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The soil microbial communities play an important role in plant health, however, the
relationship between the below-ground microbiome and above-ground plant health
remains unclear. To reveal such a relationship, we analyzed soil microbial communities
through sequencing of 16S rRNA gene amplicons from 15 different tobacco fields
with different levels of wilt disease in the central south part of China. We found that
plant health was related to the soil microbial diversity as plants may benefit from the
diverse microbial communities. Also, those 15 fields were grouped into ‘healthy’ and
‘infected’ samples based upon soil microbial community composition analyses such
as unweighted paired-group method with arithmetic means (UPGMA) and principle
component analysis, and furthermore, molecular ecological network analysis indicated
that some potential plant-beneficial microbial groups, e.g., Bacillus and Actinobacteria
could act as network key taxa, thus reducing the chance of plant soil-borne pathogen
invasion. In addition, we propose that a more complex soil ecology network may
help suppress tobacco wilt, which was also consistent with highly diversity and
composition with plant-beneficial microbial groups. This study provides new insights
into our understanding the relationship between the soil microbiome and plant health.

Keywords: tobacco wilt disease, plant health, soil microbial community, microbial community composition,
molecular ecology networks

INTRODUCTION

Soil borne pathogens attack crops and causing huge yield losses. Bacterial wilt disease, caused
by Ralstonia, can infect Solanaceae crops (e.g., tobacco, tomato, egg plants, etc.) with large scale
crop damage world wide, and many efforts have been made to control this disease (Janvier et al.,
2007). A number of factors have an effect on soil borne plant pathogen infections including
the soil microbiome (Pieterse and Dicke, 2007; Delgado-Baquerizo et al., 2016). The importance
of soil microbes in controlling of plant disease is well recognized and soil microbiome links
to plant disease in many ways: stimulating production of plant growth hormones, competing
with pathogens for nutrients, production of compounds (e.g., antibiotics) that inhibit pathogens
or induce plant resistance to pathogens (Berendsen et al., 2012; Mendes et al., 2013). Because
controlling plant pathogens by microbes is a sustainable and chemical-free approach, disease-
suppressive soils with beneficial microbes have been developed for biocontrol of plant diseases
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(Weller et al., 2002; Penton et al., 2014; Cha et al., 2016). The
incidence or severity of disease is often lower in suppressive soils
in comparison with that in surrounding soils (Cook and Baker,
1983).

Concerns about the impact of the soil microbiome on
plant health has been examined in several studies (Sanguin
et al., 2009; Qiu et al., 2012; Penton et al., 2014; Santhanam
et al., 2015; Cha et al., 2016; Latz et al., 2016; Niu et al.,
2016, 2017; Wang et al., 2017). Soil microbial community
diversity, composition, function, and ecological relationship are
all associated with plant soil borne disease outbreaks. Using
a high-through put sequencing approach, Wang et al. (2017)
found the microbial community was different between healthy
and bacterial wilt-infected fields. Niu et al. (2016) also found
that cropping regimes affected plant disease outbreaks by
changing the soil microbial communities. Addition of organic
fertilizers could inhibits plant diseases through alteration of soil
microbial composition, diversity, and activity (Hunter et al.,
2006). However, most studies have focused on the diversity and
composition of the soil microbiome but ignored the microbial
interactions.

Microbial interactions are a vital part of the soil microbiome
(Zhang et al., 2014) and the interactions among different
microbial groups are important for determining the ecosystem
functioning/stability (Zhou et al., 2011), thus maybe a more
integrated, complex network (many, stable interactions) is
more difficult for a pathogen or other intruder to enter.
Therefore, we hypothesized that complex network played
some role in suppression of tobacco bacterial wilt disease.
Many network approaches have been developed to reveal
the interactions among microbial groups, e.g., equation-based
network (Yeung et al., 2002), Bayesian network (Gerstung
et al., 2009), relevance network (Horvath and Dong, 2008),
CoNet network (Detti et al., 2011; Soffer et al., 2015) and
random matrix theory (RMT)-based network (Deng et al.,
2012). The threshold selection in the network construction is
important, because the choice of thresholds have important
effects on which OTUs are selected (Poudel et al., 2016). A RMT-
based network can automatically identify the threshold for
network construction (Zhou et al., 2010) using 16S rRNA gene
sequencing data creating a molecular ecology network that is
objective rather than subjective (Zhou et al., 2011; Deng et al.,
2012).

