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Enterobacter sp. SA187 is an endophytic bacterium that has been isolated from root
nodules of the indigenous desert plant Indigofera argentea. SA187 could survive in
the rhizosphere as well as in association with different plant species, and was able
to provide abiotic stress tolerance to Arabidopsis thaliana. The genome sequence of
SA187 was obtained by using Pacific BioScience (PacBio) single-molecule sequencing
technology, with average coverage of 275X. The genome of SA187 consists of one
single 4,429,597 bp chromosome, with an average 56% GC content and 4,347
predicted protein coding DNA sequences (CDS), 153 ncRNA, 7 rRNA, and 84 tRNA.
Functional analysis of the SA187 genome revealed a large number of genes involved
in uptake and exchange of nutrients, chemotaxis, mobilization and plant colonization.
A high number of genes were also found to be involved in survival, defense against
oxidative stress and production of antimicrobial compounds and toxins. Moreover,
different metabolic pathways were identified that potentially contribute to plant growth
promotion. The information encoded in the genome of SA187 reveals the characteristics
of a dualistic lifestyle of a bacterium that can adapt to different environments and
promote the growth of plants. This information provides a better understanding of the
mechanisms involved in plant-microbe interaction and could be further exploited to
develop SA187 as a biological agent to improve agricultural practices in marginal and
arid lands.

Keywords: Indigofera argentea, root endophytes, plant-microbe interaction, plant growth-promoting bacteria
(PGPB), salt stress

INTRODUCTION

Worldwide agriculture is currently facing big challenges posed by the increase in global population
and climate change, and plant growth-promoting bacteria (PGPB) are becoming an important
alternative for sustainable crop production (De Zélicourt et al., 2013; Timmusk et al., 2017).
The increase in global temperature is drastically affecting the amount of available arable lands,
particularly in dryland areas (40% of world land surface), where approximately half of the poorest
people live (rural areas in developing countries) (El-Beltagy and Madkour, 2012). Due to climate

Frontiers in Microbiology | www.frontiersin.org 1

October 2017 | Volume 8 | Article 2023


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02023
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02023
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02023&domain=pdf&date_stamp=2017-10-20
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02023/full
http://loop.frontiersin.org/people/406528/overview
http://loop.frontiersin.org/people/166331/overview
http://loop.frontiersin.org/people/136723/overview
http://loop.frontiersin.org/people/403774/overview
http://loop.frontiersin.org/people/428292/overview
http://loop.frontiersin.org/people/485850/overview
http://loop.frontiersin.org/people/485955/overview
http://loop.frontiersin.org/people/38303/overview
http://loop.frontiersin.org/people/13398/overview
http://loop.frontiersin.org/people/353671/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Andrés-Barrao et al.

Complete Genome of Enterobacter sp. SA187

change, dryland areas (hyper-arid, arid, and semi-arid lands) are
expected to rapidly increase, at the same time as crops, cropping
systems, rotations and biota will undergo a deep transformation
(El-Beltagy and Madkour, 2012).

Plant growth-promoting bacteria are a group of bacteria
that are taxonomically unrelated and can establish symbiotic
associations with plants to promote their growth under harsh
environmental conditions. PGPB can live in the rhizosphere,
epiphytically attached to the surface of roots or leaves, or
as endophytic bacteria, living inside the plant tissues. PGPB
affect plant growth by directly acquiring nutrients (phosphate,
nitrogen, iron) or modulating plant hormone levels (auxins,
ethylene), and also by indirectly inhibiting pathogenic bacteria
(antibiotics) or insects (pesticides) (Glick, 2012).

In order to identify a beneficial strain that might help crops
to cope with various environmental challenges, researchers have
started to look for halophilic and halotolerant bacteria inhabiting
salty and arid ecosystems, which have the potential to promote
plant growth under salinity and drought conditions (Jorquera
et al.,, 2012; Mapelli et al,, 2013; Liu et al, 2016). In the last
decade, the desert has become a niche of growing research interest
for bacteria that are adapted to water scarcity, high salinity and
high temperature, and could be used to promote growth of crops
under these conditions (Goswami et al., 2014; Vurukonda et al.,
2016). Desert soils from across the world typically contain a
number of ubiquitous bacterial phyla including Actinobacteria,
Bacteroidetes, and Proteobacteria (Makhalanyane et al., 2015),
and Halomonas, Salicola, Bacillus, Paenibacillus, Klebsiella,
Enterobacter, Serratia, Cellulosimicrobium, Ochrobactrum, and
Pseudomonas have been identified among the most abundant
genera in saline and hypersaline rhizospheric soils (Bhatnagar
and Bhatnagar, 2005; Hedi et al, 2009; Koberl et al., 2011;
Marasco et al., 2012; Hanna et al.,, 2013; Koberl et al., 2013;
Mapelli et al., 2013; Goswami et al., 2014). Microbes found in
desert soils have been subjected to evolutionary adaptation to
extreme conditions and show higher abundance of gene functions
related to dormancy and stress response than microbes in non-
arid environments (Fierer et al., 2012). Moreover, these microbes
have been found to enhance soil fertility and promote the growth
of plants (Herman et al., 1995; Marasco et al., 2012; Koberl et al.,
2013; Goswami et al., 2014).

Following this idea, our group launched the Darwin21
project', with the goal of exploring the microbial diversity of
desert pioneer plants and their use in improving agricultural
sustainability in dryland and marginal areas. Preliminary results
revealed a large diversity of bacteria that have the potential to
promote the growth of different crop plants under diverse biotic
and abiotic stresses. In the frame of this project, our group also
obtained the draft genomes of several PGPB (Lafi et al., 2016a,b,c,
2017a,c).

Among the isolates, one particular endophytic bacterium,
SA187, showed the highest consistency in terms of growth
promotion among all performed laboratory tests. SA187 was
isolated from root nodules of Indigofera argentea, an indigenous
desert plant growing in the Kingdom of Saudi Arabia. Based

Thttp://www.darwin21.net

on the analysis of the almost complete 16S rRNA gene
(>1400 bp), SA187 was classified as member of the family
Enterobacteriaceae and named as Enterobacter sp. SA187 (Lafi
et al., 2017b). The family Enterobacteriaceae contains a large
number of genera that are found in different environmental
niches and are biochemically and genetically closely related.
Strains belonging to the genus Enterobacter have been isolated
from the Atacama Desert, northern Chile, showing tolerance to
arsenic (Azua-Bustos and Gonzalez-Silva, 2014), in the desert soil
in Algeria showing capability to degrade glyphosate (Benslama
and Boulahrouf, 2013, 2016), or in the rhizosphere of desert
plants from oil-polluted soils (Diab et al., 2017). Moreover,
members of this genus have been found as endophytic plant
growth promoters in date palms (Phoenix dactylifera L.) under
saline conditions or in association with other diverse plants
growing in arid lands (Park et al, 2005; Shankar et al., 2011;
Yaish et al., 2015). Members of the genus Enterobacter have also
been reported to show PGP traits, e.g., Enterobacter sp. EnBl,
isolated from semidesert soil in Mexico, which has been reported
to be able to solubilize phosphate (Delgado et al., 2014), or
Enterobacter sp. B6, isolated from desert soil in Algeria, which
showed biopesticide properties against Locusta migratoria L5
nymphs (Oulebsir-Mohandkaci et al., 2015).

Over the past few years, a number of Enterobacter sp.
and close relatives in the family Enterobacteriaceae showing
PGP under abiotic stress have been also characterized. For
example, Enterobacter cloacae SBP-8 (formerly Klebsiella sp. SBP-
8), which induced systemic tolerance in wheat under salt stress
(Singh et al., 2015, 2017), E. cloacae UWS5, which was able
to produce high-levels of indole-3-acetic acid (IAA) (Coulson
and Patten, 2015), or E. oryzae Ola 517, which was capable
to fix atmospheric nitrogen (Peng et al., 2009). Additionally,
members of the genera Enterobacter, Klebsiella, and Leclercia have
also been reported as phosphate-solubilizers, nitrogen-fixers,
and producers of antifungal compounds, phytohormones and
siderophores (Melo et al., 2016).

SA187 promoted the growth of the model plant Arabidopsis
thaliana under diverse abiotic stresses such as salinity, drought
or high temperature, demonstrating an important potential
for application as PGPB to improve abiotic resistance and
yield of crops in arid lands. Here we present the analysis
of the complete genome sequence and the biochemical
characterization of SA187, and highlight different metabolic
pathways that potentially contribute to plant growth and stress
tolerance.

MATERIALS AND METHODS

Genomic DNA Isolation and PCR
Amplification

Genomic DNA was extracted from fresh bacterial cultures
by using Qiagen’s DNeasy blood and tissue kit (Qiagen
GmbH, Hilden, Germany) and treated with RNAse A (MO
BIO Laboratories, Carlsbad, CA, United States). The extracted
DNA was further purified by using Mo Bio PowerClean Pro
DNA Clean-Up kit (MO BIO Laboratories, Carlsbad, CA,
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United States) following the manufacturer’s instructions. DNA
quality and quantity were assessed by using Nanodrop 2000
(Thermo Fisher Scientific, Wilmington, DE, United States) and
Qubit 2.0 (Life Technologies, Invitrogen division, Darmstadt,
Germany). The purified DNA was shipped to the sequencing
facilities by using the DNAstable® Plus (Biomatrica, San Diego,
CA, United States).

