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Bacteria are used in ecotoxicology for their important role in marine ecosystems and their

quick, reproducible responses. Here we applied a recently proposed method to assess

the ecotoxicity of nanomaterials on the ubiquitous marine bacterium Vibrio anguillarum,

as representative of brackish and marine ecosystems. The test allows the determination

of 6-h EC50 in a wide range of salinity, by assessing the reduction of bacteria actively

replicating and forming colonies. The toxicity of copper oxide nanoparticles (CuO NPs)

at different salinities (5-20-35 ‰) was evaluated. CuSO4 5H2O and CuO bulk were

used as reference toxicants (solubility and size control, respectively). Aggregation and

stability of CuO NP in final testing dispersions were characterized; Cu2+ dissolution and

the physical interactions between Vibrio and CuO NPs were also investigated. All the

chemical forms of copper showed a clear dose-response relationship, although their

toxicity was different. The order of decreasing toxicity was: CuSO4 5H2O > CuO NP >

CuO bulk. As expected, the size of CuO NP aggregates increased with salinity and,

concurrently, their toxicity decreased. Results confirmed the intrinsic toxicity of CuO NPs,

showingmodest Cu2+ dissolution and no evidence of CuONP internalization or induction

of bacterial morphological alterations. This study showed the V. anguillarum bioassay

as an effective tool for the risk assessment of nanomaterials in marine and brackish

environments.
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INTRODUCTION

The metal nanoparticles, including metal oxides, represent one of the major classes of commercial
nanomaterials, which are manufactured on a large scale for both industrial and household
applications (Chang et al., 2012). Copper (II) oxide nanoparticles (CuO NPs) are increasingly
used in several products (Huang et al., 2010; Chang et al., 2012; Rossetto et al., 2014). The wide
variety of applications entails the risk of environmental contamination, as a consequence of the
environmental release of CuONP during their production, use and disposal (Weinberg et al., 2011;
Sanchís et al., 2013; Fan et al., 2014). This kind of contamination could bias both organisms and
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ecosystems (Gambardella et al., 2013), as CuO NPs can exert
toxic effects but also antimicrobial activity on (environmental)
microbes (Bondarenko et al., 2013; Rossetto et al., 2014); hence,
they could seriously affect estuarine and coastal environments,
considered the ultimate sink for different kinds of NPs (Canesi
et al., 2012). Accordingly, the investigation on CuO NP effects
in the brackish/marine ecosystems has become a very important
issue, and must include information on NP fate, transport and
toxicity (Lowry et al., 2012).

Nevertheless, ecotoxicity of CuO NPs, particularly to marine
organisms, is still little explored and the available data are often
inconsistent, due to different and no standardized experimental
approaches that highlighted some procedural limitations, mainly
related to the stability of nanomaterials during the test exposure
(reviewed by Minetto et al., 2016). The great majority of the
studies evaluated endpoints as oxidative stress, genotoxicity,
bioaccumulation and behavioral impairments (Bondarenko et al.,
2013; Ivask et al., 2013; Minetto et al., 2016; Gonçalves et al.,
2017) or soil toxicity (Unrine et al., 2010; Amorim and Scott-
Fordsmand, 2012; Amorim et al., 2012; Gomes et al., 2012;
Gomes S. I. et al., 2015; Gomes S. I. L. et al., 2015; Gonçalves et al.,
2017), with few EC50 identifications, although it is mandatory to
define the hazard of CuO NPs in environment and human health
and enhance their safe use.

Bacteria are an important component of brackish/marine
ecosystems and alterations of the microbial communities
could have significant effects on biogeochemical cycling and
other critical ecosystem services. Toxicity tests based on
microorganisms are gaining popularity even because they
are relatively quick, reproducible, cheap and do not imply
ethical issues (Parvez et al., 2006). Among bacterial bioassays,
V. fischeri luminescence inhibition test, based on the enzymatic
activity of the bacterial luciferase, is the most common and
well-standardized one (Azur Environmental, 1995). However,
this bioassay has some constrains even for conventional
contaminants: for example, it cannot be utilized with samples
at salinities exceeding a quite narrow range (APAT IRSA-CNR,
2003), or with colored and turbid samples, due to possible
interferences with luminescence measurements. As regard other
bioassays with bacterial species (B. subtilis, E. coli, L. brevis
and S. aureus), most of them are based on the same endpoint,
i.e., the inhibition of replication rate of the bacterial culture,
but they use different and no standardized protocols (Baek and
An, 2011; Kaweeteerawat et al., 2015; Bondarenko et al., 2016).
These methods present some criticisms that can influence the NP
toxicity assessment and affect the repeatability of the bioassay.
For instance, the possible interactions between NPs and organic
matter in the exposure medium, the excessively reduced test
volumes, without any mixing during the exposure, or the need
of correction factors for colored/turbid samples.

