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Listeria monocytogenes is a food-borne pathogen that can persist in food processing

plants by forming biofilms on abiotic surfaces. The benefits that bacteria can gain

from living in a biofilm, i.e., protection from environmental factors and tolerance to

biocides, have been linked to the biofilm structure. Different L. monocytogenes strains

build biofilms with diverse structures, and the underlying mechanisms for that diversity

are not yet fully known. This work combines quantitative image analysis, cell counts,

nutrient uptake data and mathematical modeling to provide a mechanistic insight into

the dynamics of the structure of biofilms formed by L. monocytogenes L1A1 (serotype

1/2a) strain. Confocal laser scanning microscopy (CLSM) and quantitative image analysis

were used to characterize the structure of L1A1 biofilms throughout time. L1A1 forms

flat, thick structures; damaged or dead cells start appearing early in deep layers of

the biofilm and rapidly and massively loss biomass after 4 days. We proposed several

reaction-diffusion models to explain the system dynamics. Model candidates describe

biomass and nutrients evolution including mechanisms of growth and cell spreading,

nutrients diffusion and uptake and biofilm decay. Data fitting was used to estimate

unknown model parameters and to choose the most appropriate candidate model.

Remarkably, standard reaction-diffusion models could not describe the biofilm dynamics.

The selected model reveals that biofilm aging and glucose impaired uptake play a critical

role in L1A1 L. monocytogenes biofilm life cycle.

Keywords: L. monocytogenes, biofilm, dynamic modeling, parameter estimation, biofilm aging, glucose impaired

uptake

1. INTRODUCTION

Listeria monocytogenes is a Gram-positive, food-borne pathogen that can cause systemic infections
in immune compromised, pregnant or elder patients (Cossart and Lebreton, 2014). Thirteen
serotypes of L. monocytogenes have been reported from which three −1/2a, 1/2b, and 4b– account
for the majority of human disease (Swaminathan and Gerner-Smidt, 2007). The primary mode of
transmission of this pathogen to humans is the consumption of contaminated food (Kathariou,
2002; Swaminathan and Gerner-Smidt, 2007). Food gets contaminated by contact with unhygienic
work surfaces and facilities where biofilms are found (Wilks et al., 2006).
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Biofilms are microbial communities that appear in biotic or
abiotic surfaces (Costerton et al., 1987). L. monocytogenes can
form biofilms on common food contact surfaces, such as plastic,
polypropylene, rubber, stainless steel, and glass (Silva et al., 2008).
In biofilms, L. monocytogenes finds protection from a variety
of environmental factors, such as temperature, sugar, salt or
pH (Møretrø and Langsrud, 2004) and tolerates better biocides,
hampering the process of decontaminating surfaces (Carpentier
and Cerf, 2011). In fact, many L. monocytogenes strains have been
isolated from food processing plants (Rodríguez-López et al.,
2015) despite the programs to sanitize industrial facilities.

Resistance to stress, including resistance to biocides, is largely
associated with biofilm structure (Costerton et al., 1987; Donlan
and Costerton, 2002). Most biofilms exhibit complex structures
in that patches of cell aggregates are scattered throughout an
exopolysaccharide matrix, creating channels.

Plate counts have been widely used to analyze biofilms.
However, plate counts may be misleading in the study of the
progress of biofilms (Daims and Wagner, 2007), as they include
only viable culturable cells and do not inform about the structure.

Imaging techniques allow for a more comprehensive study
of biofilms. They allow mapping viable and damaged or dead
cells (Tawakoli et al., 2013) or the distribution of extracellular
polymeric substance but also reconstructing three-dimensional
structures. Quantitative image analysis provides further insights
by computing parameters which characterize structures of
biofilms (Yang et al., 2000).

Recent works suggest several alternative work-flows and
software tools for the systematic analysis of microscopy images.
IMARIS (commercial software) enables the reconstruction of
3D structures. COMSTAT (Heydorn et al., 2000), ISA 3D
(Beyenal et al., 2004), or PHLIP (Mueller et al., 2006) allow
quantifying confocal laser scanning microscopy (CLSM) images.
BIOFILMDIVER (Mosquera-Fernández et al., 2014) permits the
quantification of 2D images for epifluorescence and CLSM.
Vyas et al. (2016) used machine learning algorithms to analyse
scanning electron microscopy images.

Modeling is a complementary tool for studying biofilm
dynamics. The emphasis is paid into qualitative validations of
developed models, which are able to recover experimentally
observed structures. In that pursue, the new generation of
biofilm models offer detailed descriptions of the formation of
heterogeneous structures with clusters and mushrooms (see
the reviews by Picioreanu et al., 2004; Wanner et al., 2006;
Horn and Lackner, 2014). Continuous and hybrid models have
been proposed that incorporate various mechanisms to describe
biomass growth, spreading and detachment as well as nutrients
transport and conversion.

Biofilms of L. monocytogenes show a variety of structures:
mono-layers of adhered cells, flat unstructured multi-layers,
honeycomb structures or clusters (Chae and Schraft, 2000;
Djordjevic et al., 2002; Marsh et al., 2003; Rieu et al., 2008; Bridier
et al., 2010; Pilchová et al., 2014). Recently, Guilbaud et al. (2015)
reconstructed CLSM images to observe L. monocytogenes intra-
species diversity in forming biofilms. The work considers the
biofilm structures formed by 96 isolates and concludes that most
strains form complex honeycomb-like structures at 48 h.

Previous works (Mosquera-Fernández et al., 2014, 2016) used
quantitative image analysis throughout time to study the life cycle
of biofilms formed by three L.monocytogenes strains. The analysis
showed the presence of, at least, three phases: separate clusters
which evolve to interconnected clusters, honeycomb-like or flat
structures and a final detachment. The rates at which these phases
occur vary significantly among strains.

In this study we focus our attention in the biofilms formed
by L1A1 strain (serotype 1/2a–3a, lineage II). L1A1 biofilms
exhibited a clearly distinctive dynamics: a fast transition toward
a flat biofilm, which increases in thickness for a couple of days to
massively detach after 4 days (Mosquera-Fernández et al., 2016).
The mechanisms that explain this characteristic dynamics are not
yet fully known.

The aim of this work is to provide some novel insights
into the mechanisms that drive the dynamics of the biofilms
formed by L1A1 L. monocytogenes strain. For this purpose,
we combined quantitative image analysis, cell counts, nutrient
uptake tests and modeling through a data-based model
identification loop. We selected a deterministic continuous
modeling framework. Deterministic reaction-diffusion models
(RDM) offer the advantage of the reproducibility (Wanner
et al., 2006). Besides, this type of models can be solved with
advanced numerical techniques to guarantee the computational
efficiency required for model identification through optimization
based techniques (Balsa-Canto et al., 2010; Vilas et al., 2017).
We formulated various candidate reaction-diffusion models
to describe the system. The candidate models incorporate
alternative mechanisms for growth, nutrient consumption, and
detachment. Each model was reconciled with the measured data
through optimization based data fitting. The best model was
selected attending to a best compromise between the number
of unknown parameters and its capability to quantitatively
reproduce the measurements.

2. MATERIALS AND METHODS

2.1. Experimental Methods
Bacterial Culture Conditions
Bacteria tested was L. monocytogenes L1A1 (serotype 1/2a/3a,
lineage II) isolated from thermal gloves used in the fishing
industry by the Microbiology and Marine Technology Products
research group at IIM-CSIC.