(GTG)s-rep-PCR amplification was carried out in a total
volume of 25 pl as described by Andrés-Barrao et al. (2016) by
using the GTG5 primer (Rademaker et al., 1998) (Supplementary
Table S1). The amplification of the 16S rRNA gene was carried
out in a total volume of 20 pl by using the universal primers
27F and 1429R (Supplementary Table S1): 200 ng DNA template
was added to 18 pl of PCR mixture [2X Taq Polymerase Master
Mix (Promega), 0.75 LM each primer] by using the following
program: A initial denaturation of 95°C for 5 min followed by
35 cycles with steps of 94°C for 30 s, 55°C for 45 s and 72°C
for 1 min 30 s, and a final extension of 5 min at 72°C. PCR
amplification of the housekeeping genes was carried out in a total
volume of 50 ] as follows: 100 ng DNA template was added to
49 pl of PCR mixture [Taq DNA polymerase (Invitrogen), 1.5 uM
MgCly, 125 pM dNTPs, 0.2 wM each primer, 1.5 ul DMSO] by
using the following program: A initial denaturation of 95°C for
3 min followed by 35 cycles with steps of 95°C for 30 s, 57°C
for 45 s and 72°C for 1 min 30 s, and a final extension of 5 min
at 72°C. All PCR reactions were carried out in a C1000 Touch
Thermal Cycler (Bio-Rad, United States), run in 0.8-1.5% agarose
gel electrophoresis and visualized in a ChemiDoc™ MP Imaging
System (Bio-Rad, United States).

Whole Genome Sequencing and
Annotation

Prior to sequencing, DNA was size selected to 20 kb by using the
BluePippin system (Sage Science, Beverly, MA, United States).
Whole genome sequencing was performed by DNA Link Korea
(Seoul, South Korea) using the PacBio RS II sequencing platform
(Pacific Biosciences, Menlo Park, CA, United States). Large-
insert libraries were sequenced in single-molecule real-time
(SMRT) sequencing cells by using P6-C4 chemistry. PacBio reads
were assembled into one single contig by using the de novo
Hierarchical Genome Assembly Process (HGAP.2) algorithm
with default parameters. Genome annotation was conducted by
using the in-house Automatic Annotation of Microbial Genomes
(AAMG) pipeline (Alam et al., 2013). Briefly, AAMG annotated
the genome by first predicting RNAs and open reading frames
(ORFs), followed by BLAST and Interproscan. Ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs) and other non-coding RNAs
(ncRNAs) were predicted by using RNAmmer, tRNAscan-SE
and Infernal software, respectively (Alam et al,, 2013). ORFs
were predicted by using FragGene Scan (Rho et al, 2010)
with the training model specific to complete genomes. ORFs
were annotated based on BLAST against UniprotKB and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases. Protein
core signatures, domains and associated Gene Ontology (GO)
were assigned using InterProscan. Circular chromosome and GC
skew were computed by using CGViewer Server (Grant and

Stothard, 2008) and GenSkew?, respectively. Chromosomes of
related bacteria were aligned by progressive MAUVE (Darling
et al., 2010). Function and pathway analysis was performed
by using BlastKOALA web tool of KEGG database (Kanehisa
et al., 2016). Function analysis by Cluster of Orthologous Genes
(COG) was done by using WebMGA (Wu et al, 2011). In-
house blast searches were performed through INDIGO-Desert
vl.l (Alam et al, 2013). Toxin-antitoxin (T/A) systems were
retrieved by using TA finder (Shao et al., 2011). Gene clusters for
the biosynthesis of secondary metabolites were identified by using
antiSMASH v.4.0.1 (Weber et al., 2015).

Phylogenetic Analysis
Phylogenetic analyses based on 16S rRNA gene and multi-locus
sequence analysis (MLSA) were used to evaluate the taxonomical
affiliation of SA187. To construct the 16S and MLSA phylogenetic
trees, sequences of individual genes of SA187, along with those
from reference strains of the genus Enterobacter and other closely
related genera retrieved from public databases’, were aligned by
using ClustalW (Thompson et al., 2002). For MLSA analysis,
blunt end alignments of partial sequences were obtained for each
gene: 615 bp (infB), 742 bp (gyrB), 642 bp (atpD), 637 bp (rpoB).
The concatenated gyrB-rpoB-atpD-infB sequences were used to
construct the Neighbor-Joining phylogenetic tree. Phylogenetic
and molecular evolutionary analyses were conducted by using
MEGA 6 (Tamura et al., 2013). Accession numbers of the
sequences used in this study are shown in Supplementary
Table S2. Similarity matrices showing the pairwise percentage
identity between 16S rRNA gene sequences and housekeeping
genes concatenated sequences, as well as the correspondent
distance matrices are shown in Supplementary Tables S3 and S4.
For further whole-genome phylogenetic analysis, we obtained
related genome sets initially based on megablast and later
additional members of selected genera, so that a resolved species
tree could be constructed. We gathered 55 genomes of 12
different genera. Once at least 3-5 genomes were obtained for
each genera, we predicted genes using FragGeneScan to carry
out clustering of protein coding genes using OrthoMCL. This
provided us with a list of clusters common and unique to the
analyzed genomes. We separated the core set of gene clusters
(1250 genes) and aligned each of these using MAFFT aligner.
Alignments were then concatenated and FastTree was used
with default parameters to obtain a species tree with bootstrap
values. Two-way ANIs calculation was performed on http://enve-
omics.ce.gatech.edu/ani/index, considering a minimum length of
700 bp and minimum identity of 70%. The fragment options were
set to 1000 bp for window size and 200 bp for step size. Accession
numbers of the genome sequences used in this study, together
with % similarity and ANI values are shown in Supplementary
Table S5 and Figure S4.

Data Deposition
The whole-genome shotgun project was deposited in
NCBI/DDBJ/EMBL database under the accession no CP019113.

Zhttp://genskew.csb.univie.ac.at
3https://www.ncbi.nlm.nih.gov/nucleotide/
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Arabidopsis Salt Stress Resistance

Screening

Arabidopsis thaliana seeds were surface sterilized by 10 min
shaking in 70% EtOH 4+ 0.05% sodium dodecyl sulfate (SDS),
then washed 2-3 times in milliQ water and let to dry. Sterilized
seeds where stratified for 2 days on half-strength Murashige-
Skoog Basal Salt broth pH 5.8 (1/2MS) (Murashige and Skoog,
1962) (Sigma, Germany) agar plates, at 4°C and darkness, then
transferred vertically to a Percival (22°C, 16 h light cycle) for
germination. Five-day old seedlings were then transferred to fresh
1/sMS+100 mM NaCl agar plates (6 seedlings/plate) next to a LB
agar plug with (4B, treated) or without (—B, control) SA187.
Plant growth was followed for 12 additional days, until the plant
roots reached the bottom of the plates. To evaluate the effect of
the bacterial treatment in the plant growth, aerial fresh weight
(AFW), root fresh weight (RFW), total fresh weight (FW), and
lateral root density (LRD) were determined at the end of the
experiment.

Quantitative PCR (RT-qPCR)

To evaluate the gene expression of several key genes identified
during SA187 genome analysis, the total RNA of SA187 treated
roots (dual samples) were extracted by using the NucleoSpin®
RNA Plant kit (Macherey-Nagel), following manufacturer’s
instructions. SA187 grown overnight in LB liquid was used
as a control. Total RNA of control SA187 was extracted by
using the RiboPure™ RNA Purification Kit, bacteria (Ambion),
following the manufacturer’s instructions. A total of 1 mg of
total RNA from dual and control samples was retrotranscribed
by using SuperScript® III First-Strand Synthesis System for
RT-PCR (Invitrogen), using random hexamers and following
manufacturer’s instructions. Two pl of the obtained cDNA
solution diluted 10-fold was mixed with specific primers
(Supplementary Table S1) and SsoAdvanced™ Universal SYBR®
Green Supermix (Bio-Rad), and the qPCR reactions were
performed in a CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad) as follows: 95°C for 3 min, 40x [95°C for
10 s and 60°C for 40 s], 95°C for 10 s and a final melting
curve [65-95°C, 0.5°C increment, for 5 s]. All reactions were
performed in three biological replicates. Gene expression values
were calculated relative to the housekeeping gene infB, by using
the A AC; method.

Biochemical Assays

Evaluation of Plant Growth Promoting Traits and
Tolerance to Abiotic Stresses

Plant growth promoting (PGP) traits were evaluated by using
clearing assays. The ability of SA187 to solubilize phosphate was
assessed on Pikovskaya’s (PVK) agar plates (M520, Himedia). The
production of siderophores was determined by Blue Agar CAS
assay, as described by Louden et al. (2011). Zinc solubilization
was assessed on modified PVK agar plates, supplemented with
0.1% ZnCOs, as described by Bapiri et al. (2013). Assays were
performed by inoculating 30 1 of overnight LB bacterial culture
into cavities of ~0.5 cm in diameter. The production of indole-
3-acetic acid was qualitatively determined according to Bric et al.

(1991), with the following modifications: LB broth supplemented
with 2.5 mM L-tryptophan were used in 96-well plates, which
were incubated at 28°C and 190 rpm for 2 days. Tolerance
to drought and salt stresses were evaluated by growing SA187
in LB broth (Lennox L Broth Base, Invitrogen) supplemented
with 20% polyethylene-glycol (PEG) 6000 and 3% or 5% NaCl,
respectively. Tolerance to heat stress was assessed by using LB
agar plates incubated at 37°C or 42°C. Assays were performed in
triplicates and plates and liquid cultures were incubated at 28°C
for 2-5 days.

