE are shown in Figures 6A,B. The
formation and shedding of MVs from the bacterial surface can
be clearly visualized in Figure 6A. The MVs are formed and
released to the extracellular medium (Figure 6B). When isolated
MVs from cell culture supernatants were stained using CFSE, as
expected, they showed an identical signal to that observed in the
shedded vesicles (Figures 6C,D).

Chemical Analysis: MVs Contain DNA,
RNA and Proteins
Lactobacillus casei BL23 derived MVs contained cytoplasmic
constituents such as proteins, DNA and RNA (Table 2). MVs
content was higher in proteins than nucleic acids.

TABLE 2 | Microvesicles (MVs) from L. casei BL23 contained cytoplasmic
constituents such as DNA, RNA and proteins.

DNA (µg) RNA (µg) Proteins (mg)

Mean ± SEM 3.5 ± 1.2 16.3 ± 1.5 0.6 ± 0.2

Data are mean ± SEM of total DNA, RNA and proteins in MV’s pellet (n = 4).

After SDS-PAGE analysis, different patterns were observed for
MVs and whole cell extracts (Figure 7A). The most intense bands
observed in the lane of the MVs sample correspond to proteins
with approximate MWs of 42 and 75 kDa. We hypothesized these
proteins could be p40 (LCABL_00230) and p75 (LCABL_02770).
The proteomic analysis of the MVs pointed out the presence of
these two proteins, that have been widely described in probiotic
strains for their role in protection of inflammation and the
intestinal epithelium from injury (Van Baarlen et al., 2013). It has
been previously described that p40 and p75 of L. casei BL23 have
cell-wall hydrolase activity and can be located at the bacterial cell
surface and/or be secreted to the growth medium (Bäuerl et al.,
2011). It is important to note that direct proof about the proteins
identity is missing and enzymatic studies should be performed to
confirm this hypothesis.

FIGURE 6 | Confocal laser scanning microscopy imaging of the formation of MVs in L. casei BL23. (A,B) CFSE was used for bacterial staining to investigate the
formation and shedding of MVs. (C,D) To analyze the aspect of MVs from cell culture supernatant by this technique isolated MVs were stained by CFSE.
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FIGURE 7 | Microvesicles (MVs) are enriched in specific proteins. (A) Differential patterns observed between MV and cell extract proteins from L. casei BL23 in a
Coomassie blue stained SDS-PAGE gel (n = 5). (B) Venn diagram of the number of proteins present in the MVs and cell extracts identified by LC-MS/MS.
(C) Proteins of MVs identified by LC-MS/MS were grouped in 8 categories according to its function. The function of the 13 proteins exclusively present in the MVs
are shown in boxes.

We were able to identify 103 proteins in the MVs; 13 were
exclusively present in the MVs and 90 were shared with the
whole cell fraction (Figures 7B,C). With regard to MVs protein
localization: 57% were cytoplasmic proteins and 43% were cell
envelope and secretory proteins (Supplementary Table S1). The
cytoplasmic proteins included heat and cold shock proteins,
several metabolic enzymes, proteases and structural components
of the ribosome. The cell envelope and secretory proteins
included membrane transporter proteins and cell wall-associated
hydrolases like p40 and p75 (Figure 7C).

Specifics adhesins from L. casei BL23 have been characterized
for their capacity to bind to proteins of the extracellular matrix
and components of the mucosal layer (Muñoz-Provencio et al.,
2010; Munoz-Provencio and Monedero, 2011). One of the
proteins only present in MVs and absent in cell extracts is the
product of LCABL_31160, annotated as an adhesion protein. This
adhesin shares homology to several adhesion proteins present in
L. casei/paracasei strains (Smokvina et al., 2013).

In addition, we identified a phage structural protein (PLE3,
minor capsid) and two proteins probably involved in phage
DNA replication, gp42 of PLE2 and gp33 of PLE3 (Dieterle
et al., 2016), the latter only present in the MVs. Interestingly, an
uncharacterized protein, yhgE, belonging to the phage infection
protein (PIP) family was found in the MVs.

DISCUSSION

In this work we showed for the first time the production of
MVs by L. casei. Taking into account on prior reports on MVs
production by L. rhamnosus and L. plantarum (Al-Nedawi et al.,
2014; Li et al., 2017), the production of MVs in Lactobacillus casei
group is a newly recognized aspect within this lactic acid bacteria,
which are regular resident of the mammalian gastrointestinal
microbiome.