In order to provide a useful tool for NP toxicity assessments
in marine environments, we recently developed a new bioassay
with the marine bacteriumVibrio anguillarum and demonstrated
its effectiveness in evaluating the toxicity of a reference toxicant
(Rotini et al., 2017). The model organism V. anguillarum is a
Gram-negative, short curve-shaped rod bacterium with a polar
flagellum. It was chosen because of its intrinsic characteristics: it

is halotolerant, ubiquitous and plays important ecological roles
in marine/brackish ecosystems (Thompson et al., 2004). The
bioassay allows to assess the decrease of bacterial culturability and
to determine the EC50 (i.e., the concentration causing the 50%
reduction of bacteria actively replicating and forming colonies,
after 6-h exposure).

In this study, the suitability of this bioassay in evaluating
NP toxicity has been checked. To this end, the study evaluated
and compared the ecotoxicity of CuO NPs, CuO-bulk and Cu2+

ion (CuSO4 5H2O) in a wide range of salinity (5–35‰), by
using the recently proposed test on the marine bacterium V.
anguillarum. To deepen the CuO NP behavior during the test
and relate it to toxicity, the physicochemical characterization
of NPs in the exposure medium was carried out and the size
distribution, sedimentation rates and Cu2+ dissolution from NPs
were analyzed. These data allow a better understanding of NP
aggregation dynamics and stability at the different salinities.
Furthermore, to provide the most accurate picture, even CuO
NP internalization or morphological alterations were evaluated
in bacteria at the end of the test exposure.

MATERIALS AND METHODS

Reagents and Solutions
0.5-2-3.5% NaCl solutions were prepared as exposure media by
dissolving NaCl (Sigma-Aldrich, pure grade) in deionized water.
Tryptic Soy Agar (TSA, Liofilchem, 40 g/L) and Tryptic Soy
Broth (TSB, Liofilchem, 30 g/L) growth media for bacteria were
prepared in deionized water adding the appropriate amount
of NaCl to obtain the same salinity of the exposure medium.
NaCl solutions, TSA and TSB media were sterilized (121◦C,
15′). CuO NPs (25–55 nm size) were purchased by US Research
Nanomaterials, Inc. shipped as ultrapure water dispersion (20%
w/v, purity of 99.95%). CuO NP stock dispersion (1 g/l) was
prepared in 0.22µm filtered milli-Q water (mQW) from the
20% dispersion after 15min of sonication (1210E-MT Branson
ultrasonic bath) at 60w and 47 kHz. CuO NP stock dispersion
was sonicated for 15min, stored in the dark at 4 ◦C and used
for preparation of all the final testing dispersions. CuO NP final
dispersions were prepared from the stock dispersion, previously
sonicated for 15min. CuSO4 5H2O (Sigma-Aldrich, purity ≥

98%) was used as positive and solubility control; CuSO4 5H2O
stock solution (400 mg/l) was prepared in deionized water and
the necessary aliquots were sterilized by using a 0.22µm syringe
filter. CuO-bulk (micrometric particles of CuO) was purchased
by US Research Nanomaterials Inc. to be used as size control
(Schultz et al., 2014); CuO-bulk stock (8 g/l) and final dispersions
were prepared following the same procedure described above for
CuO NPs.

For ICP-MS measurements, stock Cu standard solution
(1,000 µg/l) and HNO3 Ultrapur were purchased from
Romil. Calibration standards were prepared within a linear
range (2.5–40 µg/l) from the stock Cu standard solution in
0.5M HNO3. Standard solutions were freshly prepared and
standard calibration curves with R2 = 0.99998 were achieved
daily.
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CuO NP Characterization
The CuO NP stock dispersion (1 g/l), in milli-Q water, was
analyzed via SEM to characterize particle sizes and shapes. The
stock dispersion was diluted 1/100, placed on a membrane
filter of 0.2 µm-pore size and platinum sputter coated (Polaron
SC7640, Quo-rum Technologies Ltd., Ashford, UK). Stubs were
observed with a Field Emission Scanning Electron Microscope
JSM6700F (JEOL, Ltd, Tokyo, Japan).