The aim of the present study is to evaluate the relationship
between soil microbiome and plant health and to reveal
which microbes may play a role in inhibiting bacterial
wilt disease. To reveal this relationship, we sampled soil
samples in 15 tobacco farmlands (8–10 samples in each
farmland) that were located in three different regions in
central south of China. We investigated the soil microbial
community using 16S rRNA gene sequencing, constructed
molecular ecological networks based on random matrix
theory, analyzed network properties and inferred the key
microorganisms in these networks. As a result, the present
study offers an integrate insight into the relationship
between soil microbial community and tobacco wilt
disease.

MATERIALS AND METHODS

Soil Samples and Wilt Infection Rate
Soil samples were collected from 15 different tobacco fields
located in different regions of Hunan province. Detailed location
and other information are list in Supplementary Table S1. Eight to
10 samples were taken from each filed. Soil samples were collected
using checkerboard sampling method as described in Niu et al.
(2017). To be specific, each tobacco field was divided into 10
areas and upper layer soils (0–20 cm) at the central point of each
area were sampled as one sample. The samples were collected on
28th July, 2015. Soil samples were stored at −80◦C before DNA
extraction.

The wilt infection rate was calculated by the percentage of
infected plants in each field. That is,

Infection rate = Ni/Nt × 100%,

where Ni and Nt represents the number infected plants and
the total number of plants in each field (about 250 plants),
respectively.

DNA Extraction, PCR Amplification,
Sequencing and Data Processing
DNA extraction, amplification of 16S rRNA amplicons and
sequencing were performed as described in our previous studies
(Niu et al., 2016; Niu et al., 2017). Briefly, DNA were extracted
using a MO BIO PowerSoil DNA Isolation Kit (MO BIO, San
Diego) following the manufactures’ manual. PCR amplification
of 16S rRNA V4 region was performed on a Biosystems 2720
Thermal Cycler (ABI Inc., United States) with the primer
pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) primers together with
Illumina adapter sequences and barcodes. The PCR reactions
consisted of 0.2 µl primers (10 nM each), 12.5 µl Taq Master Mix
(Vazyme, Piscataway, NJ, United States), 1.0 µl DNA template
and ddH2O to a final volume of 25 µl. PCR amplifications
were performed as follows: desaturated at 95◦C for 5 min;
followed by 30 cycles of 30 s at 95◦C, 30 s at 55/59/62◦C and
30 s at 72◦C and a final extension step at 72◦C for 10 min.
PCR products were recovered using gel extraction kit (OMEGA
Bio-Tek Inc., Doraville, GA, United States) after subjecting the
PCR mixture to agarose gel. Quality and quantity of recovered
products were measured on Nanodrop Spectrophotometer (ND-
1000 Spectrophotometer, Nanodrop products, Wilmington, DE,
United States). Sequencing libraries were constructed using
200 ng of each purified PCR product and sequencing was
performed on Illumina MiSeq machine (Illumina, San Diego, CA,
United States) using the MiSeq 500 cycles kits. The Raw data
were in fastq format. The 16S rRNA gene sequences have been
submitted to NCBI SRA database following the accession number
of KR831285 – KR 855564.

