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HHV-6A/6B Infection of NK Cells
Modulates the Expression of miRNAs
and Transcription Factors Potentially
Associated to Impaired NK Activity

Roberta Rizzo, Irene Soffritti, Maria D’Accolti, Daria Bortolotti, Dario Di Luca and
Elisabetta Caselli*

Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, ltaly

Natural killer (NK) cells have a critical role in controling virus infections, and
viruses have evolved several mechanisms to escape NK cell functions. In particular,
Human herpesvirus 6 (HHV-6) is associated with diseases characterized by immune
dysregulation and has been reported to infect NK cells. We recently found that HHV-6
in vitro infection of human thyroid follicular epithelial cells and T-lymphocytes modulates
several MiRNAs associated with alterations in immune response. Since miRNAs are key
regulators of many immune pathways, including NK cell functions, we aimed to study the
impact of HHV-6A and -6B in vitro infection on the intracellular mediators correlated to
NK cell function. To this purpose, a human NK cell line (NK-92) was infected in vitro with
HHV-6A or 6B and analyzed for alterations in the expression of miRNAs and transcription
factors. The results showed that both viruses establish Iytic replication in NK-92 cells,
as shown by the presence of viral DNA, expression of Iytic transcripts and antigens, and
by the induction of an evident cytopathic effect. Notably, both viruses, although with
species-specific differences, induced significant modifications in miRNA expression of
miRNAs known for their role in NK cell development, maturation and effector functions
(miR-146, miR-155, miR-181, miR-223), and on at least 13 mMiRNAs with recognized
role in inflammation and autoimmunity. Also the expression of transcription factors was
significantly modified by HHV-6A/6B infection, with an early increase of ATF3, JUN and
FOXA2 by both species, whereas HHV-6A specifically induced a 15-fold decrease of
POU2AF1, and HHV-6B an increase of FOXO1 and a decrease of ESR1. Overall, our
data show that HHV-6A and -6B infections have a remarkable effect on the expression
of miRNAs and transcription factors, which might be important in the induction of NK
cell function impairment, virus escape strategies and related pathologies.

Keywords: HHV-6, miRNA, transcription factors, natural killer cells, virus infection

INTRODUCTION

Natural killer (NK) cells belong to the innate immune system and are essential effector cells in
the control of virus infections (Cooper et al., 2001). Their activity during antiviral response is
crucial to control initial virus replication, by killing virus-infected cells prior to the development
of adaptive/specific immunity, but they also act as essential regulators of the adaptive immunity
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(Vivier et al., 2008). Their relevance is supported by the
observation that individuals with defects in the NK cell
component of the innate immunity are more susceptible to virus
infection (Orange, 2002), including herpesviruses (Fleisher et al.,
1982; Biron et al., 1989), and consequently more prone to develop
symptomatic disease following infection. On the other hand,
the importance of NK cell activity during virus infections is
reflected by the many mechanisms acquired by viruses to evade
NK cell-mediated immune responses (Vossen et al., 2002; Arens,
2012). In particular, human herpesvirus 6A and 6B (HHV-6A
and 6B), as all viruses belonging to the Herpesviridae family,
have developed several mechanisms to control and inactivate the
immune response in order to establish a lifelong infection in their
hosts.

HHV-6A and 6B are members of the Roseolovirus group of
the B herpesvirinae subfamily and, although they share high
sequence homology, are classified as distinct species. In fact, they
show important differences in biologic properties, epidemiology,
and disease association (Ablashi et al., 2014). HHV-6B infects
humans in early childhood and is responsible of Exanthem
subitum (Yamanishi et al., 1988), while primary infection with
HHV-6A still has to be clearly identified. Both HHV-6A and -
6B establish a latent infection in the host following resolution
of primary infection. Reactivations in the adult have been
associated to the development of multiple symptomatic diseases
often characterized by immune dysregulation (multiple sclerosis,
Sjogren’s syndrome, autoimmune thyroiditis, and others) (Caselli
and Di Luca, 2007). Both viruses are considered lymphotropic,
showing an elective tropism for CD4+ T-lymphocytes and being
able to infect several different cell types of the immune system,
including NK cells (Lusso et al., 1993; Caselli and Di Luca, 2007).