Evaluation of Bacterial Growth in Different Carbon
Sources and Salt Concentrations

SA187 was grown overnight in LB broth (Lennox L Broth Base,
Invitrogen) at 28°C with 190 rpm until the culture reached the
exponential growth phase. Cells were harvested by centrifugation,
washed twice with 10 mM MgSOy, and finally resuspended in
10 mM MgSOy to a final ODggg of 0.5. Thirty microliters of this
cell suspension were inoculated by triplicate in 96-well plates,
in 300 pl of LB supplemented with increasing concentrations of
NaCl (0-4 M) and !/2MS alone or supplemented with 1% of the
following carbon sources: arabinose, fructose, glucose, glycerol,
lactose, maltose, raffinose, sucrose, acetic acid, citric acid, or lactic
acid. Bacterial growth was monitored by using a Varioskan Flash
microplate reader (Thermo Scientific), where the 96-well plates
were incubated for 2 days at 28°C and 300 rpm.

Evaluation of Antibiotic Resistance

Antibiotic sensitivity tests were evaluated by clearing assay.
Hundred pl of overnight SA187 culture were spread on LB
agar plates, where antibiotic impregnated disks were then placed
(Fischer Scientific). Clearing rings around the disks indicated
inhibition of bacterial growth, hence antibiotic sensitivity (S).
When SA187 was able to grow normally and no clearing ring was
observed, the bacterium contained the corresponding antibiotic
resistance marker (R).

RESULTS AND DISCUSSION

Genome Sequence Assembly and

General Features

Previously, our group published a SA187 draft genome, using
Mumina MiSeq technology and obtaining a final assembly
of 13 scaffolds (Lafi et al., 2017b). In the present work,
PacBio reads were de novo assembled by using the Hierarchical
Genome Assembly Process (HGAP.2) software and the PBcR
pipeline, resulting in 4,793 filtered and preassembled sequence
reads with a mean length of 13,471 bp and 275X genome
coverage. Consensus polished assembly yielded one circular
contig (Figure 1). Accordingly, the genome of SA187 consists
of a single circular chromosome of 4,429,597 bp, with an
average 56% GC content and no plasmids (Table 1). A clear
GC skew transition was observed, and the origin of replication
(oriC) and terminus (terC) were identified at the positions
1,071,819 and 3,184,452, respectively (Figure 1). A total of
4,606 ORFs were identified, including 4,347 protein coding
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DNA genes (CDS), 153 ncRNAs, 7 complete rRNAs, one
additional 5S rRNA, and 84 tRNAs. This number of rRNAs and
tRNAs is typical of soil bacteria and an indication of positive
selection (Trujillo et al., 2014). Indeed, a high number of rRNAs
is a typical characteristic of soil microorganisms, which are
able to respond rapidly to changing availability of nutrients
(Klappenbach et al., 2000; Shrestha et al., 2007; Lee et al,
2008). Among the CDS, a total of 3,779 (82%) were annotated
as genes with a biological function, while 568 (12.3%) were
annotated as hypothetical proteins or proteins with unknown
function (Table 1). 27 ncRNAs were identified as clustered
regularly interspaced short palindromic repeat (CRISPR) RNA
direct repeat elements, part of the CRISPR/Cas system, which
provides acquired resistance against bacteriophages. This result
suggests that the genome of SA187 may have been shaped
by interaction with bacteriophages (Horvath and Barrangou,
2010; Al-Attar et al., 2011). AntiSMASH analysis revealed
18 clusters for the biosynthesis of secondary metabolites
(Supplementary Table S6). Among them, biosynthetic clusters
were identified for lipopolysaccharides, emulsan, O- and
K-antigens, colonic acid, carotenoids, streptomycin, asukamycin
and turnerbactin.

We performed functional analysis by Cluster of Orthologous
Groups (COGs) (Table 2A and Supplementary Figure S1A). 3574

(M), inorganic ions transport and metabolism (P) and signal
transduction (T). Almost 17% of the predicted CDS are poorly
characterized: general function prediction only (R) and with
function unknown (S). The high proportion of genes involved
in transport and metabolism of carbohydrates, amino acids
and inorganic ions, indicate the inherent capacity of SA187
to compete with other microorganisms and survive in the
rhizosphere (Niazi et al., 2014). Essential genes from the COG
functional categories G and K have been found to have a lower
rate of evolution compared with the corresponding non-essential
genes (Luo et al., 2015).

TABLE 1 | SA187 genome structure and general features.

Feature Chromosome
Genome size 4,429,597

GC content 56%

ORF 4606

Gene density 1,039.8 genes/Mb
CDS 4347

— Genes with known function 3779

— Hypothetical proteins 568

Genes assigned to KEGG 2790 (64.2%)

out of the 4347 predicted CDSs (82.2%) were assigned to a  Ggnes assigned to COG 3574 (82.2%)
COG category. This result revealed three main functional gene crnAs 153

classes: Carbohydrate transport and metabolism (G), amino acid  _ cRISPR RNA direct repeats o7

transport and metabolism (E) and transcription (K), representing  RrnAs 20

26.85% of the predicted CDS. Another high percentage cluster  _165-235-55 operons 7

(20.54%) represented genes involved in energy production _ss/RNA 1

and conversion (C), cell wall/membrane/envelope biogenesis tRNAs 84
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The functional analysis performed by using the KEGG
identified 2790 genes (64.2% of all CDSs) involved in any of the
metabolic pathways included in the knowledgebase (Table 2B
and Supplementary Figure S1B). The analysis revealed the largest
number of identified genes as unclassified (10.42%). From those
genes that were classified among the KEGG pathway categories,
the largest number was involved in metabolism of carbohydrates
(7.84%), amino acids (4.23%) and cofactors and vitamins (3.69%).
Most of the remaining genes were involved in processes related to
environmental and information processing: Membrane transport
[ABC transporters 4.88%, phosphotransferase systems (PTS)
2.32%, secretion systems 0.85%] and signal transduction (two-
component systems 4.32%). These results confirmed a preference
toward metabolism and transport of carbohydrates and amino
acids, as well as signal transduction, consistent with the previous
results from COG functional analysis.

Taxonomic Affiliation

SA187 was first identified as Enterobacter sp., closely related to
E. kobei, based on the full 16S rRNA gene (Lafi et al., 2017b)
(Figure 2A and Supplementary Tables S3A, S4A). However, based
on the 16S rRNA gene alone, the polyphyletic nature of the

TABLE 2A | Functional cluster of orthologous genes (COG) classification of
predicted genes in SA187.

COG functional class CcDs % of CDS
Metabolism

C - Energy production and conversion 220 5.06
E - Amino acid transport and metabolism 372 8.56
F - Nucleotide transport and metabolism 79 1.82
G - Carbohydrate transport and metabolism 473 10.88
H - Coenzyme transport and metabolism 162 3.73
| - Lipid transport and metabolism 101 2.32
P - Inorganic transport and metabolism 220 5.06
Q - Secondary metabolites biosynthesis, 63 1.45
transport and catabolism

Cellular processes and signaling

D - Cell cycle control, cell division, chromosome 34 0.78
partitioning

M - Cell wall/membrane/envelope biogenesis 229 5.27
N - Cell motility 133 3.06
O - Post-translational modification, protein 141 3.24
turnover, chaperones

T - Signal transduction mechanisms 224 5.15
U - Intracellular trafficking, secretion and 112 2.57
vesicular transport

V - Defense mechanisms 44 1.01
Information storage and processing

A - RNA processing and modification 1 0.02
J - Translation, ribosomal structure and 182 4.19
biogenesis

K - Transcription 322 7.41
L - Replication, recombination and repair 140 3.22
Poorly characterized

R - General function prediction only 399 9.18
S - Function unknown 329 7.57

genus Enterobacter makes its classification very difficult. Brady
et al. (2008) developed the use of Multilocus Sequence Analysis
(MLSA) based on four housekeeping genes (gyrB-rpoB-atpD-
infB) to obtain a more accurate classification within the family
Enterobacteriaceae. By applying MLSA, SA187 appeared in a
separate clade, distant from the group Enterobacter (Figure 2B).
The taxonomic position of SA187 appeared in a cluster of
strains related to the genus Lelliottia, with the closest relative
Leclercia adecarboxylata LMG 28037 (Figure 2B). Nevertheless,
the low similarity (92%) and the high evolutionary distance (82%)
(Supplementary Tables S3B, S4B and Figure S2) between the
concatenated sequences of SA187 and LMG 28037, together with
the low robustness of the clade (bootstrap 53%) (Figure 2B), do
not allow the classification of the two strains as members of the
same genus. These results suggest that SA187 represents a novel
taxon within the family Enterobacteriaceae.

Similarly, strains 638 and PDA 134, which were used
as reference for comparative genomic analyses, were initially
identified based on partial 16S rRNA as Enterobacter sp. and
Klebsiella oxytoca, respectively (Taghavi et al., 2009; Gu et al,
2014), and strain PDA 134 was further reclassified as E. asburiae
(Yaish, 2016). Unlike this, the position of these strains in the
MLSA phylogenetic tree (Figure 2B) reveals Enterobacter sp.
638 as a new species in the genus Lelliottia, and PDA 134 in a

TABLE 2B | Functional Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway classification of predicted genes in SA187.