Processing of sequencing data were performed on an in-
house galaxy pipeline developed in the lab of Dr. Zhou1.
Firstly, reads were assigned to different samples according

1http://www.ou.edu/content/ieg/tools/data-analysis-pipeline.html
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to their barcode sequences and primer sequences were then
removed. Subsequently, low quality reads (QC threshold < 20)
were removed using Btrim (Kong, 2014). Then, the forward
and reverse reads with at least 10 bp overlap and less
than 5% mismatches were merged using Flash (Magoc and
Salzberg, 2011), ambiguous bases (N) were removed from the
merged sequences. Finally, reads with 97% similarity (Clustering
threshold) were assigned to the same OTU, chimeras and
singletons were removed and OTU table was generated using
UPARSE (Edgar, 2013). To eliminate the influences caused by
different sequencing depth, samples were normalized to 19,
000 for further analysis. All downstream analyses including
microbial community analyses and molecular ecology network
construction were carried out using the normalized OTU table.
Taxonomic assignment was carried out by blasting the sequences
to RDP (Ribosomal Database Project) database with a 50%
minimal confidence.

Random Matrix Theory Based Molecular
Ecology Networks
Molecular ecology networks (MENs) were constructed based
on OTU abundance in each tobacco field, yielding a total of
15 networks. Only OTUs presented in 9 out of 10 (For site
D, 8 out of 9 and for J, 7 out of 8) replicate samples were
used for network construction. Because the criteria for selecting
OTUs in network construction was different for site D and J,
further analyses were carried out on the other 13 networks,
and the results were similar to that obtained from 15 networks
(data not shown). Networks were constructed as follows: paired
valid missing values (a relative abundance of 0) was replaced
by 0.01, logarithm normalization of relative abundance was
carried out to reduce the microbial community compositional
bias (Faust and Raes, 2012), and similarity matrix was constructed
based on Pearson Correlation Coefficient. Random matrix theory
was used to choose the similarity threshold (St) automatically
(Zhou et al., 2010, 2011; Deng et al., 2012). For network
analysis, we characterized the global network properties and
used greedy modularity optimization for module separation. All
network analyses were performed on Institute for Environmental
Genomics, The University of Oklahoma website2. Networks were
visualized using Gephi software. Modules in each network were
randomly colored, and modules with less than five nodes were
colored gray.

Statistical Analyses
All calculations and statistical analyses were performed on R
statistical platform (v 3.4.0). Community analyses were carried
out based on OTU relative abundance in each tobacco planting
field. Diversity indexes including Shannon diversity index,
evenness and Chao1 index were calculated using the ‘vegan’
package. Principle component analysis (PCA) was carried out
using the ‘vegan’ package. Analysis of similarity (ANOSIM)
and unweighted paired-group method with arithmetic means
(UPGMA) based on Bray–Curtis distance matrix. To investigate
any differences in microbial community in sites with different

2http://129.15.40.240/MENA/

wilt infection rate, PCA, UPGMA, and ANOSIM were performed
using the average relative abundance of 8–10 replicates in
each site. Partial Least Squares Path Modeling (PLSPM) was
performed using ‘amap,’ ‘shape,’ ‘diagram,’ and ‘plspm’ package.
Pearson correlation analysis was used to calculate the correlation
between two parameters. Significance level of difference between
different groups was determined by one-way ANOVA (analysis
of variance) followed by the Tukey’s test. For unbalanced design,
one-way ANOVA followed by Tukey’s test was carried out using
the General Linear Model function in Minitab 16.0 (Minitab inc.).
A p-value of less than 0.05 was considered as significant.

RESULTS

Soil Properties and Wilting Symptom
The bacterial wilt infection rate ranged from 1.19 to 80.45% in
all 15 sites (Supplementary Table S1). Six sites had an infection
rate of less than 25%, five sites had infection rates between 25
and 50% and four sites had an infection rate more than 50%.
Nine sites were the continual cropping of tobacco (Continues),
while six sites were the rotation cropping of tobacco and other
crops including lily, turnip and maize (Rotation). There is no
statistically significant difference (p > 0.05, ANOVA following
Tukey’s test) of infection rate among sample locations, nor
any significant difference (p > 0.05, student T-test) between
cultivation regimes (Rotation and Continual cropping).