Two different characterization techniques were used to
estimate the particle size distributions and stability in the
final testing dispersions at different salinities: Analytical
Centrifugation (LUMISizer, L.U.M. GmbH, Berlin) and DLS
(NICOMP 380 DLS Particle Size Analyzer, PSS, FL USA).
The size distribution of the CuO NPs in the saline solutions
(0.5-2.0-3.5% NaCl) and in the reference medium (mQW), was
measured by DLS, with a 658 nm wavelength 30 Mw laser and a
90◦ scattered light Avalanche Photo Detector. Two readings of
5min per sample were acquired and data processed following
the NICOMP algorithm that automatically selects the best
fitting distribution and recognizes from one to three particle
size populations. The dimensional analyses for each population
calculated the volume-weighted diameters (±standard deviation)
and the relative percentages. Zeta (ζ-) potential of the CuO NPs
in the saline solutions (0.5-2.0-3.5% NaCl) and in the reference
medium (mQW) was also measured by DLS. Measurements
were carried out in triplicate, each consisting in 7 runs. The
average particle sedimentation velocity as well as the particle
size distribution (PSD) were also investigated (according to
ISO 13318-2, 2007) by the Dispersion Analyser LUMiSizer.
This instrument consists of an analytical centrifuge with an
optoelectronic sensor system. It measures variations in the
transmitted near infra-red radiations along horizontally inserted
sample tubes, due to the sedimentation of suspended material.
The integration of transmission profiles, sedimentation rates and
particle size distributions were calculated by using the LUMiSizer
software, SEPView 6.3.

The amount of metal dissolution from the CuO NPs into
the exposure medium has been investigated. A CuO NP final
dispersion (40 mg/l), at different salinities (0.5-1.5-2.0-3.5%
NaCl), was centrifuged at 4,000 × g (centrifuge PK121R, ALC
International S.r.l., Italy) for 60min to remove the non-soluble
fraction of CuO. The concentration of Cu ions was quantified
by inductively-coupled plasma mass spectrometry (ICP-MS
7900 Agilent) according to USEPA 6020b (2014). Control and
centrifuged samples were analyzed in triplicate after acidification
with HNO3 s.p. (0.5% v/v).

Ecotoxicity Test
Vibrio anguillarum (strain AL 102, serotype O1; from NOFIMA
collection) was exposed to five concentrations of three Cu forms
(CuO NP, CuO bulk and CuSO4 5H2O) in saline solution (no
growth medium), to evaluate the reduction of the bacterial
culturability (i.e., the capability to replicate and form colonies)
after 6-h exposure, according to the protocol shown in Rotini
et al. (2017). A liquid fresh culture of V. anguillarum was
used to obtain the bacterial inoculum. After the overnight
incubation (12–18 h, 25 ◦C) the bacterial concentration of

the inoculum was estimated spectrophotometrically (UV/Visible
Spectrophotometer Beckmann 473) at 600 nm and diluted to
an OD value of 0.14 (corresponding to the 0.5 point of
McFarland nephelometric standard). The diluted inoculum was
then centrifuged for 10min at 3,000 g. The bacterial pellet was
resuspended in 1ml of exposure medium (saline solution) and
150 µl were added to each test tube, including the control,
in a final volume of 5ml. Control and test dispersions were
incubated for 6 h at 25◦C, in the dark with continuous shaking
(120 rpm), to avoid sedimentation. At the beginning (T0) and
the end (T6) of the exposure time, bacterial counts in all the
CuO NP dispersions and control were evaluated, by using the
liquid-to-plate micro-counting method (Migliore et al., 2013;
Rotini et al., 2017). Briefly, it consists in preparing serial
dilutions of each exposed bacterial suspension, applying a ten-
fold dilution factor (up to 1087225). A small aliquot (10 µl)
of dilutions is plated on TSA Petri dishes, then incubated at
25◦C for 48 h. Colonies grown on petri dishes were counted and
results were used to estimate the number of Colonies Forming
Units per ml (CFU/ml). The counting from three replicate
plates for each toxicant concentration and control were used
to evaluate the mean number of bacteria actively replicating
and forming colonies. Three independent tests, (using a freshly
prepared bacterial inoculum for each test) at each of the three
different salinities (0.5-2-3.5% NaCl) were performed on and five
concentrations of each chemical (CuO NPs: 10-20-40-80-160,
CuO bulk: 80-160-320-640-1280, CuSO4 5H2O: 0.625-1.25-2.5-
5-10, mg/l), i.e., 9 tests each time, as a total of 27 tests. The
concentrations were chosen as a result of preliminary tests. In
these tests the toxicants showed very different toxicity, hence,
for each toxicant, the final testing concentrations were chosen to
allow the calculation of the Effect Concentration (EC50).