KEGG pathway functional class CDS % of CDS
Metabolism

— Carbohydrate metabolism 341 7.84
— Lipid metabolism 63 1.45
— Nucleotide metabolism 99 2.28
— Amino acid metabolism 184 4.23
— Metabolism of other amino acids 64 1.47
— Glycan biosynthesis and metabolism 49 1.13
— Metabolism of cofactors and vitamins 168 3.86
— Metabolism of terpenoids and polyketides 44 1.01
— Biosynthesis of other secondary metabolites 27 0.62
— Xenobiotic biodegradation and metabolism 30 0.69
Genetic information processing

— Transcription 159 3.66
— Translation 230 5.29
— Folding, sorting and degradation 52 1.20
— Replication and repair 88 2.02
Environmental information processing

— Membrane transport: ABC Transporters 259 5.96
— Membrane transport: Phosphotransferase system (PTS) 71 1.63
— Membrane transport: Bacterial secretion system 35 0.81
— Signal transduction: Two-component system 119 2.74
Cellular processes

— Cellular community: Quorum sensing 75 1.73
— Cellular community: Biofilm formation 94 2.16
— Cell motility: Bacterial chemotaxis 36 0.83
— Cell motility: Flagellar assembly 72 1.66
Poorly characterized

Unclassified 453 10.42
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FIGURE 2 | Taxonomic analysis. (A) 16S rRNA based phylogenetic tree. (B) Multilocus sequence analysis (MLSA) based on four housekeeping genes
gyrB-rpoB-atpD-infB. The phylogenetic tree was inferred by using the Neighbor-Joining method (Saitou and Nei, 1987), and the optimal tree is shown. The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches (bootstrap >50 is
shown) (Felsenstein, 1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic
tree. The evolutionary distances (number of nucleotide substitutions per site) were computed using the Kimura-2-parameter method (Kimura, 1980). All ambiguous
positions were removed for each sequence pair. There was a total of 2,636 positions in the final dataset.
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different cluster from that formed by the E. asburiae group. The
evolutionary distance between E. asburiae PDA 134 and its closer
relatives suggests the strain could represent a new species within
the genus Enterobacter (Figure 2B).

Further whole-genome analysis confirmed these results
(Supplementary Figure S3). In this case, SA187 seemed to be
closely related to the recently proposed genus Kosakonia (Brady
et al., 2013), although cannot yet be taxonomically affiliated
to any of the closest known species, as ANI values among
all the sequences included in the phylogenetic tree ranged
78-81%. Consistently with the MLSA results, Enterobacter sp.
638 (Supplementary Table S5 and Figure S4) appeared to belong
the genus Lelliottia, and E. asburiae PDA134 was closely related
to the E. cloacae group (Supplementary Figure S3).

Arabidopsis Plant Growth Promotion
under Salt Stress

The treatment of A. thaliana under salt stress conditions
(12MS+100 mM) with SA187 showed a clear PGPB effect. After
12 days growth, seedlings treated with SA187 showed bigger
shoots and more developed root systems (Figures 3A,B) and an
increment of 50% in all measured parameters (Figure 3C).

Gene expression of several key genes later identified in this
report, gave hints to elucidate a possible mechanism for plant
growth promotion: the gene coding for iron(IIT) ABC transporter
substrate-binding protein, afuA; phytoene synthase, crtB; MEFS
transporter ENTS family enterobactin (siderophore) exporter,
entS; and PTS system, sucrose-specific IIB component, srcA,
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FIGURE 3 | Plant growth promotion under salt stress. (A) Arabidopsis thaliana growing in /> MS+100 mM NaCl, with no bacterial treatment (-B, control).
(B) A. thaliana growing in /2 MS+100 mM NaCl, treated with SA187 bacterialized plug (+B). (C) Radar chart representing the effect of SA187 treatment in the growth
of Arabidopsis. AFW, aerial fresh weight; RFW, root fresh weight; FW, total fresh weight; LRD, lateral root density.
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FIGURE 4 | Relative gene expression by RT-gPCR. (A) SA187 genes increasing their expression upon association with Arabidopsis roots. afuA = iron(lll) ABC
transporter substrate-binding protein, crtB = phytoene synthase, entS = MFS transporter ENTS family enterobactin (siderophore) exporter, katE = catalase,
srcA = PTS system, sucrose-specific IIB component. (B) SA187 genes decreasing their expression upon association with Arabidopsis roots. fliC = flagellin.

* = significant (o < 0.05), ** = very significant (o < 0.01), *** = extremely significant (o < 0.001).
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were highly expressed when SA187 was associated with roots,
compared with the pure bacterial culture, suggesting their role
in plant growth promotion (Figure 4A). The gene coding for
catalase, katE, did not show significant differences (Figure 4A),
and 2 genes coding for the protein flagellin, fliC, a structural
part of the bacterial flagellum, decreased its expression upon
association with Arabidopsis roots (Figure 4B). The decrease in
expression of fliC genes is consistent with the transition from a
highly aerated shacked liquid culture to a situation where SA187
has stably colonized the plant root.

Biochemical Characteristics of SA187

The qualitative evaluation of PGP traits showed that SA187
was able to produce siderophores and also to solubilize zinc,
but was unable to solubilize phosphate (Table 3). These results
revealed some of the possible strategies that the bacterium might
employ when interacting with its host plant, contributing to plant
growth promotion. The obtained antibiogram showed that SA187
is resistant to both ampicillin and penicillin G, but sensitive
to chloramphenicol, erythromycin, kanamycin, oxytetracycline,
streptomycin, tetracycline and rifampicin (Table 4). The
resistance to ampicillin and penicillin G is providing SA187 with

an additional strategy to compete with other coexisting bacteria
and fungi in the desert soil and in the rhizosphere.

SA187 grew well under osmotic and heat stress conditions,
as well as under salt stress, up to a concentration of 1 M
NaCl (Table 5). When comparing the growth of the bacterium
under increasing concentrations of NaCl, we observed that
supplementing LB broth with low concentrations of NaCl
(0.1-0.5M) had a beneficial effect on bacterial growth. The
maximum cell density in these cases (ODggg), when compared
with LB with no additional NaCl added, increased about 0.2
units. The growth of SA187 was in contrast slightly delayed
when 1 M NaCl was added, and completely inhibited at higher

TABLE 3 | Biochemical characteristics of SA187.

Plant growth promoting (PGP) traits

Phosphate solubilization —
Zinc solubilization +
Siderophore production +

— = no clearing zone was observed on agar plates, + = clearing zone appeared
after 24 h incubation.
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concentrations (LB+2 M NaCl and LB+4 M NaCl) (Table 5 and
Supplementary Figure S5A). These results indicate that SA187 is
moderately halophilic, being able to resist NaCl concentrations
up to 1 M. Similar results were recently reported for Klebsiella sp.
BRL6-2, which was able to grow under salt conditions up to 1.5 M
NaCl (Woo et al., 2014). The capability to resist moderate salt
stress would contribute to the survival of SA187 as a free-living
bacterium in desert soils.

The evaluation of the growth of SA187 in different carbon
sources showed that the bacterium grows fast in LB broth
(containing 0.5% NaCl), as expected for this nutrient rich
medium. Consistently with the lack of a utilizable carbon source
in 12MS, SA187 did not show any growth when no sugar
was added to this medium. SA187 did not grow in !/2MS
supplemented with 1% acetic acid or 1% lactic acid. SA187 did
nevertheless grow in !2MS supplemented with 0.1-1% sucrose,
1% arabinose or 1% citric acid, although the log phase was
clearly delayed (>12 h) compared to LB (Supplementary Figure
S5B). SA187 was also able to grow in !/2-MS+1% glycerol and
/2 MS+1% lactose to some extent, although the growth rates
in these cases were strongly reduced. Finally, compared with
12MS the growth of SA187 was slightly stimulated when 1%

TABLE 4 | Resistance of SA187 to different antibiotics.

Antimicrobial compound

Ampicillin
Chloramphenicol
Erythromycin
Kanamycin
Oxytetracycline
Penicillin G
Streptomycin
Tetracycline

»w m n»m IV O no n n o

Rifampicin

R = bacterial growth was observed, indicating resistance to the antibiotic, S = no
bacterial growth was observed, indicating sensitivity to the antibiotic.

TABLE 5 | Resistance of SA187 to different abiotic stresses.

Resistance to abiotic stresses

Salt stress

— Growth LB* (no NaCl added)
— Growth LB + 0.1 M NaCl

— Growth LB + 0.25 M NaCl

— Growth LB 4 0.5 M NaCl

— Growth LB + 1.0 M NaCl

— Growth LB + 1.5 M NaCl —
— Growth LB + 2.0 M NaCl —
Osmotic stress

— Growth in 20% PEG 6000 +
Heat stress

— Growth at 37°C +
— Growth at 42°C +

+ 4+ + o+ o+

— = no bacterial growth was observed, + = positive bacterial growth was
observed. *normal pH of LB medium was adjusted to 7.0.

fructose, 1% raffinose, 1% glucose, or 1% maltose were added
(Supplementary Figure S5B).

Additionally, the pH of the culture broth has a clear influence
on the bacterial growth. The good growth in LB compared with
all other conditions might be also due to the higher pH to which
the medium is adjusted (pH 7.0), compared with the pH in /2
MS (pH 5.8). Interestingly, no big difference was observed when
SA187 was grown in LB pH 7.0 or LB pH 5.8 (Supplementary
Figure S5B), indicating the bacterium is capable to resist certain
acid stress due to a lower pH.

Metabolic Features of SA187 Involved in
the Dual Life-Style: Free-Living and

Plant-Associated

A general overview of the main metabolic pathways and transport
systems involved in the interactions between SA187 and its plant-
host is presented in Figure 5.