Bacterial stock cultures were kept at −80◦C in tryptone soy
broth, TSB (BD Difco, USA), containing 50% glycerol in the
ratio 1 : 1(υ/υ). For each experiment, L1A1 cells were grown
in consecutive subcultures in TSB medium for 8 and 16 h
at 37◦C (optimal growth temperature). The subcultures were
adjusted to an OD700 nm of 0.1(±0.001) which corresponds to
approximately 108 CFU/ml.

Biofilm Formation
A volume of 50 µl of the overnight subculture was added to 200
µl of fresh TSB in each well of polystyrene of a 96-well microtiter
plate (Greiner Bio-one, France). Microplates were incubated at
25◦C under static conditions.
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After 1 h of adhesion, the wells were rinsed to eliminate any
non-adherent bacteria before being refilled with 200 µl of fresh
medium. Biofilm harvesting was performed eight times per strain
at 1, 4, 24, and every 24 h up to 120 h.

Image Acquisition by Confocal Laser Scanning

Microscopy (CLSM)
Images acquisition was performed using the high throughput
method described by Bridier et al. (2010). The method relies on
the use of microtiter plates with a µ-clear base allowing for a
high-resolution imaging of biofilms. For visualization, we used
the FilmeTracer LIVE/DEAD Biofilm Viability kit (Invitrogen,
USA). The kit contains two different fluorescent nucleic acid
markers, SYTO and propidium iodide (PI). SYTO fluorochrome
penetrates in all cells while PI only penetrates in damaged cells.
The fluorochromes generate a bi-color labeling in such a way that
viable cells appear in green and non-viable cells in red.

A Leica SP2 AOBS confocal laser scanner microscope (Leica
Microsystems, France) was used at the INRA MIMA2 Imaging
platform. Scans were obtained at 400 Hz using 63 × 0.8 NA oil
immersion objective with a 488 nm argon laser set at 25% of
intensity.

One horizontal cross-section of biofilm, corresponding to a
real biofilm area of 238 × 238 µm2, defines one image or slice.
Horizontal cross-sections were acquired consecutively along z-
axis using a scanning step size of 1 µm. The collection of
horizontal cross-sections corresponds to a stack. We collected
seven stacks at diverse randomly selected locations in the
biofilms. Two biofilm replicas per sampling time were considered
(a total of 7 × 2 × 7 stacks). For each image acquisition, we
recorded dual (green and red) emissions.

Image Visualization
We used IMARIS software (www.bitplane.com/imaris/imaris)
for the visual inspection of the images at different times and
heights. IMARIS offers several view modes. The slice 2D mode
allows the visualization of one horizontal cross-section at a
particular height, i.e., at a given slice of the stack. The blend 3D
view mode provides an aerial view of the observed region, thus
helping to identify biofilm structures. The section view mode lets
the user inspect several slices together. Moreover, the gallery view
mode displays all slices as a continuous series of images allowing
the user to analyze how the structure evolves along the z-axis.
Green and red channels—GCh, green channel, corresponding
to live cells and RCh, red channel, to non-viable cells—can be
visualized separately allowing to easily detect the appearance of
non-viable cells during the biofilm life cycle.

Number of Adherent Cells
The number of adherent cells was determined according to
Herrera et al. (2007). Samples were collected at 1 and 96 h
from squares removed from the microtiter cavities and immersed
in 10 ml of phosphate-buffered saline for 10 s to release non-
adherent cells. Adherent cells were collected with peptone water-
moistened swabs. After the squares had been rubbed twice with
the swabs, they were transferred to 10 ml peptone water and
subjected to 1min of vortexing. The number of adherent cells was

determined by plating the appropriated serial dilutions on tryptic
soy agar (Cultimed, Spain) after incubation at 37◦C for 24 h.

Analytical methods
At each sampling interval, the bulk was poured to an eppendorf
and centrifuged at 9,000 g during 10 min. Supernatant was used
to determine the carbon and nitrogen sources, sugar (Bernfeld,
1951) and protein (Lowry et al., 1951) contents for nutrient
analysis. Sediment was washed twice with distilled water and
dried to constant weight at 106◦C for biomass estimation.

2.2. Theoretical Methods
Image Quantitative Analysis
We used IMARIS software to compute the maximum thickness
(MxT) of formed biofilms. MxT values were extracted for the
eight replicas at each sampling time (up to 120 h) when cells
were organized forming a clearly differentiable biofilm. Themean
values obtained out of the eight replicas were used as the basis for
model identification.

BIOFILMDIVER (Mosquera-Fernández et al., 2014) was used
to obtain the area covered by cells (CA) for each slice. CA
corresponds to the ratio between the number of colored pixels
and the total number of pixels. In this way, CA= 0% is equivalent
to the absence of cells while CA ∼ 100% corresponds to a
densely occupied slice. The CA value was computed for the
biofilm including both channels (GCh and RCh) but also for both
channels separately to analyse when and where non-viable cells
appear in the biofilm.

Modeling Approach
Model building was formulated as an iterative approach. To
elucidate the mechanisms explaining the life cycle of the
biofilms formed by L1A1 L. monocytogenes strain we proposed
a set of candidate models M1–M4. Each model incorporated
different mechanisms which in turn called for various unknown
parameters. Unknown parameters were estimated using data
fitting techniques within the AMIGO2 toolbox (Balsa-Canto
et al., 2016).

For the sake of computational efficiency and reproducibility,
all candidate models correspond to deterministic reaction-
diffusion models in one dimension. The models consist of a set of
(non-linear) partial differential equations (PDEs) which describe
the spatio-temporal dynamics of biomass and nutrients.

Model Simulation
The non-linear nature of the model candidates made the
analytical approach impossible. Therefore, numerical techniques
were employed to simulate the models. The domain of interest
was discretized into a number N of smaller sub-domains. The
use of a low order polynomial interpolation in each sub-domain
allows to approximate the PDEs by a set of algebraic or ordinary
differential equations (AEs or ODEs).

We considered two numerical approaches. The first combines
the finite differences scheme in space - with centered differences
for the nutrients and a backwards-forward space for the
biomass- and the Crank-Nicolson approach in time (Balsa-
Canto et al., 2017). A Newton-Raphson algorithm was used to
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solve the resulting non-linear equations. The second combines
the finite differences scheme as implemented in MATMOL
(Vande Wouwer et al., 2014) (www.matmol.org) with ode15 s
(implicit ODE solver included in MATLAB). Both approaches
were handled in AMIGO2 (Balsa-Canto et al., 2016) using
the black-box model option. Results obtained with both
implementations coincide thus confirming the reliability of the
numerical methods.

Model Identification
Model identification consisted of two steps. First, we estimated
unknown model parameters for each model candidate; second,
we selected the final model attending to the goodness of fit.

Parameter estimation was formulated as a non-linear
optimization problem to find the unknown model parameters
which minimize the distance between the model predicted values
and the available data. We solved the model under the specified
experimental conditions for given parameter values and results
were used to obtain maximum thickness (MxT) and average
nutrient (AvgN) in the bulk liquid.

We computed MxT taking into account the location of the
moving boundary, the interface between the biofilm and the
bulk. We computed the average nutrient (AvgN) in bulk as
mean[CN(idx)] being idx the indexes that correspond to the bulk
liquid.