The EC50, i.e., the Effect Concentration of toxicant that
reduces of 50% the number of bacteria actively replicating and
forming colonies, after 6-h exposure, was calculated by non-
linear regression (Log-Normal model) of the mean number
of CFU/ml for each concentration, by using R software, drc
package (Ritz and Streibig, 2005). Significant differences among
treatments were evaluated by using one-way analysis of variance
(ANOVA) followed by post-hoc pairwise t-tests (R software, stats
package).

Scanning Electron Microscope (SEM)
Analysis
After exposure, bacteria were centrifuged at 3,000 g for 10min
and fixed in 2% glutaraldehyde in 2% NaCl solution. After
24 h, fixed bacteria were rinsed three times with PBS 1X and
post-fixed with 1% osmium tetroxide, at 4◦C for 1 h. After
three washes with bi-distilled water, bacteria were placed on a
membrane filter of 0.4 µm-pore size in a Swinnex filter holder
(Millipore, Billerica, Massachusetts, USA). Samples were then
washed with 10mL of bi-distilled water for approximately 30min
and dehydrated in a graded ethanol series. The sample was critical
point dried, platinum sputter coated (Polaron SC7640, Quo-rum
Technologies Ltd., Ashford, UK) and observed by a field emission
SEM, JEOL JSM 6700F (JEOL Ltd, Tokyo, Japan).
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Transmission Electron Microscope (TEM)
Analysis
After exposure, bacteria were centrifuged at 3,000 g for 10min
and fixed in 2% glutaraldehyde in 2% NaCl. After 24 h, fixed
bacteria were rinsed three times with PBS1X and post-fixed with
1% osmium tetroxide, at 4◦C for 1 h, rinsed five times with bi-
distilled water, dehydrated in a graded ethanol series, further
substituted by propylene oxide, embedded in Epon 812 (TAAB,
TAAB Laboratories Equipment Ltd, Berkshire, UK) and kept
at room temperature for 1 day and then polymerized at 60◦C
for 2 days. Resin blocks were sectioned with an Ultracut UCT
ultramicrotome (Leica, Vienna, Austria). Ultrathin sections (50–
60 nm) were placed on nickel grids, contrasted with 4% aqueous
uranyl acetate for 30min, rinsed once with amix of methanol and
bi-distilled water (1:1), twice with bi-distilled water and observed
by a TEM Zeiss LEO 912AB (Zeiss, Oberkochen, Germany).

RESULTS

CuO NP Characterization
The CuO NP stock dispersion, in milli-Q water, has been
characterized by SEM (Figure 1). Nanoscale spherical particles
(about 50 nm) were present, confirming particle sizes provided by
the manufacturer; microscale aggregates with diameters ranging
from about 100 to 500 nm were also observed.

The Zeta (ζ-) potential and average volume-weighted
diameters (Table 1) of the CuO NP dispersions were measured
by DLS in the reference medium (mQW) and the saline solutions
(0.5-2.0-3.5% NaCl) used as exposure media (see Figure S1).

The average sedimentation rate of CuO NP agglomerates
in the reference medium (mQW) was comparable to that
measured in the 0.5% saline solution: 0.34 mm/h and 0.81 mm/h,
respectively (see Figure S2). While, the average sedimentation
rates of CuO NP agglomerates in 2.0 and 3.5% saline solutions
were 2.52 and 2.85mm/h, respectively. These high values account
for the big sizes of agglomerates at the highest salinities. The
particle size distribution in the exposure and reference media,
returned by the LUMISizer analysis, is shown in Figure 2.

The Cu2+ concentration dissolved in the solution was limited,
assuming a reduced release of ions from the CuO NP. The
dissolved Cu2+ content slightly decreased with increasing salinity
(see Table S1).

Ecotoxicity Tests
The results obtained from the exposure of V. anguillarum to the
CuO NPs showed a clear dose-response relationship, although
the toxicity changed according to both the concentration of
CuO NPs and the salinity of the medium. In fact, all the tests
showed inhibition of bacterial culturability, i.e., the capability to
replicate and form colonies (measured as number of CFU/ml),
at increasing NP concentration. However, a progressively
reduced inhibition was found as salinity increases (Figure 3).
Consequently, the average EC50 of CuO NPs increased with
salinity (Table 2).

The results obtained from the exposure of V. anguillarum to
the solubility and size controls also showed a clear dose-response
relationship. The solubility/positive control (CuSO4 5H2O)

FIGURE 1 | Characterization of CuO NPs used in this study in reference

medium (milli-Q water) by SEM analysis.

TABLE 1 | Characterization of CuO NP dispersions in milli-Q water (mQW, T =

25◦C) and three saline solutions used as exposure media (T = 25 ◦C,

0.5-2.0-3.5% NaCl) using DLS analysis.