Soil properties including pH, water content, Potassium,
Calcium and Ion contents were shown in Supplementary
Table S2. Among them, pH (Pearson = −0.606, p = 0.017) and
Calcium (Pearson = −0.591, p = 0.020) showed significantly
negative correlation with wilt infection rate (Supplementary
Figure S1), and the remaining three parameters didn’t show
significant correlation with plant wilt symptom.

Microbial Community
A total of 8,366,296 reads were obtained from 147 samples, and
21,429 OTUs were identified from the reads. The rarefaction
curves (Supplementary Figure S2) indicated that the sequencing
depths were sufficient for downstream analysis. Fifteen sites had
significantly different OTU numbers and Chao1 indexes. Pearson
correlation showed the mean observed OTU number and Chao1
index showed significant (p < 0.05) negative correlation with
bacterial wilt infection rate (Figure 1A). In addition, all sites had
similar Simpson diversity index (Figure 1B, from 0.975 to 0.995)
and Pielou evenness (0.65–0.79). The Shannon diversity index
differed among sites, and weakly correlated with wilt infection
rate (Pearson index=−0.485, p= 0.067).

Principle component analysis plot of all 147 samples
(Figure 2A) showed that samples from individual sites grouped
well with each other. The analysis of similarity (ANOSIM)
(R = 0.814, p = 0.001) indicated that there were significant
differences between groups (sites). To investigate the relationship
between soil bacterial community composition and tobacco
wilt disease, UPGMA tree (Figure 2B) and PCA (Figure 2C)
were performed based on the average OTU relative abundance.
UPGMA tree showed that samples with similar wilt infection
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FIGURE 1 | Microbial community diversity in 15 sites with different bacterial wilt infection rate. (A) Observed OTU and Chao1; (B) Shannon, Pielou and Simpson
indexes. Linear regressions were present for indexes that significantly (p-value < 0.05) correlated with infection rate (Morbidity). Pearson correlation indexes and
p-values are shown in Supplementary Table S5.

rates often clustered together. The two branches differed
obviously in their wilt infection rate. The left branch was
composed of five sites (I, J, C, L, M, and N) whose wilt infect rate
was lower than 25% and we referred to these sites as ‘healthy.’
The ‘infected’ sites (D, E, A, B, K, G, O, F, and H) are on the right
branch. In addition, the ‘infected’ branch was further separated
into the ‘severely infected’ [>50%, with site D (48.67%) as the
exception] and the ‘moderately infected’ (25–50%, with the site
O (80.48%) as the exception) branch. PCA plot of the bacterial
communities in 15 sites showed similar results as UPGMA tree,
‘healthy’ and ‘infected’ groups separated along the first PCA axis.
The ‘healthy’ sites are in the green circle, while the ‘infected’
sites are in the red circle. When all samples were classified into
two groups (two branches on the UPMGA tree) according to
the wilt infection rate, similarity analysis (ANOSIM) showed that
the distances between groups was significantly larger than that
within the groups (R= 0.7771 and p= 0.001), suggesting that the
two groups differed significantly in their microbial community
composition.