Survival under Extreme Conditions

SA187 was isolated from I. argentea, an indigenous desert
plant growing in areas where heat, drought and salt are key
environmental stresses with which bacteria must cope during
their free-living lifestyle in the soil. Betaine (also called glycine-
betaine) and proline are known to confer salt tolerance to
organisms (Ren et al., 2010; Hayat et al., 2012). P-blast genome
mining revealed that SA187 contains the complete pathway for
the biosynthesis of proline. However, the genes coding for choline
dehydrogenase (betA) and betaine dehydrogenase (betB) are not
present, indicating that SA187 is unable to synthesize betaine.
On the other hand, we found a set of genes coding for membrane
transporters:  ATP-binding cassette (ABC) transporters
ProVWX (SA187PBcda_000000076-000000079) and OpuABCD
(SA187PBcda_000004092-000004095), and 3 copies of an
major facilitator superfamily (MES) transporter metabolite:H+
symporters (MHS) family, ProP (SA187PBcda_000002035,
SA187PBcda_000002396, SA187PBcda_000004343), which can
be used to internalize these osmoprotectants, which might be
released into the rhizosphere by other microorganisms and
plants. A novel role for ProP as carnitine uptake system has been
recently described in Cronobacter sakazakii BAA-894 (member
of the family Enterobacteriaceae). The uptake of carnitine by
ProP provided the strain with a higher osmotolerance, being able
to grow under salt concentrations far in excess of that afforded
by proline (Feeney and Sleator, 2015).

Trehalose is another important osmoprotectant produced
under environmental stresses. Five pathways for the
biosynthesis of trehalose have been described: TreS,
OtsA/OtsB, TreP, TreT, TreY/TreZ (Garg et al, 2002; Paul
et al, 2008). In the genome of SA187 we found genes
coding for trehalose 6-phosphate synthase and trehalose
6-phosphate phosphatase (otsAB, SA187PBcda_000004793-
000004794), 2 copies of trehalose-6-phosphate hydrolase
(treC,  SA187PBcda_000000633, SA187PBcda_000002209),
malto-oligosyltrehalose trehalohydrolase (treZ,
SA187PBcda_000002137) and the transcriptional regulator
treR (SA187PBcda_000002211). Additionally, we found 2 copies
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of treA (SA187PBcda_000001180, SA187PBcda_000004582)
coding for the enzyme trehalase, which catalyzes the
hydrolysis of trehalose into glucose, as well as 2 copies of
treB (SA187PBcda_000002210, SA187PBcda_000002946) a PTS
that is specific for the uptake of trehalose. The role of trehalose in
osmotolerance has been reported recently in Klebsiella sp. BRL6-
2. The growth rate of this strain in 6% NaCl containing medium
supplemented with trehalose increased significantly when
compared with the growth in the absence the of osmoprotectants
(Woo et al., 2014).

A recent study reported an ATP-dependent potassium (K)
uptake system (KdpFABC) to be essential for survival of
Halobacterium salinarum, an extreme halophilic Gram-negative
archeon, under desiccation and high salinity (Kixmiiller and
Greie, 2012). Homologs of kdpFABC are widely distributed

among the family Enterobacteriaceae and other Gram-negative
bacteria and cyanobacteria and have been reported to increase
their expression in response to salinity (Walderhaug et al., 1989;
Jung et al., 1997; Solheim et al., 2014). One of the prominent
responses of Salmonella enterica to high ion concentrations
has been reported to be the transcriptional induction by more
than 100-fold of 2 operons: proU (proVWX), and the kdpABC
system (Balaji et al., 2005). The genome of SA187 contains the
genes kdp forming an operon that also included the genes for
the corresponding two-component system response regulator
(KdpED) (kdpEDCBAF, SA187PBcda_000003311-000003316).
Other mechanisms conferring salt tolerance to halophiles is
the presence of cation transport systems for the controlled
uptake of sodium (Na®), potassium (K') and chloride
(CI7) (Flowers et al., 2015). The genome of SA187 contains
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genes coding for cation/proton (H'1) antiporters that
contribute to osmoregulation: KT/H™ antiporter NhaP2
(SA187PBcda_000004591) and Na*/HT antiporter NhaA
(SA187PBcda_000002407). We also found a transcriptional
regulator of the family LysR, activator of NhaA (nhaR,
SA187PBcda_000002407-000002408). The NhaP2 and NhaA
transport systems allow bacteria to import HT while pumping
K* and Nat, thus preventing excessive cation accumulation,
and have been recently found to resist hyperosmotic stress
in the genome of the alkalotolerant plant growth-promoting
rhizobacterium Klebsiella sp. D5A (Liu et al., 2016).

In addition to the biosynthesis of different osmoprotectants,
the production of carotenoids has also been reported to be
important for the survival of the bacteria in the rhizosphere and
its protection against UV radiation, as well as for the bacterial-
plant association (Mohammadi et al., 2012; Bible et al., 2016). On
synthetic media, SA187 produced a yellow pigment that could
be due to the biosynthesis of carotenoids. We found that the
genome of SA187 contains all 7 genes of the entire carotenoid
biosynthesis pathway, which is organized in a gene cluster (crtE-
idi-crtXYIBZ, SA187PBcda_000002248-000002254) (Figure 6A)
that is syntenic with the cluster identified in C. sakazakii BAA894,
a close relative of the genus Enterobacter (Zhang et al., 2014). This
Cronobacter strain also forms yellow colonies when grown on
agar plates, due to the production of two carotenoids: zeaxanthin-
monoglycoside and zeaxanthin-diglucoside (Zhang et al., 2014).
The conserved synteny of the gene cluster present in SA187
and the one identified in C. sakazakii BAA894 suggest that
the yellow pigment produced by SA187 could be due to the
same zeaxanthins. The importance of carotenoids for an effective
plant-microbe interaction was revealed by Pantoea sp. YR343
AcrtB mutant. This mutant strain was defective in the production
of carotenoids, due to the lack of phytoene synthase (crtB), a
homolog of this gene is found in SA187, and was reported to
show increased sensitivity to oxidative stress, impaired biofilm
formation and production of IAA, and the reduced colonization
of plant roots (Bible et al., 2016). By homology with the same
genes in C. sakazakii BAA894 and other Enterobacteriaceae
strains, including Pantoea sp. (Misawa et al., 1990; Sedkova et al.,
2005; Conlan et al., 2014; Zhang et al., 2014), we hypothesized
that the yellow pigment produced by SA187 could be a derivate of
the carotenoid zeaxanthin, and could have a role in Arabidopsis
root colonization. Additionally, zeaxanthin is a precursor in the
plant biosynthetic pathway to produce salicylic acid (SA), a plant
hormone that could have a role in the PGP provided by SA187.

Two-component systems (TCS) are signaling pathways that
allow bacteria to sense and respond rapidly to changes in their
environment. TCS consist of a sensor membrane-bound histidine
kinase (HK) and a corresponding response regulator (RR)
(Mitrophanov and Groisman, 2008). In SA187, a high number
of genes are involved in TCS systems and signal transduction
(Supplementary Table S7). Most of the SA187 TCS belong to the
OmpR family, but also systems belonging to the NarL and NtrC
families were identified. Among them, the KdpD/KdpE system
(mentioned before), one of the most distributed HK/RR systems
in bacteria, which is typically activated under K* limitation or
osmotic stress (Heermann and Jung, 2012). We also found the

CpxA/CpxR TCS, which controls the envelope stress response
in Gram-negative bacteria (cpxAR, SA187PBcda_000001596-
000001597). In Escherichia coli, the CpxA/CpxR system, jointly
with the sigmaE and sigma32 response pathways, regulates gene
expression in response to adverse conditions (De Wulf and Lin,
2000). A large number of TCS genes is typical for bacteria living
in rapidly changing or diverse environments (Capra and Laub,
2012), and correlates with the dualistic life style of SA187 as
free-living and plant-associated microorganism.

Transport and Exchange of Nutrients

Bacteria living in endophytic association need to exchange
nutrients (Chibucos and Tyler, 2009). Consistently, we found
that SA187 codes for a large diversity of transporters to allow
the exchange of bacterial metabolites and plant-produced
nutrients. Among these transporters, we identified more
than 200 genes coding for ABC transporters, which among
other things, are involved in the uptake of metals (iron,
manganese, nickel, molybdate, zinc), phosphate, sulphate,
nitrate/nitrite, urea, sugars (glycerol-3P, ribose, rhamnose,
xylose, maltose/maltodextrine, arabinose), amino acids
(glycine-betaine/proline, — methionine, cysteine, arginine,
branched-chain amino acids, glutamine/aspartate, histidine,
lysine/arginine/ornithine) polyamines (spermidine/putrescine),
or quorum sensing autoinducer-2 (AI-2) (Supplementary
Table S8). AI-2 and LuxS, the enzyme that catalyzes the
production of the signal precursor for AI-2 mediated quorum
sensing, has been reported in Enterobacteriaceae of the genera
Enterobacter, Klebsiella, and Pantoea that live in close association
with plants (Rezzonico et al., 2012).

SA187 is also able to incorporate a wide plethora of sugars
through PTS. We identified 101 genes involved in the uptake of
glucitol/sorbitol, lactose/cellobiose, galactitol, mannitol, fructose,
ascorbate, trehalose, or mannose, among others (Supplementary
Table S9). We also found 53 genes coding for members of
the MES transporters, such as the MHS family proline/betaine
transporter ProP (mentioned before) (Supplementary Table S10).
These results are consistent with the capacity of SA187 to grow
on different carbon sources, as described previously. SA187 was
able to grow in media with arabinose and, to some extent, with
glycerol or lactose. SA187 is also able to incorporate sucrose,
fructose, glucose or maltose, what is consistent with its growth
on !/2MS when the corresponding carbon sources were added
(Supplementary Figure S5B).