Peak 1 -

D (nm)

% Peak 2 -

D (nm)

% ζ-potential

(mV)

mQW 78.7 ± 26.9 41.28 191.9 ± 44.2 58.72 −15.2 ± 2.0

0.5% NaCl 74.6 ± 16.0 68.57 247.8 ± 48.7 31.43 −2.5 ± 0.3

2.0% NaCl 211.7 ± 34.8 100 − – −1.4 ± 0.2

3.5% NaCl 313.1 ± 56.5 100 − – −1.7 ± 0.5

Vol-wt diameters (D), relative percentage of each peak (%) and Zeta (ζ) potential are

reported. Data are referred to 40 mg/l of CuO NP and values are average ± standard

deviation of 3 measurements.

showed a significant and progressive reduction of culturability,
at increasing concentration of the toxicant (ANOVA, p <

0.001; see Figure S3). The number of CFU/ml is significantly
reduced at 1.25 mg/l (post hoc t-test, p < 0.01), compared with
control, regardless themedium salinity. Similarly, the size control
(CuO bulk) showed a significant decrease of culturability with
increasing concentration of the toxicant (ANOVA, p < 0.001)
(see Figure S4). The number of CFU/ml is significantly reduced
always at 320 mg/l (post hoc t-test, p < 0.01), compared with
control and regardless the medium salinity. The average EC50 of
solubility and size controls remained quite constant at different
salinities (see Table 2).

Microscopy Analyses
The Scanning Electron Microscope (SEM) analysis (Figure 4)
did not highlight morphological differences between control and
CuONPs exposed bacteria. In both batches, blebs of different size
and fibrils can be observed on the surface of the microbial cells.

The Transmission Electron Microscope (TEM) analysis
(Figure 5) again did not highlight morphological differences
between control and CuO NPs exposed bacteria. No evidence
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FIGURE 2 | Characterization of CuO NP dispersions in milli-Q water (mQW, T = 25◦C, salinity 0%) and three saline solutions used as exposure media (T = 25◦C,

0.5%-2.0%-3.5% NaCl) using LUMISizer. Vol-wt particle size distributions referred to 40 mg/l of CuO NP are showed.

of internalization or adsorption were found. Some opaque very
small particles are present on the biological material.

DISCUSSION

The bioassay with V. anguillarum allowed to assess the CuO NP
toxicity and highlighted a significant variation of the toxic effect
with salinity, depending on a different aggregation state of NPs.

According to the OECD guidelines (OECD, 2014), the
CuO NP behavior in the control and exposure media has
been accurately investigated, to link characterization data with
ecotoxicological results; this allowed a correct interpretation
of the response. In our study, through the analyses by DLS
and LUMISizer, the aggregation and stability of the CuO NPs
were verified at three different salinities of the exposure media.
The DLS analysis (see Table 1 and Figure S1) highlighted a
bimodal particle size distribution, with nanoscale (about 80 nm)
and microscale (about 200 nm) aggregates, in both mQW and
0.5% saline solution; while, the dispersions in 2.0 and 3.5%
saline solutions showed a single size population of microscale
aggregates (250–300 nm). The low ζ-potential absolute values
also confirmed the aggregation state and instability of the CuO
NPs. Although Zeta (ζ-) potential is commonly considered a key
parameter to describe the NP behavior in complex environmental
media, it is worth to note that the high ionic strength of saline
exposure medium, may shield electric charge of NPs, lowering
the measured ζ-potential.

The LUMISizer analysis (see Figure 2) confirmed the
characterization by DLS and provided an even more accurate
representation of the particle size distribution in the exposure
media. In fact, LUMISizer better characterized the big size
nanoparticle populations: the presence of nano- and micro-scale
aggregates in mQW and 0.5% saline solution was confirmed, and
also the microscale aggregates in 2.0 and 3.5% saline solutions

up to a size of about 1,000 nm were detected. Furthermore, the
LUMISizer analysis allowed to quantify the sedimentation rates
of CuO NP aggregates in the exposure media (see Figure S2).
Only a negligible sedimentation of the CuO NPs as aggregates
occurred during the exposure time (6 h), even at the highest
salinity. This result was obtained with some dedicated features of
the bioassay (i.e., test tube size, exposure volume and continuous
agitation), designed to limit the NP sedimentation. Being
inversely correlated with NP toxicity (Buffet et al., 2011; Villareal
et al., 2014), the NP sedimentation rate represents a relevant
parameter to describe the NP behavior in environmental media,
particularly for salt water matrix. However, only few studies
address the NP sedimentation rate and, at our best knowledge,
this study is the only one that measured the sedimentation rates
in seawater.