Interestingly, in vivo and in vitro evidences indicate that
HHV-6A/6B interfere with the immune system of the infected
host in several ways (Lusso, 2006; Dagna et al., 2013). They
can modulate surface antigens important for T-cell activation,
such as human leukocyte antigen (HLA) class I molecule
expression in dendritic cells (Hirata et al., 2001); they also
can affect cytokine and chemokine productions, including
selective suppression of IL-12, affecting the generation of
effective cellular immune responses (Smith et al., 2003; Dagna
et al., 2013). Furthermore, we recently observed that HHV-
6A infection induces the expression of the tolerogenic non-
classical class I HLA-G molecule in primary human mesothelial
cells, leading to impairment of NK cell recognition and killing
of infected cells (Caselli et al., 2015). With reference to the
NK cell component of the immune response, HHV-6A was
reported to establish a productive infection in CD3-negative
NK cell clones, leading to the de novo expression of CD4
on the NK cell surface (Lusso et al, 1993), and HHV-
6B was recently shown to induce down-modulation of the
activating NKG2D ligand in infected cells (Schmiedel et al.,
2016).

Notably, it has been recently reported that NK cells may be
directly involved in the onset and progression of autoimmune
diseases, through their potential autoreactivity or through their
interaction with the other immune cells (Schleinitz et al., 2010;
Poggi and Zocchi, 2014), thus supporting the hypothesis of a

correlation between HHV-6A/6B infection, NK cell function and
autoimmunity.

On the other hand, miRNAs are known to play an essential
role in fine-tuning host immune homeostasis and responses, as
miRNA-mediated regulation of gene expression has a profound
impact on immune cell development, function, and response
to invading pathogens. Interestingly, we recently observed that
HHV-6A/6B infection of human thyrocytes and T-lymphocytes
profoundly remodulates the expression of cellular miRNAs,
inducing specific miRNAs associated to autoimmunity in vivo
(Caselli et al., 2017), and of transcription factors (unpublished
observations).

To study the effects of HHV-6A and -6B on NK cell functions,
we analyzed the effect of in vitro infection of NK cells on the
expression of miRNAs. We also investigated the expression of
transcription factors in infected NK cells, in the attempt to further
clarify the details of intracellular alterations induced by these
viruses with relevance on the immune function.

MATERIALS AND METHODS

Cells and Viruses

The human NK-92 natural killer cell line (ATCC® CRL-2407™)
was used for all infection experiments (Gong et al., 1994).
Cells were expanded in Alpha Minimum Essential Medium
supplemented with 2 mM L-glutamine, 1.5 g/L sodium
bicarbonate, 0.1 mM 2-mercaptoethanol, and 20% fetal bovine
serum (FBS) (complete medium).

Cell-free virus inocula were obtained as described previously
(Caselli et al., 2006; Caruso et al,, 2009), and quantified by
quantitative real-time PCR (qPCR) (Caselli et al., 2017). All the
experiments were performed by using the same virus inoculum,
containing 10" genome copies/ml, corresponding to about 10°
infecting particles/ml, as previously described (Caselli et al,
2015).

All experiments involving virus production and infection were
performed under standard BLS-2 biosafety level.

NK Cell Infection

NK-92 cells were seeded at optimal density and after 24 h
HHV-6A or 6B were added at a 100:1 multiplicity of infection
(MOI, virus genomes:cell ratio). Virus adsorption was carried
out in a 2% FBS medium for 3 h, then the excess virus was
eliminated by centrifugation and washing in PBS, and cells were
finally seeded at 0.5 x 10° cells/ml in complete medium with
high FBS concentration. Control cells were treated with the same
procedure but uninfected. At 1, 2, 3, and 6 days post-infection
(d.p.i.) aliquots of cultures were collected and analyzed for virus
DNA presence, virus transcription and antigen expression, as well
as for expression of miRNAs and transcription factors. Evaluation
of cell viability was performed by cell counting after Trypan Blue
exclusion test.

qPCR Analyses of Virus DNA Presence
Total DNA was extracted from the infected or uninfected cells
by a commercial kit (Exgene Cell SV kit, GeneAll Biotechnology,
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Korea), and quantified by spectrophotometric reading at 260
and 280 nm. Virus DNA presence was verified and quantified as
previously described by a qPCR detecting the conserved U94 gene
of HHV-6A and 6B with equivalent efficiency (Caselli et al., 2017).