Additionally, bacteria have developed several specific
mechanisms to compete for iron, an essential element whose
availability often limits bacterial growth. These mechanisms
include specific iron uptake transporters, the secretion of
large numbers of diverse siderophores and the synthesis
of siderophore receptors to utilize siderophores produced
by other microorganisms. The presence of an efficient iron
uptake system can also contribute to protect the host plant
against pathogen infections, by depriving iron from the
pathogenic microorganisms (Taghavi et al., 2010). We found
54 genes involved in iron- and manganese-uptake by SA187
(Supplementary Table S11). Among them, several iron ABC
transporters: SitABCD, 2 AfuABC, 4 FhuDBC as well as six genes
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coding for the iron complex-outer membrane receptor FhuA;
two ferrous iron uptake transporters: FeoABC and EfeUQ; and
the ferrous-ion efflux pump FieF (Supplementary Table S11).
An important role of iron uptake in the interaction between
SA187 and the plant is supported by the observed increase in
gene expression of the genes afuA and entS (Figure 4A). These
transporters for iron uptake are common among members of the
Enterobacteriaceae family, including PGPR Enterobacter sp. 638
and Klebsiella sp. D5A (Boyer et al., 2002; Taghavi et al., 2010;
Liu et al., 2016).

Similarly to other Enterobacteriaceae (Taghavi et al., 2010;
Carpenter and Payne, 2014), SA187 contains the genes necessary
to synthesize the siderophore (ferric chelator) enterobactin: entD
(SA187PBcda_000005352), entF (SA187PBcda_000005348),
entABEC (SA187PBcda_000005338-000005341), to secrete it
through an MFS transporter (entS, SA187PBcda_000005343),
and to recover the enterobactin-iron complex through the
TonB-dependent transporter ExbDB (SA187PBcda_000000488-
000000489). Finally, the enterobactin esterase Fes (SA187PBcda_
000005350) will liberate the iron molecule. An additional TonB-
dependent outer membrane iron-enterobactin/colicin (fepA,
SA187PBcda_000005351) was also identified. The production of

enterobactin has been reported in E. coli BW25113 and E. cloacae
ATCC 13047, were it has been found to be positively regulated
by the peroxiredoxin AhpC (Ma and Payne, 2012; Carpenter and
Payne, 2014).

Phosphorus (P) is another element that is an essential
macronutrient for the growth of all biota, including plants,
and, together with nitrogen, it is one of the major limiting
macronutrients for crop production (Bergkemper et al., 2016).
Plants are only able to take up free orthophosphate (PO,4>~), but
phosphate in the soil is mostly present in the form of insoluble
compounds. Therefore, specialized microorganisms such as
PGPB play an important role in providing available inorganic
P to the plant, in the form of PO4*~ (Bergkemper et al., 2016).
In most bacteria, a mineral phosphate-dissolving capacity has
been shown to be related to the production of organic acids,
and the direct oxidation of glucose to gluconic acid (GA) has
been proposed as the main mechanism for mineral phosphate
solubilization in Gram-negative bacteria. This oxidation is
carried out by the glucose dehydrogenase (GDH) enzyme
and the cofactor pyrroloquinoline quinone (PQQ) and has been
identified, among others, in the phosphate solubilizers E. asburiae
and Leclercia sp. QAU-66 (Gyaneshwar et al., 1999; Rodriguez
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FIGURE 6 | (A) Carotenoid biosynthesis gene cluster. (B) SA187 multi-phenotypic complex. After a certain period of interaction between SA187 and the plant host
Arabidopsis, 2 morphologies differing in the pigmentation are observed: yellow (SA187Y) and white (SA187W). (C) (GTG)s-rep-PCR fingerprinting. Genotypic
characterization of the SA187Y and SA187W isolates, comparison with the original SA187 stock and the inoculum used for one of the screening experiments. The
same amplification pattern shown by the four samples shown in the panel indicates that both phenotypes, yellow and white, are genetically identical.
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et al., 2007; Naveed et al., 2014). The genome of SA187 contains
only the gene coding for PqqF. The lack of the operon pqqABCDE
eliminates this pathway as the strategy used for phosphate
solubilization. Nevertheless, we found that SA187 can synthetize
2 exopolyphosphatases (ppx-gppA, SA187PBcda_000001262,
SA187PBcda_000005395) and an inorganic pyrophosphatase
(ppa, SA187PBcda_000002182), which are three enzymes
that have been shown to be involved in making insoluble
phosphorus available for to plants (Bhattacharyya et al,
2017). The genome of SA187 contains genes coding for
the TCS PhoB/PhoR involved in the phosphate starvation
response (phoBR, SA187PBcda_000002805-000002806)
and an ABC transporter for phosphate uptake (pstSCAB,
SA187PBcda_000001427- SA187PBcda_000001430). Moreover,
we also identified a low-affinity inorganic phosphate transporter
(pit, SA187PBcda_000001153). The genes phoA and phoD,
coding for enzymes alkaline phosphatases, which release PO4>~
and acts downstream the PhoBR system, were not found.
The Pst transporter is repressed by phosphate and induced
under phosphate limitation, while the Pit system is constitutive
(Jansson, 1988). Despite the potential capability of SA187 to
incorporate phosphate (PO4*>7) through these systems, the
bacterium was unable to experimentally solubilize phosphate, as
shown by our biochemical analysis (Table 3), suggesting that the
transporters might be non-functional or not expressed under the
experimental conditions.

Together with P and K™, nitrogen is one of the most important
micronutrients for the plant. A number of Enterobacteriaceae,
including Enterobacter oryzae Ola517, E. agglomerans, E. cloacae,
or L. adecarboxylata STUPM20, have been reported to be
nitrogen-fixers (Kreutzer et al., 1991; Peng et al., 2009; Laili et al.,
2017). Interestingly, the genome of SA187 lacks genes coding
for the nitrogenase enzyme (nifDHK), required for nitrogen
fixation, but contains genes for dissimilatory nitrate reduction
(Supplementary Table S12): narLXK (SA187PBcda_000004490-

000004493), narGHI] (SA187PBcda_000004486-000004489),
nirBD (SA187PBcda_000001018-000001019), nirC
(SA187PBcda_000001020) and nitrate assimilation: nasAB

(SA187PBcda_000004496-000004497). We also found an
ammonium uptake transporter and its regulator (amtB and
gInK, SA187PBcda_000002879-000002880), a periplasmic nitrate
reductase (napA, SA187PBcda_000005261), a nitrate/nitrite
ABC transporter (nasDEF/nrtABC, SA187PBcda_000004498-
000004500) and the nitrate RR NasR (SA187PBcda_000004502).
These results indicate that SA187 is potentially able to
incorporate nitrate and nitrite for assimilation into ammonia, as
well as to incorporate ammonia directly.

Secretion of Effector Proteins

Besides the uptake and exchange of nutrients, bacteria also need
a set of different protein secretion systems that are essential for
their growth and for their interaction with plants. Through these
systems, bacteria secrete enzymes, peptides, toxins, antibiotics
or secondary metabolites to the surrounding environment, to
compete with nearby microorganisms or to be incorporated and
used by their host plant (Green and Mecsas, 2016). Among the
bacterial secretion systems, the general secretion (Sec) and the

twin-arginine translocation (Tat) pathways are most commonly
used to transport proteins across the plasma membrane (Natale
et al., 2008). The Sec pathway primarily secretes unfolded
proteins, while the Tat pathway is mostly used to secrete folded
proteins (Robinson and Bolhuis, 2004). Most of the proteins
transported by these pathways remain inside the cell, but in
Gram-negative bacteria, they can either stay in the periplasm or
the inner membrane, or they can be secreted outside through
the type II (T2SS) or type V (T5SS) secretion systems (Green
and Mecsas, 2016). In the genome of SA187, we identified 35
genes involved in bacterial secretion systems. Among them, we
identified a complete Sec and Tat secretion pathways and most of
the T2SS and type VI (T6SS) secretion systems (Supplementary
Table S13). We did not find any of the genes required for the
biosynthesis of type III (T3SS) nor T5SS.

The T2SS is conserved in most Gram-negative bacteria,
and is unique in its ability to promote secretion of large and
sometimes multimeric proteins that are folded in the periplasm
and transport them into the extracellular environment (Douzi
et al, 2012; Green and Mecsas, 2016). Although T2SS has
been found in many plant pathogens such as Pseudomonas
fluorescens, Erwinia, or Xanthomonas spp., T2SS is also important
for non-pathogenic bacteria, such as the metal reducing bacteria
Shewanella oneidensis (Douzi et al., 2012; Korotkov et al.,
2013). In the genome of SA187 we found almost all core
genes coding for the T2SS, which were organized in an operon
(gspCDEFGHIJKLM, SA187PBcda_000000965-000000975). Only
the genes gspO, coding for a prepilin peptidase, and gspS, coding
for an accessory pilotin, were not found. As non-core component,
genes encoding GspS have not been found in all bacterial species.
Nevertheless, the T2SS core protein GspO seems to be essential
for the secretion system to be functional (Douzi et al., 2012).
Although no gene coding for GspO was found in the genome
of SA187, we found two genes showing a high homology,
coding for a type IV prepilin-like proteins peptidase (pilD,
SA187PBcda_000000976, SA187PBcda_000000320), which could
be used instead, rendering SA187 with a fully functional T2SS
secretion system.