The particle diameter and sedimentation rate increased at
increasing salt concentrations, due to the effect of ionic strength.
Low salinity (mQW and 0.5% NaCl) allowed optimal and stable
dispersion of CuO NPs, without differences between the two
media. While, at high salinity (2.0–3.5% NaCl) agglomeration
was promoted by the presence of salt ions, which shield the NP
charge reducing the repulsive effect among NPs.

The increased particle size at high salinity determines a
decrease of the total surface area; this implies a decrease of the
superficial reactivity of NPs (because of agglomeration) which,
in turn, produces a reduction of the toxic effects. The results
obtained with this bioassay confirm that agglomeration and
stability of CuO NPs are inversely related to their toxicity. At the
lowest salinity (0.5% NaCl), when CuO NP agglomeration was
the least and stability of dispersions was optimal, high toxicity
(EC50 = 12.6 mg/l) was recorded, suggesting a particularly
relevant hazard for these NPs when released in brackish habitats.
At the highest salinity, typical of marine environments, the
occurring aggregation and sedimentation suggest that Cu NPs
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FIGURE 3 | Mean number of CFU/ml (CFU=Colony Forming Unit) of Vibrio anguillarum after 6-h exposure to different concentrations of CuO NPs in exposure

medium at three different salinities (T = 25◦C, 0.5-2.0-3.5% NaCl). Values represent the mean of three independent trials; error bars represent standard deviation.

Significant reduction of CFU/ml compared to control, based on post hoc t-test, are indicated with asterisks (*p < 0.05; **p < 0.01).

Frontiers in Microbiology | www.frontiersin.org 6 October 2017 | Volume 8 | Article 2076

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Rotini et al. Salinity-Based Toxicity of Cu Forms to Bacteria

TABLE 2 | Mean effect concentration (EC50) (mg/l) and 95% Confidence Limits of CuO NP, CuSO4 5 H2O and CuO bulk calculated from three tests at three different

salinities (T = 25◦C, 0.5-2.0-3.5% NaCl).

%NaCl Test 1 Test 2 Test 3 Geometric mean

0.5 11.7 (10.4–13.0) 12.4 (11.7–13.1) 13.7 (12.8–14.7) 12.6 (11.6–13.6)

CuO NP 2.0 24.3 (20.0–28.5) 26.3 (22.6–30.1) 20.5 (17.5–23.6) 23.6 (19.9–27.2)

3.5 55.0 (41.6–68.3) 40.9 (36.9–44.8) 37.7 (29.8–45.6) 43.9 (35.7–51.9)

0.5 1.2 (1.1–1.3) 1.2 (1.1–1.3) 1.3 (1.1–1.5) 1.2 (1.1–1.4)

CuSO4 2.0 1.0 (0.8–1.1) 1.0 (0.8–1.1) 0.8 (0.7–0.9) 0.9 (0.8–1.0)

3.5 1.6 (1.4–1.8) 1.4 (1.2–1.7) 1.2 (1.0–1.4) 1.4 (1.3–1.8)

0.5 241.0 (206.7–275.3) 223.1 (193.5–252.7) 231.8 (210.6–253.0) 231.9 (200.0–263.8)

CuO bulk 2.0 194.1 (177.4-210.8) 248.9 (238.0–259.8) 175.4 (130.9–219.9) 203.9 (176.8–229.2)

3.5 182.0 (164.1-199.8) 222.1 (200.4–243.8) 184.1 (97.6–270.7) 195.2 (147.5–236.2)

FIGURE 4 | SEM images of Vibrio anguillarum after toxicity testing exposure in 2% NaCl saline solution: control (A,B) and CuO NP dispersion (40 mg/l, C,D). Blebs

are indicated by pink arrows, nanoparticle aggregates by green arrows.
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FIGURE 5 | TEM images of Vibrio anguillarum after toxicity testing exposure in 2% NaCl saline solution: control (A) and CuO NP dispersion (40 mg/l, B).

may accumulate in sediments (Buffet et al., 2013) and therefore,
benthic organisms are supposed to be the most exposed to NPs.
However, the fate and bioavailability of NPs in sediments can
be highly variable and depend on several abiotic and biotic
factors, including ionic strength of water, amount of suspended
natural organic matter (Keller et al., 2010), light intensity or
temperature (Zhou et al., 2012) and biogenic transformation
processes (decomposition, bioturbation, or digestion; Farré et al.,
2009).