AMIGO2 toolbox (Balsa-Canto et al., 2016) was used to solve
the parameter estimation problem. In particular, we selected the
least squares approach. The problem is formulated as:
Find θ to minimize:

Jml =

ns
∑

i

(

mMxTi −MxTi(θ)
)2

+

ns
∑

i

(

mAυgNi − AυgNi(θ)
)2

(1)
subject to the dynamic constraints (the model) and bounds on
the parameters θL ≤ θ ≤ θU .

In Equation (1), ns regards the number of sampling times,
mMxT andmAvgN the measuredMxT and AvgN; θ corresponds
to the vector of unknown model parameters.

The global optimizer eSS (Egea et al., 2010) was used to solve
the parameter estimation problem due to its well-recognized
efficiency and robustness.

Input files for simulation and parameter estimation are
publicly available at AMIGO2web page: https://sites.google.com/
site/amigo2toolbox/examples. Parameter ranges are included in
Supplemental Data.

Parametric Sensitivities
Local parametric sensitivities for a given observable o and at a
sampling time ts are defined as follows:

Sop(ts) =
∂yo

∂θp
(ts); p = 1 . . . nθ (2)

where yo refers to eitherMxT or AυgN.

The corresponding relative sensitivities, sop =
△θp
△yo

∂yo

∂θp
, can

be used to asses the individual local parameter influence or
importance, that is to establish a ranking of parameters.

As an overall measure of the parametric sensitivity we will use:

δop =

ns
∑

s=1

∣

∣

∣
sop(ts)

∣

∣

∣
(3)

3. RESULTS AND DISCUSSION

Quantitative Image Analysis, Cell Counts,
Nutrient Consumption Data and Modeling
Can Be Combined to Investigate the
Dynamics of Biofilm Structures
The scheme in Figure 1 is intended to reconcile model candidates
with experimental data through parameter estimation and model
selection. The approach combines experimental data from
different sources: CLSM quantitative image analysis considering
two colored channels, green for viable cells and red, for damaged
or dead cells; cell counts; nutrients measurements through time
andmodeling to test differentmechanisms that drive the life cycle
of bacterial biofilms.

Recent works (Mosquera-Fernández et al., 2014, 2016) suggest
that biofilm maximum thickness and covered area are the most
informative parameters to quantify structure dynamics. In this
work we selected IMARIS to reconstruct CLSM images, PHLIP
to compute thickness throughout time and BIOFILDIVER to
compute covered area as a function of time and z-axis. We also
measured nutrients consumption in the selected sampling times
as well as the number of adhered cells.

Alternative biological hypotheses generate alternative
candidate models. The most appropriate model can be then
selected, attending to its capability to explain the time-
resolved data by model data fitting using the AMIGO2 toolbox
(Balsa-Canto et al., 2016).

L1A1 L. monocytogenes Forms Flat, Thick
Structures and Experiments a Massive
Detachment after 96 h
CLSM three-dimensional reconstructions (Figures 2a–f) show
dense and homogeneous biofilms with scattered damaged
or dead cells as stained by propidium iodide. Under the
experimental setup used in this study, this strain forms rather
flat, unstructured biofilms. After initial attachment, a thin biofilm
is already present at 24 h. The flat structure is rather stable
throughout time with a sustained thickness increase until 96 h.
After 96 h the presence of damaged or dead cells is high.

The measured maximum thickness (mMxT) of the biofilms
was computed for each of the experimental replicates over time.
The distribution of maximum thickness values is shown in the
Figure 2g in the form of box plots. The boxes indicate the degree
of variability and skewness in the data. Results show how the
median of the maximum thickness increases with time until 96 h.
The median mMxT value at this time corresponds to 50 µm.

Rieu et al. (2008) showed the differences between the MxT
value achieved in static and flow conditions for the AR0009
strain. A maximum value of 10 µm was achieved in static
conditions after 48 h. Bridier et al. (2010) considered the
maximum thickness at 24 h of the biofilms formed by 60
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FIGURE 1 | Model identification scheme based on CLSM and nutrients consumption measurements. Biofilms were grown under static conditions. CLSM was used to

gather image stacks in several sampling times. IMARIS allowed reconstructing 3D-structures and quantifying maximum biofilm thickness throughout time.

BIOFILMDIVER enabled computing biofilm covered area as a function of time and z-axis. Nutrients consumed by cells were measured at each sampling time.

We defined candidate models, estimated unknown parameters and selected the most appropriate model using data fitting in the AMIGO2 toolbox.

FIGURE 2 | Dynamics of L1A1 L. monocytogenes biofilms during life cycle. (a–f) Present the three-dimensional reconstruction of the CLSM images captured at

different times of the biofilms life cycle. (g) Presents the measured maximum thickness (mMxT) vs. time. Box plots represent the variability of maximum thickness over

the different replicates. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25 and 75th percentiles,

respectively. The whiskers extend to the most extreme data points not considered outliers. The figure shows the median of MxT value increases with time up to 96 h.

Maximum median value is of around 50 µm. After that MxT values decrease revealing a massive detachment episode between 96 and 120 h.
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pathogens including 10 L. monocytogenes strains. Their results
reveal values ranging from 16 to 35 µm for L. monocytogenes
strains. Guilbaud et al. (2015) computed the mean thickness
achieved by 96 different strains under static flow conditions.
Their results reflect that most of the strains form biofilms with
a mean thickness value in the range 15-25 µm at 48 h. The fact
that L1A1 biofilms were around 36 µm at 48 h indicates that this
strain forms quite thick biofilms as compared to other strains.

At 120 h the MxT decreases importantly indicating a massive
detachment in that period of 24 h. The maximum relative
variability among experimental replicates for a specific sampling

time (ts) can be computed as [(max(MxT(ts))−min(MxT(ts)]
mean(MxT(ts))

. The

maximum relative variability (19%) is found at 96 h. This
may indicate that some replicates may experience a lighter
detachment before 96 h. Massive detachment occurs for all
replicates after 96 h.

Covered Area Data Reveals that Live and
Damaged or Dead Cells Are Arranged in a
Multi-layer Structure
The covered area was calculated for the different slices, channels
and sampling times. Figures 3A,B present the mean values

obtained over experimental replicates as functions of time and
thickness (z-axis). The figures reflect that at each sampling time
the biofilms are structured in layers with different CA values.
Figure 3A presents the total covered area. The Figure shows how
the maximum CA values are found in intermediate layers while
CA is lower in the deepest layers and even lower toward the
surface of the biofilm. Covered areas of <1% on the surface of
the biofilm may reflect certain roughness of around a couple of
µm or may correspond to weakly adhered cells. Lower covered
areas in the deepest layers (CA ≤ 20%) might indicate the
presence of voids or molecules that are not stained (including
exopolysaccharides, proteins and eDNA). Figure 3B presents
the results obtained for the red channel. The Figure shows the
presence of damaged or dead cells from early times and in deep
layers of the biofilm. Only at 120 h damaged or dead cells appear
also in the surface of the biofilm.