All OTUs were classified into 931 genera and 39 phyla. The
most abundant phylum in soils was the Proteobacteria which
account for 33.49% of the bacterial community (Figure 3). Two
phyla, Actinobacteria and candidate division WPS-2 significantly
positive correlation with wilt infection rate (Supplementary
Table S3). Ten phyla showed significantly negative correlation
with wilt infection rate, which included Acidobacteria
(Pearson = −0.629, p = 0.012), BRC1 (Pearson = −0.762,
p = 0.001), Crenarchaeota (Pearson = −0.573, p = 0.026,
Euryarchaeota (Pearson = −0.612, p = 0.015) Hydrogene-dentes
(Pearson = −0.559, p = 0.030), Ignavibacteriae (Pearson
= −0.607, p = 0.016), Latescibacteria (Pearson = −0.651,
p = 0.009), Pacearchaeota (Pearson = −0.737, p = 0.002),
Synergistetes (Pearson=−0.677, p= 0.006), and Woesearchaeota
(Pearson=−0.546, p= 0.035). The most abundant genus in soils
was Acidobacteria_GP16 (5.31%), followed by Nitrososphaera
(4.97%), Sphingomonas (3.66%), and Gemmatimonas (3.06%),
and the genus Acidobacteria_GP16 showed significantly
negative correlation with tobacco wilt infection rate
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FIGURE 2 | Principle component analysis (PCA) and Unweighted paired group method with arithmetic mean (UPGMA) tree of microbial community composition.
(A) PCA plot of all 147 samples grouped by sample sites; (B) UPGMA tree constructed from ‘Bray–Curtis’ distances between microbial community in each site, sites
were clustered into two groups based on the community composition and as the two groups differed in the wilt infection rate, they were referred to ‘healthy’ (which
had the infection rate lower than 25%) and ‘infected’ group (which had the infection rate higher than 25%), respectively. The numbers associated with the branches
refer to bootstrap values (confidence limits) resulting from 100 replicate resamplings; (C) PCA plot of microbial community in sample sites. In (B,C), average relative
abundance in each site was used for analysis.

FIGURE 3 | Average relative abundance of bacterial phylum in soil samples. Results are means of 10 replicates. All sites can be grouped into two groups: ‘Healthy’
that has the infection rate of less than 25% and ‘Infected’ that has the infection rate more than 25%.

(Pearson = −0.641, p = 0.010). As we focused on the wilt
disease caused by Ralstonia, we investigated the relationship
between relative abundance of the genus Ralstonia and the
wilt disease. The genus Ralstonia had relative low abundance
in soils (0.002–0.21%) and showed significantly positive
correlation with tobacco wilt morbidity (Pearson = 0.518,
p= 0.048).

Molecular Ecology Networks
To unravel the relationship between soil microbe–microbe
interactions and tobacco bacterial wilt disease, we constructed
a co-occurrence network for each field (Figure 4). The
automatically generated similarity threshold (st) of the networks
ranged from 0.89 to 0.94 (Supplementary Table S4) and power-
low R square ranged from 0.82 to 0.93 (Supplementary Table S4).
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FIGURE 4 | Random matrix theory (RMT)-based molecular ecology networks in soils during Tobacco cultivation. Networks are present following the order of
Tobacco bacterial wilt infection rate (from low to high). In the networks, nodes represent OTU and links represent significant correlation, modules are randomly
colored and modules with less than five nodes are colored gray. Sites with relative low infection rate (<25%, including I, L, J, M, N, and C) were referred to ‘healthy’
group, sites with relative high infection rate (>50%, including H, A, B, E) were referred to ‘severe’ group and others that has the infection rate between 25 and 50%
(K, F, G, O and D) were referred to ‘moderate’ group.

The st were chosen using the RMT-based theory to obtain
an adjacency matrix, which represents the strength of the
connection between each pair of OTUs. Similar St indicated
that the minimum strength of the connection in all networks
was similar. The R square values were near to 1 indicating
that the goodness of fit was proper. The network properties
differed obviously among sites (Supplementary Table S4), for
example, the nodes ranged from 398 to 1436, the links ranged
from 1139 to 12580, the average degree ranged from 2.35 to
17.90 and the modules ranged from 30 to 208. The sites that
with healthy plants tended to have more complex networks
based on the average degree and number of links that showed
significant negative correlation with wilt incidence. The network
complexity can be described by the number of links and average
connectivity (average K) with more links and higher average
K indicative of a more complex network (Deng et al., 2012).
Furthermore, modularity is an important concept in networks
and microbial populations in the same module have similar
ecological niches (Deng et al., 2012). Pearson correlation analysis
indicated that average K (Pearson=−0.656, p= 0.008), number
of links (Pearson = −0.684, p = 0.005) and number of modules
(Pearson = −0.543, p = 0.037) showed a strong negative
correlation with Tobacco bacterial wilt infection (Table 1),
meaning sites with more complex and more modular networks
have lower wilt infection rate.