Table 3 summarizes the studies on CuO NP toxic effects
on bacterial species; they show highly variable values of the
Effect Concentrations, even in test on the same bacterial
species/strain. This depends on the type of nanoparticles
and on the experimental conditions (Bondarenko et al.,
2013). This variability confirms the difficulty to compare the
ecotoxicological assessments of nanomaterials, even among
standardized bioassays, and highlights the need of highly reliable
and reproducible tests.

The bioassay with V. anguillarum clearly showed a significant
decrease of bacterial culturability, at increasing concentration of
CuSO4 5H2O and CuO bulk, used in this study as solubility and
size controls, respectively. Unlike CuO NPs, size and solubility
controls did not elicit different toxicities at different salinities.
As expected, a clearly different toxicity was observed among the
three copper forms; according with the EC50 values, toxicity
ranking is as follows: CuSO4 5H2O > CuO NP > CuO bulk.
CuO NPs toxicity is an order of magnitude lower than CuSO4

5H2O but higher than CuO bulk. Importantly, the EC50 values
for CuSO4 5H2O are comparable with those obtained by acute
tests on other marine species (Adams and Stauber, 2004; Manfra
et al., 2015; Rotini et al., 2018) including bacteria (see Table 3);
this demonstrates the good sensitivity of our recently proposed
bioassay for both conventional contaminants and NPs.

It is generally accepted that CuO NP toxicity is higher than
CuO-bulk, depending on size, surface characteristics, dissolution,
and exposure routes (reviewed by Chang et al., 2012), on the
contrary, the contribution of dissolved Cu2+ ions to the observed
toxicity of CuO NPs is still under discussion (Ivask et al.,
2013; Gonçalves et al., 2017). Several studies ascribe primarily
to the Cu2+ ion dissolution the CuO NP toxicity in biological
systems (Heinlaan et al., 2008; Aruoja et al., 2009; Kahru and
Dubourguier, 2010; Mortimer et al., 2010; Bondarenko et al.,
2012; Kasemets et al., 2013). A solubility-dependent toxicity of
CuO NPs has been observed in Daphnia magna (Heinlaan et al.,
2008; Blinova et al., 2010; Fan et al., 2012; Jo et al., 2012),Cyprinus
carpio (Zhao et al., 2011) and zebrafish embryos (Lin et al., 2015).
On the contrary, just as many other studies found that the toxic
effects of CuO NPs do not depend from the ion dissolution
(Heinlaan et al., 2008; Jiang et al., 2009; Baek and An, 2011; Isani
et al., 2013). Agreeing with this last group, our results indicate
a modest Cu2+ dissolution with an inverse salinity-dependence;
as a consequence, the toxic effects observed for CuO NPs might
be due to intrinsic toxicity mechanisms related to the nano-
form as, for instance, aggregation plays a key role. This was
already suggested by other authors (Buffet et al., 2013; Gonçalves
et al., 2017), although the issue deserves further investigations.
Both SEM and TEM analyses did not evidenced morphological
differences between control and CuO NPs exposed bacteria.
Interestingly, the SEM images (see Figure 1) showed two surface
structures present on both control and exposed bacteria: outer
membrane vesicles (a.k.a. blebs), known to be unique for Vibrio
strains, and fibrils. Blebs and fibrils are signature of starvation
and are produced by the bacterial cells in response to the growth
arrest (Östling et al., 1993). This response was expected because
during the test bacteria are exposed to the toxicant in the
absence of nutrients. The TEM images again do not suggest CuO
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TABLE 3 | Comparison of EC50 and/or main results obtained for short- and long-term exposures to copper oxide nanoparticles (CuO NPs) on different bacterial species.

Species Exposure

medium

Exposure

time

Endpoint

(inhibition of)

CuO NP size (nm)a CuO NP

EC50 (mg/l)

EC50 controls

CuSO4, (CuObulk)

(mg/l)

References

Bacillus subtilis LB agar 24 h Growth 20–30a 61.1 – Baek and An, 2011

Bacillus subtilis LB 4h Growth 24.5 ± 2.3c 152 ± 2b >100 >100 Bondarenko et al., 2016

Escherichia coli LB agar 24 h Growth 20–30a 28.6 – Baek and An, 2011

Escherichia coli LB 4h Growth 24.5 ± 2.3c 152 ± 2b > 100 >100 Bondarenko et al., 2016

Escherichia coli MMD 24h Growth (OD)5 20–100c 300 ± 2b 160 140 (>250) Kaweeteerawat et al., 2015

Escherichia coli ** HMM 8h Bioluminescence

(ROS induction/SS

DNA breaks)