Microarray and RT-gPCR Analyses

RNA was extracted from cells by the miRNeasy kit (Qiagen,
Hilden, Germany), allowing the extraction of total RNA
including miRNA fraction, as previously described (Caselli
et al., 2017). Extracted RNA were devoid of contaminant
DNA, as assured by DNase treatment and control B-actin PCR
without reverse transcription (Caselli et al., 2012). RNA reverse
transcription was performed by the RT2 First strand Kit (Qiagen,
Hilden, Germany) for analyses of virus transcripts and human
transcription factors, whereas for miRNA analyses the miScript
RT kit was used (Qiagen, Hilden, Germany). cDNA aliquots
corresponding to 200 ng RNA were used for virus transcription
analysis, performed by qPCR detecting the expression of U94,
U42 and U22 genes, as previously reported (Caselli et al,
2012). The expression of transcription factors was analyzed by
the ‘Human Transcription Factor’ microarray, detecting and
quantifying simultaneously 83 different human transcription
factors (Qiagen, Hilden, Germany), using 500 ng cDNA as the
template.

miRNA analyses were performed on 100 ng of specifically
reverse transcribed ¢cDNA, by the ‘Human Inflammatory
Response & Autoimmunity’ Microarray (Qiagen, Hilden,
Germany), quantifying simultaneously 84 different miRNAs
involved in the immune response, and by 20 individual assays
chosen to detect and quantify miRNAs specifically involved in
the NK cell functions. Namely, the following individual miRNAs
were analyzed: miR155%_1, miR155_2, miR146a_1, miR16-
1*_1, miR16_2, miR18la*_1, miRI8la_2, miR181b_1,
miR181b-3p_1, miR10a*_1, miR10a_2, miR150_1, miR150-
3p_1, miR27a_1, miR27a*_1, miR27b*_1, miR27b_2, miR223_1,
miR223* 1, miR378*_1; miRTC_1, and SNORD61_11 were
used as internal controls (all Qiagen, Hilden, Germany).

All qPCR amplification results obtained by transcription
factors microarray, miRNA microarray and individual assays,
were analyzed and normalized by a specific Qiagen software, to
obtain comparable values between control and infected cells at
each time post-infection.

Immunofluorescence Analysis
Immunofluorescence for HHV-6A/6B antigen expression was
performed with mouse monoclonal antibodies (mAb) directed
against glycoprotein gp116 (late antigen) of HHV-6 A and B (ABI,
Columbia, MD, United States), as previously described (Caselli
etal., 2006). Briefly, aliquots of infected or uninfected NK-92 cells
were collected by centrifugation 10 min at 1000 x g, counted,
spotted on a glass slide (50,000 cell in 10 l), dried at room
temperature and subsequently stained as described elsewhere
(Caselli et al., 2006).

Statistical Analysis
Statistical analysis of collected data was performed using
the Stat View software package (SAS Institute, Inc., Cary,

NC, United States). Comparative analysis between individual
parameters in infected and control groups was performed by
Student’s ¢-test, and p-values < 0.01 were considered significant.
For multiple comparisons, the Bonferroni correction was applied,
and corrected p-values (p;) < 0.01 were considered significant.

RESULTS

HHV-6A and 6B Infect Productively
NK-92 Cells

Both viruses established a productive/lytic infection in NK-92
cells, as shown in Figure 1, confirming that human NK cells are
permissive to viral infection (Lusso et al., 1993), and showing that
the NK-92 cell line could be used for all the subsequent analyses.