The T6SS, on the other hand, is the most recent bacterial
secretion system to be discovered and also fairly well conserved
among Gram-negative bacteria. Although it is still poorly
characterized, T6SS translocates effector proteins into a variety of
recipient cells, including eukaryotic cells and other bacteria and
has been reported in a well-studied PGPB strain P. fluorescens
(Decoin et al,, 2014; Green and Mecsas, 2016). Many of
these effectors are directed against the bacterial cell wall and
membrane, supporting a role in bacterial competition with other
microorganisms (Russell et al., 2011, 2014). Similarly to T2SS,
T6SS has been found in pathogenic as well as in non-pathogenic
bacteria (Shyntum et al., 2014). In the case of SA187, we identified
most of the genes coding for T6SS, including three copies of
the gene coding for the Hcp protein, (SA187PBcda_000000063,
SA187PBcda_000001145, SA187PBcda_000001383), but none of
the three post-translational regulators: PpkA, Fhal and Stpl.
These regulatory proteins belong to the non-core set of genes
and are not essential for the biosynthesis of a functional secretion
system (Shyntum et al., 2014).
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Chemotaxis and Bacterial Mobility

Motility is an important characteristic for plant-associated
bacteria and endophytes, enabling bacteria to move and
colonize plants and also to systematically spread within the
plant (Hardoim et al., 2008). We identified 156 genes involved
in chemotaxis and biosynthesis and assembly of flagella
(Supplementary Table S14). The most widespread bacterial
chemotaxis signaling pathway centers on a fixed core of signaling
genes, consisting in the TCS CheA/CheY, methyl-accepting
chemoreceptor proteins (MCP) and an adaptor protein CheW
(Capra and Laub, 2012). Consistently with its chemotactic nature,
we found that SA187 is able to synthetize the TCS CheA/CheY
(cheA, SA187PBcda_000004788; cheY, SA187PBcda_000004777),
as well as CheW (SA187PBcda_000004787) and a wide variety
of MCPs (10 mcp, tap, 3 tar, 2 tgr, 4 tsr) (Supplementary Tables
S6, S14). We also found genes coding for additional chemotaxis
proteins: CheZYBR  (SA187PBcda_000004776-000004779),
CheWA (SA187PBcda_000004787-000004788), the TCS RR
CheV (SA187PBcda_000005252) and CheB/CheR fusion protein
(cheBR, SA187PBcda_000000470), and also several copies of
the genes coding for fimbrial proteins FimA, FimC, and FimD
(Supplementary Table S14).

The mobile nature of SA187, which allows the bacterium
to move through the soil matrix and inside the plant, was
confirmed by the presence of a large number of genes involved
in the biosynthesis and assembly of flagella, such as 2 operons
flgABCDEFGHIJKLMN, 2 flhAB, fIhCD, flhE, 2 fliA, fliB, 2 fliCD,
3 fliC, fliEFGHIJKLMN, fliIEFGHIJKLMNOPQRST, as well as and
2 copies of genes coding for the flagellar motor proteins MotA
and MotB. We also found genes involved in the biosynthesis and
assembly of the type IV pilus system (T4PS) (hofBC, hof MNOPQ,
tcpC, tepD, tepE, tepT) and pilin (2 pilD, ppdABC, tcpA, tcpB)
(Supplementary Table S14).

It is known that T2SS and T4PS are evolutionary related
and shared several structural and functional features, such as
the prepilin peptidase PilD, as mentioned before (Korotkov
et al., 2013). Interestingly, we observed that, in the genome
of SA187, most of the genes involved in the biosynthesis of
flagella, as well as a set of genes coding for T4PS are grouped in
clusters (Figure 1). The high number of flagella synthetized by
SA187 can be seen in the negative-stained transmission electron
microscopy sections shown in Figure 7A. Interestingly, 5 flagellin
(FliC) paralogs containing the N-terminal conserved flg22 motif
were found in the genome of SA187. This Flg22 motif is the
main pathogen-associated molecular pattern (PAMP) motif that
induces PAMP-triggered immunity when plants sense bacteria,
such as P. aeruginosa or S. enterica (Garcia and Hirt, 2014;
Bigeard et al., 2015) (Figure 7B). Since different host plants
including Arabidopsis recognize SA187 as a beneficial bacterium
and not a pathogen, it is clear that FliC-induced PAMP-triggered
defense responses must be suppressed by SA187 through a yet
unknown mechanism.

Plant Colonization

To mediate the adhesion and colonization of plant roots,
a variety of plant-associated bacteria produce cellulose and
other exopolysaccharides (Romling and Galperin, 2015).

FIGURE 7 | (A) Transmission electron microscopy section of SA187. Bacteria
were cultured in LB broth before fixation and negative staining. SA187 shows
a high number of peritrichous flagella. (B) Conservation of flg22 motif. The
N-terminal of FliC proteins of SA187 shown a highly conserved motif shared
with Pseudomonas flg22. Diagram obtained by using WeblLogo on-line tool
(Crooks et al., 2004).

The genome of SA187 contains all genes necessary to
synthesize cellulose (bcsABCD) (Supplementary Table S15).
In some members of the Enterobacteriaceae, cellulose is
usually co-expressed with curli fibers (Romling, 2007).
In the genome of SA187 we found 2 operons coding for
curli fibers: ¢sgGFED (SA187PBcda_000003728-000003731)
and ¢sgBAC (SA187PBcda_000003733-000003735), which
were found adjacent, separated by a hypothetical protein
(SA187PBcda_000003732).

Colanic acid is another exopolysaccharide produced by many
Enterobacteriaceae and critical for biofilm formation (Ritto et al.,
2006). The genome of SA187 contains all genes necessary for the
biosynthesis of colanic acid, organized in a gene cluster, together
with the proteins required for its translocation to the bacteria
cell surface: Wza, Wzb, and Wzc (SA187PBcda_000005052-
000005070). The colanic acid transcriptional regulator McbR
(SA187PBcda_000004274) was also identified in a separate
genomic region. Additionally, we found several genes involved
in the putative adhesion to roots, as well as the operon srfABC
(SA187PBcda_000004281-000004283), which codes for virulence
effectors homologs to those identified in S. enterica, which are
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believed to be involved in host colonization (Worley et al., 2000;
Frye et al., 2006).

It has been reported that the endophytic bacterium E. asburiae
JM22 is able to hydrolyze plant cell wall-bound cellulose to gain
access to the plant cell (Hallmann et al, 1997). The genome
of SA187, however, does not encode any endo-/exo- or hemi-
cellulases, suggesting that SA187 could gain entry into the host
plant through injuries, points of damaged tissue or natural
openings, as described for Enterobacter sp. 638 (Taghavi et al.,
2010). Similarly to this well characterized PGPB, we found
that SA187 is able to degrade and utilize pectin, as a gene
coding for pectate lyase (pelB, SA187PBcda_000002287), an
enzyme involved in the cleavage of pectate into oligosaccharides,
was identified next to an oligogalacturonate-specific porin
(kdgM, SA187PBcda_000002288) (Taghavi et al, 2010).
We also found an oligogalacturonide ABC transporter
(togMNAB,  SA187PBcda_000000314-000000317)  involved
in the translocation of this pectic oligosaccharide across
the inner membrane and genes involved in the degradation
of  oligogalacturonide (ogl, SA187PBcda_000000332;
kduDlI, SA187PBcda_000000330-000000331; kdgKA,
SA187PBcda_000001733-000001734), was well as the
transcriptional regulator kdgR, SA187PBcda_000001735) and 2
copies of an additional galacturonate uptake transporter exuT
(SA187PBcda_000000661, SA187PBcda_000003517), and its
negative regulator exuR (SA187PBcda _000000662) (Valmeekam
et al,, 2001). This strategy has been also reported for others
PGPB, such as Bacillus amyloliquefaciens subsp. plantarum
B9601-Y2 (He et al.,, 2012). Alternatively, we found that SA187
may degrade galacturonate through a pathway involving
the enzymes coded by wuxaA (SA187PBcda_000000658),
uxaB  (SA187PBcda_000004197-000004198), and  wuxaC
(SA187PBcda_000000659). Enzymatic complexes UxaABC
and Uxa AB has been found to be normally used in E. coli to
degrade galacturonate and glucuronate (Rothe et al., 2013).

As described previously, carotenoids play an important role
in the survival in the rhizosphere and plant colonization of
Pantoea sp. YR343 to A. thaliana and Populus deltoids (Bible
et al., 2016). Interestingly, during our experiments to screen the
effect of SA187 in the growth and development of Arabidopsis
seedlings, we monitored the amount and viability of bacterial cells
(CFU/pl) that were associated with plant roots, and observed
the appearance of a multiphenotypic complex in showing
yellow and white colonies (Figure 6B). The ratio between
white colonies (SA187W) and those showing the original yellow
phenotype (SA187Y) increased with longer periods of incubation
with plants (data not shown). To eliminate the possibility of
contamination, we performed analysis of the 16S rRNA gene
sequence as well as genotyping of both white and yellow isolates
by (GTG)s-rep-PCR fingerprinting. The results obtained from
these analyses confirmed both morphologies corresponded to
the same bacterial strain (Figure 6C). Based on these results,
we can hypothesize that a modification in the metabolism of
SA187 occurred upon colonization of the plant, leading to a
decrease in the production of carotenoids. Although a clear role
of carotenoids in the interaction between SA187 and Arabidopsis
was suggested by the increase in gene expression of crtB upon

association with the plant (Figure 4A), further investigations are
needed to clarify a role of these carotenoids in the interaction of
SA187 with its host-plant.