Figures 3C,D present the evolution of the mean CA over
all slices as a function of time for the different replicates. Box
plots provide information on the variability among the different
replicates. Figure 3C shows that mean CA is little at the earliest
times. These low values indicate that at early times, cells tend
to adhere on top of small clusters (of around 5 µm). Between 4
and 24 h there is a massive growth and deposition of cells which

FIGURE 3 | Covered area vs biofilm thickness and time. (A,B) Present the mean CA values obtained over experimental replicates as functions of time and thickness

(z-axis). The Figures show that biofilms are structured in layers of different CA values. Maximum CA is around 40%. At 120 h damaged or dead cells account for

almost half of the area covered by the biofilm. (C,D) Present the mean CA values over all slices as a function of time for the different replicates. Box plots provide

information on the variability among the different replicates. CA values are kept almost constant from 24 to 96 h. At 120 h CA increases substantially.

Frontiers in Microbiology | www.frontiersin.org 6 November 2017 | Volume 8 | Article 2118

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Balsa-Canto et al. Modeling L1A1 Biofilm Life Cycle

contribute to a substantial increase in biofilm dispersal. The CA
reaches values in the range 15 − 20% which are kept until 96 h.
The fact that covered area is maintained to a somehow constant
value from 24 to 96 h may suggest that biofilm is only growing
vertically. CA increases quite drastically from 96 to 120 h when a
massive detachment occurs. Thismay suggest that some detached
cells may be reallocated in the biofilm.

When analyzing the results obtained for the red channel
(Figure 3D) we discover that a small amount of damaged or
dead cells already appear at around 24 h in the deepest layers
of the biofilm. The area occupied by damaged or dead cells is
<6% for most of the time. Only at 120 h they appear distributed
throughout the biofilm with CA values ranging between the
8% and the 12%. Remarkably at this time, damaged or dead
cells account for almost half of the area covered by the biofilm,
suggesting an episode of massive death which correlates with the
large detachment described before.

Figures 2c,d show good reproducibility of results in most
of the sampling times. A larger variability is observed in the
red-channel values at 120 h. This may indicate that for the
different replicates cells start dying massively at different times
after 96 h thus contributing to a larger variability in the presence
of damaged or dead cells.

Remarkably CA values are rather low throughout time
whereas 3D-reconstructions (Figures 2b–f) show a large cellular
distribution in the surface from 24 h. Damaged or dead cells also
appear as early as 24 h. These results altogether may indicate the
presence of small voids and macromolecules, including eDNA,
supporting the hypothesis on the role of eDNA in L1A1 biofilms.

Cells Prefer Glucose as Carbon Source But
Stop Its Consumption Early in the Biofilm
Life Cycle
Figure 4 presents the concentration of nutrients as measured in
the bulk liquid. Data show that L1A1 consumes glucose as the
primary carbon source.

Cells consume most of the glucose at early times. After 24 h
glucose uptake stops even when the bulk still contains 0.4 mg/ml
glucose.

Glucose Impaired Uptake and Biofilm
Aging Are Critical to Describe the Life
Cycle of the Biofilms Formed by L1A1
Biofilms were grown in static flow conditions therefore our
models are restricted to the hydrostatic case. Besides, since
L1A1 biofilms are rather flat, we considered a one-dimensional
domain, � = (0, L), with L = 80 µm, in which we
distinguish two time-dependent regions. �1(t), represents the
bulk, and �2(t), represents the part occupied by the biomass
(See Figure 1 for the graphical representation). Both regions
can be characterized by the value of the normalized biomass
concentration, CB(t, x) = CB/Bmax and the normalized
nutrients concentration, CN(t, x) = CN/N0. Bmax corresponds
to the maximum biomass concentration and N0 corresponds
to the initial nutrients concentration, both extracted from the
experimental data.

We defined four candidate models (M1-M4), from the
simplest reaction-diffusion model (RDM) with constant biomass
diffusion and a linear biomass detachment, to the most
sophisticated model, including glucose impaired uptake and
a non-linear detachment due to biofilm aging. All candidate
models can be embedded in the following mathematical
formulation:

∂CN

∂t
= ∇ · (dN(CN)∇CN)− K1GN(CNCB) (4)

∂CB

∂t
= ∇ · (dB(CB)∇CB)+ K3GN(CNCB)− K4GD(CN ,CB)

(5)

Equation 4 describes the dynamics of nutrients. The first term in
the right-hand side accounts for the diffusion of the nutrients and

FIGURE 4 | Nutrients in the bulk throughout time. (A,B) Present the absolute concentration of nutrients as measured in the bulk liquid. Boxplots reflect the variability

among experimental replicates. (C) Shows the mean relative values using the concentrations at 1 h as the reference. Data show that L1A1 prefers glucose to protein

as a source of nutrients. After 24 h cells stop consuming glucose.
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the second corresponds to nutrients uptake; dN is the diffusion
coefficient which is different in the bulk and in the biofilm;
K1 =

µB
YBN

Bmax
N0

is proportional to the ratio between the maximum
specific growth rate of the microorganisms (µB) and the nutrient
growth yield K4 = YBNms and K4 =

µBmsBmax
Ybn

which is

proportional to the maintenance coefficientms.
Equation 5 describes the dynamics of the biofilm. In the right-
hand side, the first term accounts for the diffusion of the biomass,
the second for the production of biomass and the last one
corresponds to the decay or detachment; dB is the diffusion
coefficient and K3 = µB/Bmax. We explored several possibilities
for the definition of GN and GD.

Equations 4 and 5 are similar to the ones used in the study of
mass transfer and conversion in biofilms (Picioreanu et al., 2000;
Eberl et al., 2001).

In our case bacteria adhere to the surface at x = 0, with a
given thickness of 4.5 µm and there is neither flux of bacteria
nor nutrients. Mathematically, boundary and initial conditions
for biomass read as follows:

∂CB

∂x
(t, 0) = 0, t ∈ [0,T], (6)

∂CB

∂x
(t, L) = 0, t ∈ [0,T], (7)

CB(0, x) =

{

B0, if 0 ≤ x ≤ 4.5,
0, if 4.5 < x ≤ L.

(8)

Moreover, a fixed nutrients concentration is fed at t = 0:

∂CN

∂x
(t, 0) = 0, t ∈ [0,T], (9)

∂CN

∂x
(t, L) = 0, t ∈ [0,T], (10)

CN(0, x) = 1, x ∈ [0, L], (11)

All candidate models present the following features:

• There is a sharp front of biomass at the bulk/solid transition.
This front can be used to determine the biofilm thickness.

• Biomass density can not exceed a maximum bound Bmax

which is a parameter of the model restricted by the measured
cell counts.

• Biomass production is due to nutrient consumption.
• Nutrients diffuse in the bulk and in the biofilm with different

diffusion constants:

dN(CN) = dN , x ∈ �1 (12)

dN(CN) = deff dN , x ∈ �2, (13)

where dN corresponds to the constant glucose diffusivity in
the bulk and deff is the effective glucose diffusivity within the
biofilm (deff = 0.24; Stewart, 1998).

We estimated the unknown parameters for the different
candidate models using the time resolved data of biofilm
maximum thickness and average nutrient concentration in the

bulk. Cell counts and cell dry weight were used to define
initial conditions and bounds on the parameters. Details on the
parameters to be estimated, bounds and problem formulation are
included in the section Theoretical Methods (Table 1).

Figure 5 presents an overview of the candidatemodels and the
corresponding best fit in terms of least squares error.

Model 1 (M1) assumes that biomass diffusivity is constant.
Since there is an excess of nutrients in the medium, we assume
that GN follows a mass action description GN = CNCB instead
of the usual Monod formulation. Note that we also tested
the Monod formulation without improvements in the sense of
goodness of fit (data not shown). Detachment is assumed to be
linear and dependent on CB as in, for example, Eberl et al. (2001).