30a 385b 6* 0.6 (600) Bondarenko et al., 2012

Lactobacillus brevis MRS 24h Growth (OD)5 20–100c 470 ± 4b 3.6 24 (>250) Kaweeteerawat et al., 2015

Pseudomonas aeruginosa LB 4h Growth 24.5 ± 2.3c 152 ± 2b >100 >100 Bondarenko et al., 2016

Pseudomonasputida LB 4h Growth 24.5 ± 2.3c 152 ± 2b >100 >100 Bondarenko et al., 2016

Staphylococcus aureus LB agar 24 h Growth 20–30a 65.9 - Baek and An, 2011

Staphylococcus aureus LB 4h Growth 24.5 ± 2.3c 152 ± 2 b
> 100 > 100 Bondarenko et al., 2016

Vibrio fisheri 2% NaCl 30min Bioluminescence

(Flash test)

24.5 ± 2.3c 152 ± 2b 4.3 0.3 Bondarenko et al., 2016

Vibrio fisheri 2% NaCl 30min Bioluminescence 30a 79 1.6 (3,811) Heinlaan et al., 2008

Vibrio fisheri 2% NaCl 30min Bioluminescence

(Flash test)

30a 68.1 (cuve)

204 (plate)

2.0 (3,894) Mortimer et al., 2008

Vibrio fisheri 2% NaCl 30min Bioluminescence 30–40a 302 ± 31.37b 257 mg/L (1,472) Rossetto et al., 2014

aDeclared.
bMeasured in test solution (hydrodynamic diameter).
cPrimary size (TEM).

*mg Cu/l **Recombinant strains, bioassays performed in 96 well-microplate.

NP internalization into or intimate adhesion to bacteria. Some
opaque particles seem to be included into the bacterial cells, but
their small size and shape does not support their identification as
the NPs used in this study. Hence, our results do not chime with
the evidence by Kaweeteerawat et al. (2015), which found nano
Cu species strongly bound to or internalized within E. coli cells
and stated that both nano Cu and nano CuO can be internalized
into the bacterial cell. Probably the different findings can be
ascribed to the size of NPs and their aggregates that, in our study,
are not compatible with internalization into aVibrio bacterial cell.

The bioassay with V. anguillarum benefits from several
procedural points in assessing the NP toxicity. As a first point,
it assesses culturability, i.e. the bacterial capability to actively
replicate and form colonies after the exposure to NPs in a
saline medium. The endpoint culturability allows an easier
comparison of results with those from the most common
ecotoxicological bioassays for marine environments, which
often have survival/mortality as endpoint; this will facilitate its
introduction in test batteries. Furthermore, it is interesting to
highlight that the reduction of bacterial culturability can be also
due to the reversible VBNC (Viable But NonCulturable) state
which is known to be induced/triggered by a variety of stressors
such as out range of growth temperature, oxygen concentrations,
heavy metals, etc. (Oliver, 2005, 2009), hence increasing the
sensitivity of the test. Moreover, the exposure is carried out in
simple saline solution, avoiding any possible interferences of
nutrients with the NPs, known to modify the reproducibility of
results by increasing or reducing NP bioavailability (Ivask et al.,
2013; Kasemets et al., 2013). Again, the short time of exposure
(6 h) is long enough to observe and evaluate acute effects on

the bacterial population and short enough to limit sedimentation
and aggregation of metal NPs in salt water, ensuring repeatability
of the exposure conditions. Last but not least, this bioassay has
no limitations for colored/turbid samples, and is applicable on
a wider range of salinities, common limitations of the existing
methods with microorganisms. This feature of the bioassay gives
the possibility to carry out contemporary assays in a wide range
of salinity (0.5–3.5%), which is known to affect NP behavior and
toxicity (Corsi et al., 2014).

CONCLUSION

In this study, a recently designed bioassay with the marine
bacterium V. anguillarum allowed to assess the toxic effects of
CuO NPs, showing a clear dose-response relationships and a
crucial role of salinity and particle aggregation in the observed
toxicity. Results highlighted the high toxicity of CuO NPs,
particularly at low salinity, and pointed out a relevant hazard for
these NPs in brackish environments. While, at salinities typical
of marine environments the high aggregation and sedimentation
rate of these NPs suggest a possible accumulation in sediments,
increasing the risk of exposure for benthic organisms. The
influence of salinity on the NP toxicity is a hitherto little explored
issue and further ecotoxicity assessments, including different
NPs and bioassays are particularly needed. Moreover, our results
demonstrated the effectiveness of V. anguillarum bioassay as
a promising tool for the risk assessment of nanomaterials and
confirmed its useful application on conventional contaminants
too.
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