Network Key Taxa
To reveal the key microbes in the networks, we looked into
the nodes with max degree, max betweenness, max stress
centrality, and max eigenvector centrality (Table 2). Nodes
with max degree are the nodes that have the most interactions

with other nodes (Chaffron et al., 2010; Deng et al., 2012).
Betweenness and stress centrality are similar to each other,
nodes with highest betweenness (or stress centrality) can serve
as brokers (Guimera et al., 2007; Deng et al., 2012). The highest
eigenvector centrality means the nodes have the highest degree
when they connected to other central nodes (Bonacich, 1987).
These nodes are important in maintaining the microbe-microbe
interactions in the networks. Table 2 shows the key OTUs and
their taxa in all networks. Members in phylum Proteobacteria
and Acidobacteria are the main key taxa ‘healthy’ networks (e.g.,
members in phylum Acidobacteria acted as key taxa in I, J,
and C, while members in phylum Proteobacteria in I, M, N,
and C). Members in phylum Actinobacteria (e.g., genus Gaiella)
and Firmicutes (e.g., genus Bacillus) are also important taxa in
networks from fields with healthy plants. Key taxa varied among
sites that showed moderate wilt infection, and included members
in phylum Gemmatimonadetes (e.g., genus Gemmatimonas),
Firmicutes (e.g., genus Lysinibacillus), Acidobacteria (e.g., genus
Gp16), Nitrospirae (e.g., genus Nitrospira) and else. In soils with
plants severely infected by bacterial wilt, the network maintaining
taxa also varied.

DISCUSSION

Multiple soil factors are responsible for bacterial wilt infection
as the soil microbiome plays an important part of tobacco
wilt severity. Because plants often lack genetic resistance
to most necrotrophic pathogens, soil antagonistic microbes
would protect the plants against pathogens (Cha et al., 2016).
Pathogens of the genus Ralstonia are well-known for their
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TABLE 1 | Pearson correlation between wilt infection rate and microbial community which are related to microbial community diversity, composition and network
properties.

Diversity Composition Network

Diversity Evenness Observed OTU Chao1 PC1 PC2 Nodes Links Avg.K Modules

Wilt Pearson −0.485 −0.402 −0.751 −0.747 −0.639 −0.252 −0.317 −0.684 −0.656 −0.543

p-value 0.067 0.137 0.001 0.001 0.01 0.365 0.250 0.005 0.008 0.037

Avg.K, average degree.

TABLE 2 | Important microbes in networks.

Nodes with max degree Nodes with max
betweenness

Nodes with max stress
centrality

Nodes with max eigenvector
centrality

I OTU_24040; Acidobacteria,
Gp7

OTU_7856, Acidobacteria, Gp6 OTU_5231, Proteobacteria,
Thiohalobacter

OTU_20616, Acidobacteria,
Gp6

L OTU_747, Chloroflexi,
Thermomarinilinea

OTU_359, Acidobacteria, Gp25 OTU_747, Chloroflexi,
Thermomarinilinea

OTU_340, Acidobacteria, Gp6

J OTU_214, Acidobacteria, Gp4 OTU_909, Firmicutes, Bacillus OTU_909, Firmicutes,
Bacillus

OTU_214, Acidobacteria, Gp4

M OTU_21670, Proteobacteria,
Variovorax

OTU_113, Actinobacteria,
Gaiella

OTU_113, Actinobacteria,
Gaiella

OTU_478, Unclassified,

N OTU_193, Proteobacteria,
Hyphomicrobium

OTU_193 Proteobacteria,
Hyphomicrobium

OTU_193, Proteobacteria,
Hyphomicrobium

OTU_749, Proteobacteria,
Azoarcus

C OTU_24084, Proteobacteria,
Curvibacter

OTU_720, Proteobacteria,
Moraxellaceae(F)