Results in Figures 5A,B reveal that the standard reaction-
diffusion models typically used to describe biofilms dynamics
can not predict L1A1 biofilm life cycle. M1 predicts that cells
consume all nutrients. Once the nutrients are exhausted the cells
enter a phase of maintenance in which the thickness does not
increase. Finally, the decay term dominates the growth term,
and biomass depletion starts once cells maintenance is no longer
possible. The maximum biofilm thickness is lower than the
maximum found by quantitative image analysis, and decay starts
earlier than expected.

TABLE 1 | Presents the parameters and the corresponding bounds considered

for parameter estimation.

Parameter Description Value Model

N0 (mg/ml) Initial glucose

concentration

2.74 (Measured) M1-M4

Bmax (mg/ml) Maximum biomass ≥15.55 (Measured) M1-M4

dN (m2/s) Glucose diffusivity

(bulk)

1× 10−14 − 6.6× 10−10 M1-M4

deff (d) Effective glucose

diffusivity (biofilm)

0.24 (Stewart, 1998) M1-M4

mum (1/s) Maximum growth

rate

1× 10−5 − 5× 10−2 M1-M4

YBN (d) Biomass yield 1× 10−3 − 1 M1-M4

dB (m2/s) Biomass diffusivity 1× 10−16 − 1× 10−15 M1,M3,M4

ms (1/s) Maintenance

coefficient

3× 10−6 − 5× 10−5 M1-M4

ǫ Biomass diffusivity

related constant

1× 10−9 − 1× 102 M2

a (d) Biomass diffusivity

related constant

0− 4 (Eberl et al., 2001) M2

b (d) Biomass diffusivity

related constant

0− 4 (Eberl et al., 2001) M2

Nmin (d) Threshold for

glucose impaired

uptake

0.128− 0.153 M3-M4

kd Rate of activation

of detachment

200− 400 M4

Dmin (d) % damaged or

dead cells before

detachment

0.05− 0.1 M4

Parameter bounds considered for model identification. (d) Corresponds to dimensionless

parameters.

Frontiers in Microbiology | www.frontiersin.org 8 November 2017 | Volume 8 | Article 2118

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Balsa-Canto et al. Modeling L1A1 Biofilm Life Cycle

FIGURE 5 | Candidate models analysis. (A,B) Present the best fit to the data obtained for the different candidate models. (C,D) Show the spatio-temporal dynamics

of the biomass and nutrients concentrations as predicted by the most successful model M4. (E) Shows the absolute value of the relative parametric sensitivities as

computed for M4. (F) Presents the effect of modifying the parameter values on MxT.

In order to better reflect maximum thickness and the time
when it is achieved, we proposed the model 2 (M2). M2 includes
the hypothesis that biomass spreading is significant once a certain
density value is approached. To model this scenario we selected
the expression proposed by Eberl et al. (2001):

dB(CB) = Cb
B

(

ǫ

Bmax − CB

)a

(14)

where a and b are additional unknown parameters to be
computed through data fitting.

The introduction of the non-linear diffusion of biomass
induces a certain delay in nutrient consumption. However, the
consumption becomes faster than in M1 after 20 h, thus causing
thicker biofilms at early times. Both models converge to the same
solution after around 60 h. The fact that the addition of two
extra parameters (a and b) does not contribute to improving
the quality of the fit implies that cell motility may be the
driving force for cell spread at early times and not the cellular
density.

Models M1 and M2 predict nutrient depletion in contrast to
what it is experimentally observed. In Model 3 we hypothesize
that L1A1 strain may present two glucose uptake systems with
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distinct affinities. Parker and Hutkins (1997) described two
glucose transport systems in L. monocytogenes Scott A. A low-
affinity proton motive force (PMF) driven system and a high-
affinity phosphotransferase mediated transport system (PTS).
Both systems are active at high glucose levels (early times),
whereas only the PTS system is active at low glucose levels
(from 24 h). This fact may be related with the expression
of the virulence regulator PrfA. On the one hand, PrfA is
essential for biofilm formation in L. monocytogenes (Lemon
et al., 2010; Zhou et al., 2011) and, on the other hand,
Marr et al. (2006) showed that L. monocytogenes strains
expressing high levels of the virulence regulator PrfA show
a significantly reduced expression of PTS components of the
glucose uptake. Moreover, carbon catabolite repression of at least
two genes of the PfrA virulence regulon previously demonstrated
in L. monocytogenes could explain the low level of biofilm
formation observed at early times of culture (Milenbachs et al.,
1997).

Model 3 (M3) is equal to M1 but includes the hypothesis of
two glucose transport mechanisms, in such a way that up to a
certain level of glucose (Nmin), cells consume glucose following
the mass action kinetics (as in M1) and once Nmin is achieved,
glucose uptake is impaired.

M3 results in a better quality of fit (Figures 5A,B) since it can
recover the glucose impaired uptake. However, decay is no longer
recovered, and the predicted maximum thickness is lower than
the one measured.

Model 4 is intended to describe detachment. The biological,
chemical, and physical factors that drive detachment are complex
and not fully understood yet. Chambless and Stewart (2007)
reviewed the phenomena hypothesized as factors influencing
detachment. The list includes fluid shear, the degradation of the
EPS, absence of sufficient nutrients or quorum sensing, to name a
few. From the point of view ofmodeling, fluid shear and substrate
limited detachment have received notable attention (Xavier et al.,
2005; Chambless et al., 2006). However, these mechanisms are
not suitable to describe the system under consideration in the
present work. Biofilms are grown in static conditions, so that
fluid shear is assumed to be negligible and nutrients are not
consumed.

We hypothesize that the large detachment observed after 96 h
is related to cell death and the degradation of the extracellular
DNA (eDNA), i.e., to biofilm aging. The presence of eDNA
in biofilms appears to be associated with both lysis of cells
and active secretion (Whitchurch et al., 2002). Following cell
death, a sub-population of the dead bacteria lyse and releases
DNA (Bayles, 2007). Harmsen et al. (2010) showed that L.
monocytogenes eDNA might be the only central component
of the biofilm matrix. Their work suggests that eDNA has a
pronounced effect on the initial attachment of cells in static
assays. Also the use of DNase I treatment resulted in an extensive
removal of cell material at late stages of biofilm formation
essays.

In Model 4 (M4) we introduced the hypothesis of the role of
aging into the detachment term. As a measure of aging, we used
the measured covered area of damaged or dead cells [CBD(t)] in
such a way that the decay starts once a given value of damaged or

dead cells is present in the biofilm. Mathematically, this reads as
follows:

GD(CB) =
CB

1+ exp(−kd(CBD(t)− Dmin))
(15)

where GD(CB) is a s-shaped function centered in Dmin and with
slope kd.

M4 is closer to the data (Figures 5A,B). Remarkably the
least squares error is half the values achieved by M1–M3. The
maximum biofilm thickness is in good agreement with the
experimental data throughout time. The model predicts that the
highest thickness is achieved at around 102 h. After that moment
cells detach massively.

Figures 5C,D present the spatio-temporal dynamics of the
biomass and nutrients in the domain as obtained for model M4.
Results reveal that the biomass concentration is higher in layers
which are deep in the biofilm, in particular between 10 and 40 h.
The fast consumption of nutrients in the first hours (1–20 h)
contributes to achieving the higher biomass concentration values
at early times.