Defense against Oxidative Stress
Upon contact with bacteria, a major plant defense reaction is
the production of reactive oxygen species (ROS), nitric oxide
and phytoalexins (Hammond-Kosack and Jones, 1996; Zeidler
et al.,, 2004). Therefore, during colonization, endophytes have
to survive in a highly oxidative environment. Accordingly,
in the genome of SA187 we found a wide variety of enzymes
and regulators that help bacteria to cope with oxidative stress,
including superoxide dismutase (sod, SA187PBcda_000001593),
catalase  (katE, SA187PBcda_000005240), Mn-containing
catalase (katN, SA187PBcda_000000181), 4 peroxiredoxins
(ahpC, SA187PBcda_000002814, SA187PBcda_000003138; bep,
SA187PBcda_000005379; ahpF, SA187PBcda_000003139), 2
osmotically inducible proteins (osmC, SA187PBcda_000000190,
SA187PBcda_000002308), iron-dependent peroxidase (SA187PB
cda_000003030), cloroperoxidase (SA187PBcda_000001174) and
thiol peroxidase (SA187PBcda_000004379). Synteny analysis
demonstrated that the gene SA187PBcda_000003918, annotated
as hypothetical protein, was in reality a homolog of katE.
Additionally, we found a gene coding for the hydrogen
peroxidase sensor OxyR (SA187PBcda_000001637), which
activates the expression of genes such as glutathione
reductase  (katG, gor, SA187PBcda_000001159), ahpC,
ahpF, a  DNA-protection during starvation protein
(dpsA, SA187PBcda_000003479), the transcriptional
regulator of ferric uptake (fur, SA187PBcda_000003300)
and glutaredoxin (grxA, SA187PBcda_000003553).
We also found 3 glutathione S-transferases (GTS)
(gts, SA187PBcda_000001274, SA187PBcda_000002004,
SA187PBcda_000003538), a glutathione ABC transporter
(gsiABCD, SA187PBcda_000003528-000003531), 3 glutathione
peroxidases  (btuE, SA187PBcda_000003945, SA187PBc
da_000004145) and a y-glutamyl transpeptidase (GGT)
(SA187PBcda_000001086). The operon coding for an RND
family multidrug efflux pump (acrAB, SA187PBcda_000002911-
000002912) that is required for a successful colonization of the
host plant (Taghavi et al., 2010; Burse et al., 2004), as well as its
transcriptional regulator (acrC, SA187PBcda_000002913), were
also encoded in the genome of SA187.

Production of Antimicrobial Compounds and Toxins

Many beneficial bacteria also produce a variety of antimicrobial
compounds, thereby enhancing the plant resistance
against pathogens. The genome of SA187 contain phzF
(SA187PBcda_000004183) and ubiC (SA187PBcda_000001974),
two enzymes involved in the biosynthesis of phenazine
and 4-hydroxybenzoate, respectively, which are antibiotics
against plant pathogenic bacteria (Duan et al, 2013;
Gupta et al, 2014). Furthermore, we identified six
genes coding for chitinase (gene.SA187PBcda_000000184,
gene.SA187PBcda_000000547,gene.SA187PBcda_000000978,

gene.SA187PBcda_000000980,  gene.SA187PBcda_000003882,
gene.SA187PBcda_000005622), a potent enzyme against insects
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and fungi (Hamid et al., 2013), which has been also identified
in PGPB of the genera Enterobacter, Klebsiella, Pantoea, or
Serratia (Dinesh et al,, 2015; Rodrigues et al., 2016). SA187
can also synthetize proteins involved in resistance against
several antimicrobial compounds: {3-lactam, vancomycin and
cationic antimicrobial peptide (CAP) (Supplementary Table
S16). We also found a number of toxin/antitoxin (T/A) systems
(symE/R, relE/B, hipA/B, cptA/B, chpBK/BI, vapB/C, fic/yhfG,
hicA/B) (Supplementary Table S17) and the toxin-coregulated
proteins TcpA (gene.SA187PBcda_000000329) and TcpE
(gene.SA187PBcda_000000321), what is consistent with the
dualistic life-style of SA187 as free-living in the rhizosphere and
associated with the host-plant (Pandey and Gerdes, 2005).

Plant Hormone Modulation and Promotion of Plant
Growth

Many beneficial bacteria have PGPB activity that is mediated
by a variety of mechanisms, including the production or
inactivation of plant hormones, such as aminocyclopropane-1-
carboxilate (ACC) deaminase. ACC deaminase is involved in
the metabolism of the immediate precursor of ethylene in the
ethylene biosynthesis, and one of the most well-known PGPB
traits (Loper et al., 2012; Shen et al., 2013). ACC deaminase has
been found predominantly in Pseudomonas and Mesorhizobium
strains, but also reported in member of the genus Enterobacter:
E. cloacae UW4, E. cloacae CAL2, and rhizospheric E. cloacae
and E. cancerogenus, among others (Shah et al., 1998; Holguin
and Glick, 2001; Glick, 2014). Interestingly, acdS, coding for
ACC deaminase, was not found in the genome of SA187
(Supplementary Figure S6).

Acetoin and 2,3-butanediol are volatile organic compounds
(VOCs) emitted by many PGPB to enhance plant growth (Ryu
et al,, 2003). The main pathway for the production of these
VOCs by Enterobacter sp. 638, a PGPB strain closely related
to SA187, is via the sequential action of enzymes coded by the
operon budABC (Taghavi et al., 2010). The genome sequence of
SA187 contains 3 paralogs of the dimeric enzyme coded by budB
(SA187PBcda_000001378-000001379, SA187PBcda_000001698-
000001699, SA187PBcda_000002514-000002515), acetolactate
synthase, but no budA or budC are present. The lack of
these genes makes SA187 capable to transform pyruvate into
acetolactate, but no further transformation into acetoin or
2,3-butanediol is possible.

Another strategy that PGPB use to enhance plant growth
is the synthesis of auxin indole-3-acetic acid (IAA) from
tryptophan through indolepyruvate (Taghavi et al., 2009). We
found that SA187 contains most of the genes coding for enzymes
involved in this pathway, but it lacks the gene coding for
indolepyruvate decarboxylase (ipdC). Instead, SA187 encodes the
enzyme tryptophanase (tnaA, SA187PBcda_000000047), which
was also found in biofilm forming E. coli (Hu et al., 2010),
which can transform tryptophan into indole, but cannot produce
salicylic acid (SA). There is nevertheless the possibility that IAA
could be produced from indole, although the mechanism of this
reaction is not yet understood. We also found a gene coding
for nitrilase (SA187PBcda_000002715), which could be a possible
alternative tryptophan-independent pathway for the biosynthesis

of IAA from indole-3-acetonitrile (Bhattacharyya et al., 2017).
Alternatively, SA187 could supply the plant with tryptophan
itself, which is the source for the de novo synthesis of IAA in
plants, through the intermediate indole-3-pyruvate (Zhao, 2012).

Additionally, we found that the genome of SA187 also
contains genes coding for arginine decarboxylase (SpeA),
agmatinase (SpeB) and spermidine synthase (SpeE) (speABE,
SA187PBcda_000002462-000002464). These enzymes allow the
transformation of amino acids into PGP substances, the
polyamines putrescine, spermine, and spermidine, respectively,
which contribute to bacterial fitness, and have been reported in
PGPB strains such as B. subtilis OKB105 or Klebsiella sp. D5A
(Xie et al., 2014; Liu et al., 2016).

Although SA187 lacks the former common PGP mechanisms,
its beneficial effect in promoting the growth of plants under stress
has been suggested to be due to the production of ethylene.
Several mechanisms have been described for the production
of ethylene in microbes, as ethylene-forming enzyme (EFE)
or spontaneous oxidation of 2-keto-4-methylthiobutyric acid
(KMBA), an intermediate of the methionine salvage pathway
(MSP) (Eckert et al., 2014). In the genome of SA187, we identified
all genes involved in the MSP, suggesting that SA187 has the
potential to produce ethylene in this manner (Supplementary
Figure S6).

SA187 Central Metabolism

The genome of SA187 contains genes involved in the central
carbon metabolism, including glycolysis (Embden-Meyerhof
and Entner-Doudoroff pathways), pyruvate oxidation,
tricarboxylic acid cycle, pentose phosphate pathway and
glyoxylate cycle (Supplementary Table S18). The presence
of these metabolic pathways should provide SA187 with the
capacity to metabolize sugars and other carbon sources present
in the plant root exudates. We also found that SA187 can
utilize lactose, a differentiating characteristic of the genera
Escherichia, Enterobacter, Citrobacter, Klebsiella, and Serratia
(Guentzel, 1996), and also fructose, mannose and malonate
(mdcABCDEFGH, SA187PBcda_000000997-000001004; and
the transcriptional regulator mdcR, SA187PBcda_000000996).
The capacity of SA187 to metabolize these sugars is consistent
with its uptake through ABC transporters or PTS, as described
before, and with the capability of SA187 to grow in '/2 MS+1%
fructose and !> MS40.1-1% sucrose (Supplementary Figure
S5B). The role of sucrose as carbon source utilized by the bacteria
in association with the plant is also supported by the observed
increase in gene expression of the sucrose transporter scrA
(Figure 4A).

CONCLUSION

The results of our taxonomic analysis supports the notion that
SA187 represents a novel taxon closely related to the genus
Kosakonia. Although this suggests the classification of SA187 as a
new genus, further investigation is needed to fully characterize
its taxonomic position. Additionally, in the genome of SA187,
we successfully identified a number of genes conferring the
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bacterium the characteristics of a dualistic life style, allowing
SA187 to survive in the soil under harsh conditions, as well
as to colonize, internalize and provide growth promotion
to plants through diverse metabolic strategies. However, the
mechanism of interaction between SA187 and its host-
plant is not yet fully understood. The combination of the
present genomic data with comparative studies on gene
expression and metabolite production in SA187, alone or
in association with plants, will deepen our understanding
which specific genes and pathways are induced during the
beneficial interaction. Once important genes will be identified,
the further phenotypic screening of mutant strains will reveal
their role in the plant-bacterial interaction and plant growth
promotion. The knowledge obtained can be further translated
into comprehensive and more sophisticated strategies to establish
sustainable agricultural practices in marginal and arid lands
by using endophytic bacteria as biofertilizers to improve crop
production.
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