OTU_720, Proteobacteria,
Moraxellaceae(F)

OTU_214, Acidobacteria, Gp4

K OTU_18948, Planctomycetes,
Singulisphaera

OTU_18948, Planctomycetes,
Singulisphaera

OTU_17, Firmicutes,
Unclassified

OTU_21, Planctomycetes,
Thermogutta

F OTU_12483,
Gemmatimonadetes,

Gemmatimonas

OTU_204,
Gemmatimonadetes,

Gemmatimonas

OTU_204,
Gemmatimonadetes,

Gemmatimonas

OTU_43, Proteobacteria,
Denitratisoma

G OTU_123, Verrucomicrobia,
Spartobacteria_genera_incertae_sedis
OTU_36, Nitrospirae, Nitrospira

OTU_13176, Acidobacteria,
Gp16

OTU_13176,
Acidobacteria, Gp16

OTU_36, Nitrospirae, Nitrospira

H OTU_229, Acidobacteria, Gp3 OTU_289, Firmicutes,
Lysinibacillus

OTU_71, Chloroflexi,
Unclassified

OTU_91, Bacteroidetes,
Chitinophaga

D OTU_2693, Proteobacteria,
Ectothiorhodosinus

OTU_1565, Chloroflexi,
Ktedonobacterales(O)

OTU_1565, Chloroflexi,
Ktedonobacterales(O)

OTU_1399, Actinobacteria,
Conexibacter

A OTU_22415, Proteobacteria,
Xanthomonadaceae (F)

OTU_5454 Armatimonadetes,
Armatimonadetes_gp4

OTU_5454,
Armatimonadetes,

Armatimonadetes_gp4

OTU_4756, Chloroflexi,
Ktedonobacter

B OTU_183, Proteobacteria,
Unclassified

OTU_24237, Planctomycetes,
Rubinisphaera

OTU_24237,
Planctomycetes,
Rubinisphaera

OTU_82, Chloroflexi,
Ktedonobacter

E OTU_2035, Acidobacteria, Gp6 OTU_9618, Proteobacteria,
Unclassified

OTU_9618, Proteobacteria,
Unclassified

OTU_6, Verrucomicrobia,
Spartobacteria_genera

_incertae_sedis

O OTU_45 Acidobacteria, Gp6 OTU_1301, Proteobacteria,
Neisseriaceae(F)

OTU_1301, Proteobacteria,
Neisseriaceae (F)

OTU_45, Acidobacteria, Gp6

The classification levels are indicated in the brackets. O, oreder; F, family. If not specified, the taxa levels shown are phylum and genus.

ability to cause wilt symptoms in members of the Solanaceous
family (Hayward, 1991; Chen et al., 2013). In this study,
we focused on the relationship between the soil microbiome
and tobacco Ralstonia wilt infection and found that wilt
infection was closely related to the diversity, composition,
and inferred microbe-microbe interactions of soil microbial
communities.

Tobacco wilt infection was associated with soil microbial
community diversity, as indicated by observed OTU number and

Chao1 index. Bacterial OTUs were more diverse in fields with
healthy plants than in fields with infection. Even though the
correlation between the Shannon index and wilt infection was
not strong, our results showed that the microbial community
diversity had a positive correlation with wilt infection rate. This
is similar to a recent report that the microbial community
diversity was higher in soils with healthy plants than in soils
with plants infected by bacterial wilt (Wang et al., 2017). It has
also been reported that the rhizosphere soil microbial community
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FIGURE 5 | Partial Least Squares Path Modeling (PLSPM). Blue lines represent positive effects and red lines represent negative effect. Numbers on the lines in the
PLSPM model are the ‘total effects’ values. Numbers on the lines out of the PLSPM model are the ‘weight’ contributions. WC, water content; H, Shannon diversity
index; K, average degree.

diversity is positively correlated with plant health (Bulluck and
Ristaino, 2002; Luan et al., 2015). The results suggest that a highly
diverse soil microbiome (greater numbers of microbial species)
would decrease the chances of bacterial wilt outbreak. Many
studies have also found that a diverse microbial community was
often less prone to pathogens invasion than a simpler microbial
community (Case, 1990; Fargione and Tilman, 2005; van Elsas
et al., 2012).