In fact, virus DNA was present in infected cells at all time-
points post-infection (1 to 6 d.p.i.), as measured by specific U94
qPCR, and the increased genome number, compared to time-
point 0, confirmed that virus replication was actually taking place
in infected cells. The analysis of virus transcription confirmed the
establishment of productive infection in NK cells, as evidenced
by the presence of the immediate-early U42 and late U22
transcripts, together with the U94 transcript (which is detected
both during lytic and latent HHV-6 infection), at all time-points
post-infection (p.i.) (Figure 1A). Establishment of lytic infection
was confirmed by IFA results, showing abundant expression of
the late gp116 envelope glycoprotein at 6 d.p.i. in infected cells
(Figure 1B).

Infected NK-92 cells appeared damaged and less able to form
clusters compared to uninfected controls, with more pronounced
effects in the case of HHV-6A, compared to HHV-6B (Figure 1B).
The virus-induced damages were confirmed by viable cell counts,
showing a slight decrease in HHV-6A and 6B infected cells
at 1 d.pi. (=145 £ 3.8% compared to control uninfected
cells), but a more evident reduction at later time-points, with
HHV-6A infection causing a 66.7 & 9.8% cell loss and HHV-6B a
39.8 £ 6.5% cell loss, at 6 d.p.i., compared to controls.

miRNA Expression Modulation by
HHV-6A and 6B Infection

miRNA expression in infected cells was first studied by
a microarray assay simultaneously detecting 84 different
miRNAs associated to the development of inflammation and
autoimmunity. The results, summarized in Supplementary Table
S1, show that both HHV-6A and 6B induce evident alterations
in the expression of cellular miRNAs. In particular, 23 miRNAs
resulted significantly modulated (p. < 0.01) compared to
controls, in at least one time-point p.i. With the aim to highlight
only the most prominent effects caused by virus infection, we
focused our attention on those miRNAs showing at least fourfold
changes compared to controls, arbitrarily chosen as a cut-off
value. Thirteen miRNAs were modulated more than fourfold by
virus infections, with clear early and late effects and differences
between the two viruses (Figure 2). In particular, both HHV-6A
and 6B induced an early up-regulation of miR-301a and miR-548e
(1 d.p.i.), an increase of miR-101 and a decrease of miR-let-7c
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FIGURE 1 | Infection by HHV-6A and 6B in the human NK-92 natural killer cell line. NK-92 cells were infected with HHV-6A or 6B cell-free virus inocula (MOl = 100).
(A) Virus presence (DNA) and transcription (RNA) were analyzed by gPCR and RT-gPCR for U94, U22, and U42 genes. Results are expressed as genome copy
number per 100 ng of DNA or RNA. Results are expressed as mean values + SD of duplicate samples in three independent experiments. (B) Upper panel, phase
contrast microphotographs of uninfected (CTR) or infected cells at 6 d.p.i., original magnification 40X; lower panel, results of IFA assays performed using a mouse
mAD recognizing the late gp116 glycoprotein of both virus species. The results shown refer to 6 d.p.i.; original magnification 40X. Size bar = 100 pm.

and miR-340 at 3 d.p.i., and a down-regulation of miR-23 at late
time-points p.. (6 d.p.i.). Other effects were specific for each
virus species. Namely, HHV-6A specifically induced an early up-
regulation of miR-590 (1 d.p.i.), miR-15a and miR-21 (3 d.p.i.),
a sustained up-regulation of miR-29b, miR-101 (3 and 6 d.p.i.),
miR-301a and miR-548e (1 and 6 d.p.i.) and a late up-regulation
of miR-340 and miR-381 (6 d.p.i.) By contrast, HHV-6B infection
specifically up-modulated the expression of miR-301b (2 and 3
d.p.i.) and miR-548e (1 and 3 d.p.i.), whereas it down-regulated
miR-590 (2 and 3 d.p.i.) and miR-15a (6 d.p.i.).

Since microarray assays did not include important miRNAs
known for their role in NK cell development and function, we
analyzed by individual assays the following miRNAs: miR10,
miR16, miR27, miR146, miR150, miR155, miR181, miR223,
miR378, chosen as they have already been reported to be
associated with maturation and activation of NK cells (Liu et al.,
2012; Beaulieu et al., 2013; Sullivan et al., 2013).