MVs from Gram-positive bacteria are described to be
bilayered structures from 10 to 400 nm in diameter. In the
present work, L. casei BL23 MVs were isolated and characterized
from a structural and chemical point of view by several
techniques.

The ζ-potential determined for L. casei BL23 MVs presented
a negative value (−8,7 ± 1,9) similar to those reported
for other Gram-positive bacteria, i.e., B. anthracis with a
ζ-potential of −65.67 ± 4.71 mV (Rivera et al., 2010). The
negative surface charge could make the MVs highly soluble by
virtue of electrostatic repulsion ensuring colloidal stability, i.e.,
aggregation and precipitation phenomena would be impeded. In
line with other analogous structures, the global surface charge
of liposomes is negative, as that of exosomes isolated from
eukaryotic cell lines, due to the negatively charged phospholipid
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membrane (Sokolova et al., 2011; Marimpietri et al., 2013; Maas
et al., 2015).

Our results showed that the size of L. casei BL23 MVs
fell into nanoscale as determined by DLS, AFM and TEM.
DLS is a suitable method to study particle size in suspension,
calculating the differential size distribution of the MV population.
The size of MVs from L. casei BL23 resulted similar to those
reported for other Gram-positive bacteria measured by DLS, i.e.,
Staphylococcus aureus (peak between 20 and 100 nm) (Lee et al.,
2009). MVs produced by B. subtilis 168 were used for comparison
since these vesicles have been well characterized. Brown et al.
(2014) reported two discernible populations of MVs as measured
by DLS for B. subtilis 168, the first peak fell in the range of
50 nm and the second was between 150 and 250 nm. In this
work, B. subtilis 168 MVs particles revealed only one population
of approximately size between 71 and 245 nm, larger than those
of L. casei BL23.

The standard practice in DLS assumes that the MVs are
spherical, although numerous reports suggested that exosomes
have a “cup-shaped” geometry in suspension (Chernyshev et al.,
2015; Théry et al., 2009). AFM, has opened new perspectives in
biomedical research for the investigation of bioparticles (Parot
et al., 2007). This technique has been assiduously applied for
the assessment of eukaryotic MVs topography (Yuana et al.,
2010; Vajen et al., 2015). MVs showed a spherical shape and
“cup-shape” morphology (indent of the vesicles in the center)
by AFM. Surface desiccation is required to resolve the sample
topography and such a procedure can lead to a shape distortion
due to a non-uniform drying front (Chernyshev et al., 2015).
3D-reconstruction of AFM images suggested that L. casei BL23
MVs might have a shape ranging from spherical to “cup-shape”
morphology. On the other hand, van der Pol et al. (2012) claimed
that MV structure could change from spherical to hemispherical
or flat, according to the composition of the membrane that can
cause artifacts in the interpretation of morphology and size due
to adhesion of vesicles to the surface

TEM images allow to make a categorization of MVs according
to size and electron density and possibly to infer if they contain
or not the same cargo (Brown et al., 2014). We observed
L. casei BL23 MVs with bilayered membranes and electron-dense
luminal contents; consistent with the notion that vesicles present
bioactive cargo such as proteins or nucleic acids. Also, using
this technique the morphology of extracellular vesicles has been
previously reported as “cup-shape” due to adhesion, negative
staining and drying. Electron microscopy examination of L. casei
BL23 MVs showed a near-spherical shape and a “cup-shape” with
bilayered membranes. However, if this characteristic is an artifact
due to extensive sample preparation, or actually an unique feature
for MVs and exosomes remains unknown (Marzesco et al., 2005;
Chernyshev et al., 2015).

The size of MVs isolated from human blood plasma was
shown to be comparable between DLS, AFM and TEM (György
et al., 2011). In the case of L. casei BL23, the MVs size obtained
from DLS data were consistent with measurements from AFM
and TEM images. L. casei BL23 MVs size were around 30–
50 nm. When analyzed by these same techniques, different
diameters were calculated for B. subtilis MVs. Chernyshev

et al. (2015) claimed that for comparison purposes the same
methodology should be employed. Modification during sample
preparation for TEM and AFM or a less representative
microscopic field for inspection could also explain the observed
differences.

The conditions that rule the process of genesis and function
of MVs still are poorly understood but nowadays it is known
that MVs are constantly produced by bacteria (Pathirana and
Kaparakis-Liaskos, 2016). CFSE is a used and effective way to
track cell division and MVs shedding (Quah and Parish, 2010;
Nguyen et al., 2016). Confocal laser scanning microscopy imaging
of L. casei BL23 showed a protrusion on cells consistent with the
emergence of MVs As described above, L. casei BL23 MVs size is
around (30–50) nm, below the resolution limit of this technique,
therefore we cannot assure that there is only one or more MVs
shedding per protrusion point.