Parameter values corresponding to the optimal solution are
reasonable. The diffusion coefficient for dilute glucose in water
at 25◦C is 6.6 × 10−10; the glucose diffusion in the model
corresponds to dN = 1.07 × 10−11, which is reasonable taking
into consideration that the bulk liquid contains other nutrients
than glucose (e.g., proteins). The diffusivity in the biofilm is
24% that value (Stewart, 1998). To compensate for a rather low
diffusivity of nutrients, the nutrient growth yield factor is rather
large YBN = 0.98 which would indicate that the cells use very
effectively the nutrients to grow and to produce EPS which would
contribute to achieve high biomass concentrations at early times.
The growth rate µB = 8.5 × 10−3 is within the range of values
published for L. monocytogenes species under different stress
conditions (Augustin and Carlier, 2000). Note that this value
does not correspond to the cellular growth but to the biofilm
growth. The maintenance coefficient Ms = 3.66 × 10−5 would
indicate that cells may survive up to around 7 h without access
to nutrients. Nmin = 1.39 × 10−1 corresponds to an average
nutrient concentration of 0.38 which is a bit over the average
nutrient value at the end of the process. Dmin = 5.21 × 10−2

would indicate that a covered area of CA = 5.21% of damaged
or dead cells would determine the beginning of the detachment
which is rapidly linear as shown by the high value of kd =

311.5.
To assess the influence of the different mechanisms into

the biofilm dynamics, we computed the absolute relative
parametric sensitivities at the optimum (see section Theoretical
Methods). Results (Figure 5E) show that nutrients dynamics is
critically affected by the glucose impairment parameter (Nmin).
The biofilms growth and the yield are also influencing the
nutrients consumption. The biofilm thickness is affected by all
parameters. The most relevant mechanisms are the biomass
diffusion and growth as well as aging. Figure 5F shows how
the dynamics of the maximum thickness varies when modifying
the model parameters using a normal distribution with a 5%
standard deviation. The model is quite robust to parameters’
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modifications, the maximum thickness is consistently achieved
at around 100 h presenting a low dispersion (around 10%).
Furthermore, Dmin and kd have a considerable effect on
the dynamics of detachment, both regarding intensity and
velocity.

4. CONCLUSIONS

Listeria monocytogenes is a food-borne pathogen that can cause
systemic infections in humans. In some cases food contamination
has been linked to the capability of these bacteria to form
biofilms, microbial structures with enhanced resistance to
biocides. Therefore, it is of the highest interest to gain new
insights into the life cycle of biofilms to design new elimination
strategies.

These insights can be gained from a multidisciplinary
approximation in which measurements and hypotheses are
reconciled through a model identification procedure.

In this work, we proposed such a procedure combining
quantitative CLSM image analysis, cell counts and nutrient
consumption measurements with computationally efficient
modeling and parameter estimation techniques.

The procedure allowed us to compare several candidate
models, i.e., hypotheses, and to find the model, i.e., the
mechanisms, that better describe L1A1 L. monocytogenes biofilms
life cycle.

Remarkably glucose impaired uptake and biofilm aging are
crucial to explain biofilms maximum thickness and the observed
massive detachment in static cultures.

AUTHOR CONTRIBUTIONS

EB formulated the models; CVi and AL implemented the
numerical simulations; CVi and CVá designed and supervised the
numerical simulations; CVi and EB performed the optimizations;
MM, MC, and RB designed and performed the experiments; EB
designed the work and drafted the document; all authors read and
approved the manuscript.

FUNDING

EB and MC acknowledge funds received from the Axencia
Galega de Investigación (GAIN). AL and CVá acknowledge
the grants MINECO MTM2016-76497-R and Xunta de Galicia
GCR2014/044, including FEDER funds. AL acknowledges the
financial support from the Spanish MECD-FPU program (ref.
FPU13/02191). MM acknowledges the financial support from the
JAE-CSIC program co-founded by FEDER.

ACKNOWLEDGMENTS

Julien Deschamps and Alexis Canette (INRA) are acknowledged
for their help in biofilm cultivation and imaging.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2017.02118/full#supplementary-material

REFERENCES

Augustin, J.-C., and Carlier, V. (2000). Mathematical modelling of the growth

rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol. 56, 29–51.

doi: 10.1016/S0168-1605(00)00223-3

Balsa-Canto, E., Alonso, A., and Banga, J. (2010). An iterative identification

procedure for dynamicmodeling of biochemical networks. BMC Syst. Biol. 4:11.

doi: 10.1186/1752-0509-4-11

Balsa-Canto, E., Henriques, D., Gabor, A., and Banga, J. (2016). AMIGO2, a

toolbox for dynamic modeling, optimization and control in systems biology.

Bioinformatics 32, 3357–3359. doi: 10.1093/bioinformatics/btw411

Balsa-Canto, E., López-Núñez, A., and Vázquez, C. (2017). Numerical methods

for a non-linear reaction-diffusion system modelling a batch culture of biofilm.

Appl. Math. Mod. 41, 164–179. doi: 10.1016/j.apm.2016.08.020

Bayles, K.-W. (2007). The biological role of death and lysis in biofilm development.

Nat. Rev. Micro. 5, 721–726. doi: 10.1038/nrmicro1743

Bernfeld, P. (1951). Enzymes of starch degradation and synthesis. Adv. Enzymol.

Relat. Subj. Biochem. 12, 379–428. doi: 10.1002/9780470122570.ch7

Beyenal, H., Lewandowski, Z., and Harkin, G. (2004). Quantifying

biofilm structure: facts and fiction. Biofouling 20, 1–23.

doi: 10.1080/0892701042000191628

Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V., and Briandet, R.

(2010). The biofilm architecture of sixty opportunistic pathogens deciphered

using a high throughput CLSM method. J. Microbiol. Methods 82, 64–70.

doi: 10.1016/j.mimet.2010.04.006

Carpentier, B. and Cerf, P. (2011). Persistence of Listeria monocytogenes in

food industry equipment and premises. Int. J. Food Microbiol. 145, 1–8.

doi: 10.1016/j.ijfoodmicro.2011.01.005

Chae, M. S., and Schraft, H. (2000). Comparative evaluation of adhesion and

biofilm formation of different Listeria monocytogenes strains. Int. J. Food

Microbiol. 62, 103–111. doi: 10.1016/S0168-1605(00)00406-2

Chambless, J. D., Hunt, S. M., and Stewart, P. S. (2006). A three-

dimensional computer model of four hypothetical mechanisms protecting

biofilms from antimicrobials. App. Environ. Microbiol. 72, 2005–2013.

doi: 10.1128/AEM.72.3.2005-2013.2006

Chambless, J. D., and Stewart, P. S. (2007). A three-dimensional computer model

analysis of three hypothetical biofilm detachment mechanisms. Biotech. Bioeng.

97, 1573–1584. doi: 10.1002/bit.21363

Cossart, P., and Lebreton, A. (2014). A trip in the “new microbiology” with

the bacterial pathogen Listeria monocytogenes. FEBS Lett. 588, 2437–2445.

doi: 10.1016/j.febslet.2014.05.051

Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta,

M., et al. (1987). Bacterial biofilms in nature and disease. Annu. Rev. Microbiol.