The results showed that four additional miRNAs were altered
by HHV-6A and 6B infection (Figure 3), as both viruses,
although to a different extent, induced a significant decrease
(up to 12-fold compared to controls; p < 0.001) of miR-155

and miR-181, which are respectively involved in cytotoxicity and
maturation of NK cells, and a concomitant significant increase
(up to 14-fold; p < 0.001) in the expression of miR-146 and miR-
223, which are associated to NK cell effector functions, including
IFNy and TNFa production.

Transcription Factors Modulation by

HHV-6A/6B Infection

We analyzed the impact of HHV-6A and -6B infection on the
expression of human transcription factors, with the simultaneous
analysis of 83 different transcription factors by microarray.

The results showed that HHV-6 infection strongly modulates
the expression of transcription factors (Figure 4). In fact, more
than 30 transcription factors were significantly up or down-
modulated compared to controls, at different time-points p.i
(pc < 0.01). In particular, the remodulation of transcription
factors was evident at late time-points p.i., whereas at early
time-points p.i. viral infection had lower impact, with clear
differences between the two species. In fact, while HHV-6A
was essentially down-modulating a few transcription factors
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FIGURE 2 | HHV-6A/6B impact on the expression of inflammation and autoimmunity associated miRNAs in NK-92 cells (most affected miRNAs). NK-92 cells were
uninfected (control) or infected with HHV-6A or 6B cell-free inocula, then analyzed at 1, 2, 3, and 6 d.p.i. for miRNA expression by a microarray detecting 84
miRNAs. Results represent the fold-changes compared to control values, and are expressed as mean values + SD (duplicate samples from three independent
experiments). Statistically significant alterations, after Bonferroni correction, are marked with asterisks (pc < 0.01).

at 1 d.p.i. (DR1, HNF4A, POU2AF1, PPARy), HHV-6B had
an essentially up-regulating effect, increasing the expression of
FOXA2, FOXG1, GATA2, HNF1A, and decreasing only the
expression of MYODI1. By contrast, at 6 d.p.i. both HHV-
6A and HHV-6B infections resulted in the up-modulation of
several transcription factors, perhaps related to the evident
CPE and cell lysis induced by viruses in the infected NK
cells.

Both viruses induced the up-regulation of ATF3, CEBPA,
CEBPB, JUN and FOXA2 factors, and the down-modulation of
PPARYy factor. However, other factors were modulated by only
one virus. For example, EGR1 and FOS were up-regulated only
by HHV-6A (at 2, 3, 6 d.p.i.), which also specifically induced
the decrease of POU2AF1 expression (at 1, 2 d.p.i.) and NFYB
(at 2, 3, 6 d.p.i.). Instead, HHV-6B induced an increase in
FOXO1 (2, 3 and 6 d.p.i.) and CREB1 (6 d.p.i.) expression
and a down-regulation of ESRI at 3 d.p.i. Other transcription
factors displayed a biphasic modulation, as they were differently
regulated by viruses at early and late time-points post-infection:
the GATA family, HNF1A and HNF4A.

DISCUSSION

In their continuous interaction with the host immune system,
herpesviruses have developed a large array of strategies to escape
the host defense mechanisms. In particular, although different

for many biological and pathological aspects, both HHV-6A
and 6B display a strong tropism toward lymphocytes, causing
important modifications and cytopathic effects in infected cells.
Both virus species infect preferentially CD4+ T cells, and
HHV-6A productively infects also different types of cytotoxic
effectors, including CD8+ T cells, y8T cells, and NK cells (Lusso
et al, 1993; Caselli and Di Luca, 2007). By contrast, HHV-
6B tropism seems to be more restricted compared to HHV-
6A, infecting poorly or at all cytotoxic effector cells (Lusso
et al, 1991), but it was recently shown to down-modulate
the activating NK cell ligands in SupT1 T cells, impairing the
recognition of virus-infected cells by NK cells (Schmiedel et al.,
2016).