There is no unified understanding of the mechanisms
underlying MVs formation (Al-Nedawi et al., 2014). The analysis
of vesicle cargo on L. casei BL23 MVs showed the presence of
cytoplasmic constituents such as DNA, RNA and proteins. Some
authors hypothesized that MVs could deliver functional RNAs
and mediate intercellular communication in a process similar
to that described in eukaryotes (Al-Nedawi et al., 2014; Foster
et al., 2016) and we do not discard that this could also be the
case for L. casei in the mammalian digestive tract. Emerging
evidence in Gram-negative bacteria suggests that extracellular
vesicles contain short RNAs (sRNAs) with the potential to
target host mRNA stability and/or function (Koeppen et al.,
2016).

Proteomic analysis of MVs disclosed a complex protein
composition that included cold and heat shock proteins, several
metabolic enzymes, proteases and structural components of
the ribosome, membrane transporter proteins and cell wall-
associated hydrolases like p40 and p75. Bäuerl et al. (2011)
reported the presence of these proteins, p40 andp75, in L. casei
BL23 and described their cell protective and anti-apoptotic effects
on human intestinal epithelial cells. It was also shown that
p40 of L. rhamnosus GG, stimulates the phosphorylation of
the epidermal growth factor receptor in vitro and in vivo in
colon epithelial cells and ameliorates intestinal inflammation
in mice (Yan et al., 2011; Yoda et al., 2014). In accordance
with this, He et al. (2017) recently showed that the culture
supernatant from L. rhamnosus GG enhances resistance to
systemic Escherichia coli K1 infection by an increment of
intestinal defense in neonates. Although, the authors did not
make a direct mention of MVs. They claimed that future
studies aimed to identify the active compounds and structural
components of the supernatant exerting this effect would be
helpful to allow a better understanding of the machinery
underlying the positive effect of probiotics. Therefore, MVs could
play a key role in these beneficial effects acting either directly or
as a delivery system of active compounds.

Bacterial have developed numerous strategies to colonize host
mucosae, including modulation of expression of cell surface
adhesins. These proteins allow the bacteria to anchor to the
human gastrointestinal mucins (Ringot-Destrez et al., 2017). One
of the proteins only present in MVs and absent in cell extracts
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is the product of LCABL_31160, annotated as an adhesion
protein. The presence of this protein in MVs suggests that
may play an important role in the bacteria-gastrointestinal cells
interface. Additionally, p40 and p75 bind to mucins and to
intestinal epithelial cells in mouse intestine ex vivo (Bäuerl et al.,
2011).

Phages are the most abundant biological entities in our gut and
are largely unexplored. Mirzaei and Maurice (2017) describe that
phages could regulate bacterial communities and thus human
health. Recently, we have described three prophages in the
genome of L. casei BL23 and we demonstrated the induction
of two of them (PLE2 and PLE3) after mitomycin C addition
(Dieterle et al., 2016). In this work, we reported the presence in
MVs of three proteins encoded in these prophages. Particularly
gp33 of PLE3 was present exclusively in the MVs. Whether the
presence of phage related proteins in the MVs can interfere
or promote phage replication should be further studied. The
presence of a protein belonging to the PIP family is in agreement
with a recent report by Tzipilevich et al. (2016) showing that MVs
containing phage receptors could confer transitory sensitivity to
phage resistant neighboring bacteria (including non-host species)
providing a new route for horizontal gene transfer.

Even though still unexplored, the ability of bacteria to
selectively control the MVs content could be exploited for its
potential application as delivery systems. This application keeps
an enormous unlocked potential since MVs from pathogens have
the advantage of appear to be highly immunogenic (Prados-
Rosales et al., 2014; Trelis et al., 2016). Recently, Li et al., 2017
found that L. plantarum-derived extracellular vesicles enhance
host immune responses and provide protective effects on hosts.
In this context, MVs result an attractive vaccine strategy, since
they are a non-replicative alternative of their parent bacterium
that could induce both innate and adaptive immunity.

On the other hand, description of MVs production from
regular microbiota including their composition and function
could be of crucial significance for maintenance of health.
L casei BL23 MVs content showed particular features. The

proteomic analysis of MVs indicates differences with the
respective cytoplasmic content. Therefore, the expression and
encapsulation of proteins and sRNA into MVs could represent
a scientific novelty, with applications in food, nutraceuticals and
clinical therapies.
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