41, 435–464. doi: 10.1146/annurev.mi.41.100187.002251

Daims, H. and Wagner, M. (2007). Quantification of uncultured microorganisms

by fluorescence microscopy and digital image analysis. Appl. Microbiol.

Biotechnol. 75, 237–248. doi: 10.1007/s00253-007-0886-z

Djordjevic, D., Wiedmann, M., and McLandsborough, L. (2002). Microtiter

plate assay for assessment of Listeria monocytogenes biofilm formation. Appl.

Environ. Microb. 68, 2950–2958. doi: 10.1128/AEM.68.6.2950-2958.2002

Donlan, R. M., and Costerton, J. W. (2002). Biofilms: survival mechanisms

of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193.

doi: 10.1128/CMR.15.2.167-193.2002

Eberl, H. J., Parker, D. F., and van Loosdrecht,M. C.M. (2001). A new deterministic

spatio temporal continuum model for biofilm development. J. Theor. Med. 3,

161–175. doi: 10.1080/10273660108833072

Egea, J. A., Martí, R., and Banga, J. R. (2010). An evolutionary method

for complex-process optimization. Comp. Oper. Res. 37, 315–324.

doi: 10.1016/j.cor.2009.05.003

Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., and Briandet, R. (2015).

Exploring the diversity of Listeria monocytogenes biofilm architecture by

high-throughput confocal laser scanning microscopy and the predominance

Frontiers in Microbiology | www.frontiersin.org 11 November 2017 | Volume 8 | Article 2118

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02118/full#supplementary-material
https://doi.org/10.1016/S0168-1605(00)00223-3
https://doi.org/10.1186/1752-0509-4-11
https://doi.org/10.1093/bioinformatics/btw411
https://doi.org/10.1016/j.apm.2016.08.020
https://doi.org/10.1038/nrmicro1743
https://doi.org/10.1002/9780470122570.ch7
https://doi.org/10.1080/0892701042000191628
https://doi.org/10.1016/j.mimet.2010.04.006
https://doi.org/10.1016/j.ijfoodmicro.2011.01.005
https://doi.org/10.1016/S0168-1605(00)00406-2
https://doi.org/10.1128/AEM.72.3.2005-2013.2006
https://doi.org/10.1002/bit.21363
https://doi.org/10.1016/j.febslet.2014.05.051
https://doi.org/10.1146/annurev.mi.41.100187.002251
https://doi.org/10.1007/s00253-007-0886-z
https://doi.org/10.1128/AEM.68.6.2950-2958.2002
https://doi.org/10.1128/CMR.15.2.167-193.2002
https://doi.org/10.1080/10273660108833072
https://doi.org/10.1016/j.cor.2009.05.003
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Balsa-Canto et al. Modeling L1A1 Biofilm Life Cycle

of the honeycomb-like morphotype. App. Env. Microbiol. 81, 1804–1810.

doi: 10.1128/AEM.03173-14

Harmsen, M., Lappann, M., Knochel, S., and Molin, S. (2010). Role of extracellular

dna during biofilm formation by Listeria monocytogenes. Appl. Environ.

Microbiol. 76, 2271–2279. doi: 10.1128/AEM.02361-09

Herrera, J. J. R., Cabo, M. L., Gonzalez, A., Pazos, I., and Pastoriza, L. (2007).

Adhesion and detachment kinetics of several strains of staphylococcus aureus

subsp. aureus under three different experimental conditions. Food Microbiol.

24, 585–591. doi: 10.1016/j.fm.2007.01.001

Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M.,

Ersboll, B. K., et al. (2000). Quantification of biofilm structures by

the novel computer program COMSTAT. Microbiology 146, 2395–2407.

doi: 10.1099/00221287-146-10-2395

Horn, H., and Lackner, S. (2014). Modeling of biofilm systems: a review. Adv.

Biochem. Eng. Biotechnol. 146, 53–76. doi: 10.1007/10_2014_275

Kathariou, S. (2002). Listeria monocytogenes virulence and pathogenicity,

a food safety perspective. J. Food Protect. 65, 1811–1829.

doi: 10.4315/0362-028X-65.11.1811

Lemon, K. P., Freitag, N. E., and Kolter, R. (2010). The virulence regulator

PrfA promotes biofilm formation by Listeria monocytogenes. J. Bacteriol. 192,

3969–3976. doi: 10.1128/JB.00179-10

Lowry, O., Rosebrough, N., Farr, A., and Randall, R. (1951). Protein measurement

with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

Marr, A. K., Joseph, B., Mertins, S., Ecke, R., Müller-Altrock, S., and Goebel,

W. (2006). Overexpression of PrfA leads to growth inhibition of Listeria

monocytogenes in glucose-containing culture media by interfering

with glucose uptake. J. Bacteriol. 188, 3887–3901. doi: 10.1128/JB.

01978-05

Marsh, E. J., Luo, H. L., and Wang, H. (2003). A three-tiered approach to

differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol.

Lett. 228, 203–210. doi: 10.1016/S0378-1097(03)00752-3

Milenbachs, A. A., Brown, D. P., Moors, M., and Youngman, P. (1997). Carbon-

source regulation of virulence gene expression in Listeria monocytogenes.Mol.

Microbiol. 23, 1075–1085. doi: 10.1046/j.1365-2958.1997.2711634.x

Møretrø, T., and Langsrud, S. (2004). Listeria monocytogenes: biofilm formation

and persistence in food-processing environments. Biofilms 1, 107–121.

doi: 10.1017/S1479050504001322

Mosquera-Fernández, M., Rodríguez-López, P., Cabo, M. L., and Balsa-

Canto, E. (2014). Numerical spatio-temporal characterization of

Listeria monocytogenes biofilms. Int. J. Food Microbiol. 182, 26–36.

doi: 10.1016/j.ijfoodmicro.2014.05.005

Mosquera-Fernández, M., Sanchez-Vizuete, P., Briandet, R., Cabo,

M. L., and Balsa-Canto, E. (2016). Quantitative image analysis to

characterize the dynamics of Listeria monocytogenes biofilms. Int.

J. Food Microbiol. 236, 130–137. doi: 10.1016/j.ijfoodmicro.2016.

07.015

Mueller, L. N., de Brouwer, J. F. C., Almeida, J. S., Stal, L. J., and Xavier, J. B.

(2006). Analysis of a marine phototrophic biofilm by confocal laser scanning

microscopy using the new image quantification software PHLIP. BMC Ecol. 6:1.

doi: 10.1186/1472-6785-6-1

Parker, C., and Hutkins, R. W. (1997). Listeria monocytogenes Scott A transports

glucose by high-affinity and low-affinity glucose transport systems. App.

Environ. Microbiol. 63, 543–546.