Although the importance of the interplay between immune
cells and HHV-6A/6B has been recognized as a key factor in
viral immune evasion strategies and in the development of
associated pathologies, few mechanisms have been elucidated.
Our study shows for the first time that HHV-6A and HHV-6B
productively infect NK cells and induce evident modifications in
the expression of two sets of intracellular mediators of effector
functions: miRNAs and transcription factors. In particular,
microarray data showed that HHV-6A and 6B manipulate the
expression of cellular miRNAs in NK cells, inducing both
common and species-specific effects.

The results show that the two viruses may induce a substantial
alteration in NK cell functions, as most of the modulated
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miRNAs are involved in important immune functions. In
fact, both HHV-6A and 6B down-modulate miR-let-7, which
is highly expressed in NK cells, CD4+ and CD8+ T cells.
Interestingly, this miRNA was reported to be down-modulated
also by murine Cytomegalovirus (Beaulieu et al,, 2013) and
HIV-1 infection (Swaminathan et al., 2012), where it was
associated with an increase of anti-inflammatory IL-10, thus
providing viruses with an important immune escape mechanism.
Similarly, decrease in miR-340 expression might protect viruses
from the immune response, as miR-340 directly targets the
Th2 effector proinflammatory cytokine IL-4 (Podshivalova and
Salomon, 2013; Kim et al., 2016). Studies have in fact reported
that IL-4 can enhance viral virulence in diverse models,
including HSV-1 eye disease, possibly by suppressing cytotoxic
lymphocyte response (Ghiasi et al., 1999; Jackson et al., 2001;
Kerr et al, 2004). On the contrary, the increase of miR-301a
(up-regulated by both viruses) has been reported to block the
IRFI innate immune response against Japanese encephalitis virus
and might therefore favor HHV-6 pathogenesis by inhibiting
IFNB production (Hazra et al., 2017). Interestingly, miR-301
was also up-regulated in T cells in the central nervous system

of animals with experimental autoimmune encephalomyelitis
(Mycko et al, 2012), an animal model for the process of
autoimmune demyelination occurring during multiple sclerosis,
a disease with a possible association with HHV-6 infection
(Leibovitch and Jacobson, 2014). The up-regulated miR-101
and miR-381 are involved in the polarization and activation
of the cells of the innate immune compartment, regulating
the inflammatory response (Zhu et al., 2010; Essandoh et al,
2016; Wen et al.,, 2016); the increased miR-548 may represent
a mechanism facilitating viral pathogenesis as it negatively
correlates with IFNyR1 levels (Xing et al, 2014). miR-21
and miR-590, up-regulated by HHV-6A, are involved in
differentiation and activation of T cells, particularly during
autoimmunity (Sousa et al, 2017), with miR-590 also down-
regulating critical genes of signaling pathways similar in
cancer and inflammation (Sheikholeslami et al., 2017). miR-
29 and miR-15, both increased by HHV-6A infection, have
a specific role in regulating the cytotoxic activity of NK
cells, inhibiting the production of IFNy by directly targeting
the 3’ UTR of its mRNA (Ma et al, 2011; Leong et al,
2014).
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Transcription
Factors 1d.p.i. 2 d.p.i. 3 d.p.i. 6 d.p.i.
HHV-6A [ HHV-6B | HHV-6A | HHV-6B | HHV-6A | HHV-6B | HHV-6A | HHV-6B
AR 1,38 1,02 1,35 1,34 2,84 147 6,06 192
ARNT 1,09 1,20 1,26 1,13 1,80 1,07 1,09 1,18
ATF1 -1,12 -1,08 -1,08 1,94 -1,63 1,19 2,35 2,03
ATF2 1,45 1,3 1,24 2,03 1,25 1,07 293 1,48
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FIGURE 4 | Modulation induced by HHV-6A and 6B infection on human transcription factors mRNAs in NK-92 cells. NK-92 cells were uninfected (control) or
infected with HHV-6A or 6B cell-free inocula, then analyzed at 1, 2, 3, and 6 d.p.i. for mRNA expression by a microarray detecting 83 transcription factors. Results
are expressed as fold-change compared to control values, and represent the mean value of duplicate samples from three independent experiments. Statistically
significant differences after Bonferroni correction are marked with asterisks (o < 0.01) and highlighted by colors (yellow > 4-fold up-regulations; blue > 4-fold
down-regulations). Exact p¢ values of all significant parameters varied from 0.005 to 0.01.
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Interestingly, HHV-6B, but not HHV-6A, infection down-
modulated miR-590 and miR-15, suggesting that the two
species might impact differently on NK cell functions. Notably,
however, both species significantly decreased miR-155, important
in the effector functions of NK cells as it stimulates IFNy
production in activated NK cells (Trotta et al., 2012), and
miR-181, essential for the correct maturation of NK cells
(Cichocki et al., 2011). Both viruses induced an increase of
miR-146, which negatively regulates NK activity by inhibiting
cytotoxicity, IFNy and TNFa production (Xu et al., 2016), and
of miR-223, which inhibits the production of granzyme B by
murine NK cells (Fehniger et al, 2010; Leong et al, 2014).
Intriguingly, miR-223 has been associated to the pathogenesis
of autoimmune thyroiditis, another disease which has been
correlated to HHV-6 infection (Caselli et al., 2012). Interestingly,
the modifications of miRNA expression induced by HHV-6A
and 6B infections in NK cells were not superimposable to
those observed in T cells (Caselli et al.,, 2017), demonstrating
that, as well as species-specific, the effects induced by the two
viruses are also cell type-specific, as they impact differently
on the expression of miRNAs in different immune cell
types.