Picioreanu, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (2000). A

theoretical study on the effect of surface roughness on mass transport and

transformation in biofilms. Biotechnol. Bioeng. 68, 355–369. doi: 10.1002/

(SICI)1097-0290(20000520)68:4<355::AID-BIT1>3.0.CO;2-A

Picioreanu, C., Xavier, J. B., and van Loosdrecht, M. C. M. (2004). Advances

in mathematical modeling of biofilm structure. Biofilms 1, 1–12.

doi: 10.1017/S1479050505001572

Pilchová, T., Hernould, M., Prévost, H., Demnerová, K., Pazlarová, J., and

Tresse, O. (2014). Influence of food processing environments on structure

initiation of static biofilm of Listeria monocytogenes. Food Control. 35, 366–372.

doi: 10.1016/j.foodcont.2013.07.021

Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., and Piveteau,

P. (2008). Listeria monocytogenes EGD-e biofilms: no mushrooms but

a network of knitted chains. App. Environ. Microbiol. 74, 4491–4497.

doi: 10.1128/AEM.00255-08

Rodríguez-López, P., Saá-Ibusquiza, P., Mosquera-Fernández, M., and López-

Cabo, M. (2015). Listeria monocytogenes-carrying consortia in food industry.

composition, subtyping and numerical characterisation of mono-species

biofilm dynamics on stainless steel. Int. J. Food Microbiol. 206, 84–95.

doi: 10.1016/j.ijfoodmicro.2015.05.003

Silva, S., Teixeira, P., Oliveira, R., and Azeredo, J. (2008). Adhesion to and viability

of Listeria monocytogenes on food contact surfaces. J. Food Prot. 71, 1379–1385.

doi: 10.4315/0362-028X-71.7.1379

Stewart, P. S. (1998). A review of experimental measurements

of effective diffusive permeabilities and effective diffusion

coefficients in biofilms. Biotech. Bioeng. 59, 261–272.

doi: 10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9

Swaminathan, B., and Gerner-Smidt, P. (2007). The epidemiology of human

listeriosis.Microbes Infect. 9, 1236–1243. doi: 10.1016/j.micinf.2007.05.011

Tawakoli, P. N., Al-Ahmad, A., Hoth-Hannig, W., Hannig, M., and Hannig,

C. (2013). Comparison of different live/dead stainings for detection and

quantification of adherent microorganisms in the initial oral biofilm. Clin. Oral

Investig. 17, 841–850. doi: 10.1007/s00784-012-0792-3

Vande Wouwer, A., Saucez, P., and Vilas, C. (2014). Simulation of ODE/PDE

Models with MATLAB, OCTAVE and SCILAB: Scientific and Engineering

Applications. Dordrecht: Springer.

Vilas, C., Arias-Méndez, A., Garcia, M. R., Alonso, A. A., and Balsa-Canto, E.

(2017). Towards predictive food process models: a protocol for parameter

estimation. Crit. Rev. Food Sci. Nut. doi: 10.1080/10408398.2016.1186591.

[Epub ahead of print].

Vyas, N., Sammons, R. L., Addison, O., Dehghani, H., and Walmsley, A. D.

(2016). A quantitative method to measure biofilm removal efficiency from

complex biomaterial surfaces using SEM and image analysis. Sci. Rep. 6:32694.

doi: 10.1038/srep32694

Wanner, O., Eberl, H. J., Morgenroth, E., Noguera, D. R., Picioreanu, C., Rittmann,

B. E., et al. (2006). Mathematical Modelling of Biofilms. Technical report, IWA

Task Group on Biofilm Modelling.

Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., and Mattick, J. S. (2002).

Extracellular DNA required for bacterial biofilm formation. Science 295:1487.

doi: 10.1126/science.295.5559.1487

Wilks, S. A., Michels, H. T., and Keevil, C. W. (2006). Survival of Listeria

monocytogenes scott a on metal surfaces: Implications for cross-contamination.

Int. J. Food Microbiol. 111, 93–98. doi: 10.1016/j.ijfoodmicro.2006.04.037

Xavier, J. B., Picioreanu, C., and van Loosdrecht, M. C. M. (2005). A general

description of detachment for multidimensional modelling of biofilms.

Biotechnol. Bioeng. 91, 651–669. doi: 10.1002/bit.20544

Yang, X. M., Beyenal, H., Harkin, G., and Lewandowski, Z. (2000). Quantifying

biofilm structure using image analysis. J. Micro. Mthds. 39, 109–119.

doi: 10.1016/S0167-7012(99)00097-4

Zhou, Q. C., Feng, F. F., Wang, L., Feng, X. Q., Yin, X. J., and Luo, Q.

(2011). Virulence regulator PrfA is essential for biofilm formation in Listeria

monocytogenes but not in listeria innocua. Curr. Microbiol. 63, 186–192.

doi: 10.1007/s00284-011-9964-7

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Balsa-Canto, Vilas, López-Núñez, Mosquera-Fernández,

Briandet, Cabo and Vázquez. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 November 2017 | Volume 8 | Article 2118

https://doi.org/10.1128/AEM.03173-14
https://doi.org/10.1128/AEM.02361-09
https://doi.org/10.1016/j.fm.2007.01.001
https://doi.org/10.1099/00221287-146-10-2395
https://doi.org/10.1007/10
https://doi.org/10.4315/0362-028X-65.11.1811
https://doi.org/10.1128/JB.00179-10
https://doi.org/10.1128/JB.01978-05
https://doi.org/10.1016/S0378-1097(03)00752-3
https://doi.org/10.1046/j.1365-2958.1997.2711634.x
https://doi.org/10.1017/S1479050504001322
https://doi.org/10.1016/j.ijfoodmicro.2014.05.005
https://doi.org/10.1016/j.ijfoodmicro.2016.07.015
https://doi.org/10.1186/1472-6785-6-1
https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<355::AID-BIT1>3.0.CO;2-A
https://doi.org/10.1017/S1479050505001572
https://doi.org/10.1016/j.foodcont.2013.07.021
https://doi.org/10.1128/AEM.00255-08
https://doi.org/10.1016/j.ijfoodmicro.2015.05.003
https://doi.org/10.4315/0362-028X-71.7.1379
https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9
https://doi.org/10.1016/j.micinf.2007.05.011
https://doi.org/10.1007/s00784-012-0792-3
https://doi.org/10.1080/10408398.2016.1186591
https://doi.org/10.1038/srep32694
https://doi.org/10.1126/science.295.5559.1487
https://doi.org/10.1016/j.ijfoodmicro.2006.04.037
https://doi.org/10.1002/bit.20544
https://doi.org/10.1016/S0167-7012(99)00097-4
https://doi.org/10.1007/s00284-011-9964-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	Modeling Reveals the Role of Aging and Glucose Uptake Impairment in L1A1 Listeria monocytogenes Biofilm Life Cycle
	1. Introduction
	2. Materials and Methods
	2.1. Experimental Methods
	Bacterial Culture Conditions
	Biofilm Formation
	Image Acquisition by Confocal Laser Scanning Microscopy (CLSM)
	Image Visualization
	Number of Adherent Cells
	Analytical methods

	2.2. Theoretical Methods
	Image Quantitative Analysis
	Modeling Approach
	Model Simulation
	Model Identification
	Parametric Sensitivities


	3. Results and Discussion
	Quantitative Image Analysis, Cell Counts, Nutrient Consumption Data and Modeling Can Be Combined to Investigate the Dynamics of Biofilm Structures
	L1A1 L. monocytogenes Forms Flat, Thick Structures and Experiments a Massive Detachment after 96 h
	Covered Area Data Reveals that Live and Damaged or Dead Cells Are Arranged in a Multi-layer Structure
	Cells Prefer Glucose as Carbon Source But Stop Its Consumption Early in the Biofilm Life Cycle
	Glucose Impaired Uptake and Biofilm Aging Are Critical to Describe the Life Cycle of the Biofilms Formed by L1A1

	4. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