Our analyses showed also that HHV-6A and 6B modulate
the expression of several transcription factors in infected NK
cells, with effects shared by both viruses, or specifically induced
by only one of them, underlining again the different impact
of the two viruses on NK cells. In fact, both viruses induced
the up-regulation of ATF3, CEBPA, JUN and FOXA2, and
down-regulation of PPARy factor. Whereas HHV-6A induced
an increase in EGR1 and FOS expression and a decrease of
POU2AF1 expression, HHV-6B induced an increase in FOXO1
and a down-regulation of ESR1 expression. Although many of
the modulated factors are not yet associated to specific functions
in NK cells biology, some of them have already been described
to have a role in this context, or in closely related immune
aspects.

Interestingly, ATF3, upregulated by both viruses, was reported
to regulate negatively NK cell functions in MCMYV infected
mice, by modulating IFNy expression (Rosenberger et al,
2008). On the other hand, although not yet studied in
NK cells, several evidences currently associate PPARy to Th
lymphocyte differentiation, B lymphocyte effector functions
and cytokine expression (da Rocha Junior et al, 2013).
POU2AF1, down-modulated by HHV-6A, was recently reported
to induce upregulation of host defense genes, including IL-
6, in airway epithelium (Zhou et al, 2016). FOXO1l and
ESRI, respectively increased and decreased by HHV-6B, are
important regulators of the immune response, being FOXO1
a negative regulator of NK cell maturation and functions
(Deng et al, 2015), whereas ESR1 has been associated to
regulation of inflammatory pathways of innate immune cells
(Kovats, 2015). Other factors, including JUN, FOS, CEBPA, are
involved in several biological processes as regulators of cell cycle
progression, hematopoietic cell differentiation and apoptosis
(Foletta et al., 1998; Wisdom et al., 1999; Ponti et al., 2002;

Healy et al., 2013), and might be studied in detail in the NK cell
context.

Overall, our data show for the first time that infection
by HHV-6A and 6B profoundly impacts the intracellular
environment of infected NK cells, likely inducing biological
effects helping the viruses to escape the innate immune
response. Although the two different HHV-6 species induce
many common effects, our data also show species-specific
effects on miRNAs and transcription factors expression. The
differences might possibly result in a different biological impact
of the two viruses, potentially associated to specific pathological
conditions.

CONCLUSION

HHV-6A and 6B induce significant alterations on the expression
of several miRNAs and transcription factors in infected NK
cells. These alterations might lead to important modifications in
NK cell ability to control HHV-6 infections, enabling immune
evasion and facilitating viral replication cycle, and impacting on
NK cell involvement in inflammation and autoimmune reactions.

Functional studies should be conducted to investigate the
role of the factors altered by HHV-6 infection, and to evaluate
their possible implication in pathological alterations and disease
progression.
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