Interestingly, all filed sites clustered into ‘healthy’ and ‘infected
groups, in the UPGMA tree or the first PCA axis and that this
clustering was not related to either the geographic locations
or cultivation regimes. The ‘healthy’ (0–25%) branch of soil
samples was from Huahenger (C), Pailiao (I and J) or Fenghuang
(L, M, and N), and ‘infected’ branch (>25%) was based on
rotations (D and E) or continuous (A and B) cultivation
regimes. These results suggested that soil microbial community
composition could have played a role in preventing tobacco
from wilt pathogens infections. This may be because certain
populations of beneficial soil microbes were enhanced in sites
with low incidence of bacterial wilt. For example, Bulluck
and Ristaino (2002) found that the increase of beneficial soil
microbes significantly reduced the outbreak chance of southern
blight. In this context, soil microbial communities with abundant
biocontrol agents (BCAs) or pathogenic antagonists may be able
to control the incidence of soil borne bacterial diseases. Even
though not all BCAs or pathogenic antagonists are known and
some BCAs or pathogenic antagonistic members could become
plant pathogens under specific circumstances, we can propose
that soils with a similar microbial community structure of the
‘healthy’ branch are likely to suppress the outbreak of tobacco wilt
disease.

To further reveal which soil microbes may be important
for inhibiting wilt disease outbreaks, we attempted to identify
‘inferred’ key microbial groups in molecular ecological networks.
In networks, nodes with max connectivity (degree), max
betweenness, stress centrality and eigenvector centrality play
important roles in maintaining network structure (Olesen et al.,
2007; Zhou et al., 2011; Faust and Raes, 2012). This is because
(i) nodes with max degree have the most edges in the network,
(ii) nodes with max betweenness and stress centrality can serve
as brokers in the network and (iii) nodes with max eigenvector
centrality have the highest connections with other central nodes.
Furthermore, it is also supposed that the taxa of these nodes play
important roles in maintaining ecosystem stability (Olesen et al.,
2007; Lu et al., 2013). In this study, these key taxa were relatively
consistent in fields with healthy plants (branch 1 on the UPGMA
tree), suggesting that these taxa might be important in the
suppression of bacteria wilt disease. In fields with healthy plants,
taxa considered important for maintaining ecosystem stability
were mainly Bacillus in the phylum Firmicutes, several members
in the phylum Actinobacteria and a few other organisms. These
taxa are often considered as plant-beneficial microbes. Members
of the genus Bacillus are well-known as BCAs (Emmert and
Handelsman, 1999; Schisler et al., 2004; Ongena and Jacques,
2008). Due to their ability to secrete antibiotics or antimicrobial
proteins (Ahimou et al., 2000; Moyne et al., 2004), they
showed a wide range of biological effects on plant pathogens
and have been applied to control bacterial diseases of alfalfa
(Handelsman et al., 1990), tobacco (Fravel et al., 1977) and
cucumber (Cao et al., 2011). Many members of Actinobacteria
have also shown the ability to control plant bacterial diseases
(Gomes et al., 2000; Doumbou et al., 2001; Kinkel et al., 2012;
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Palaniyandi et al., 2013). Actinobacteria are well-known
antagonistic microbes of many pathogens, as they can (i)
produce a diverse range of antibiotics (Liu et al., 2012),
(ii) secret cell-wall degrading enzymes (Chater et al., 2010),
and/or (iii) induce host (plant) resistance (Conn et al., 2008).
In the wilt disease infected fields (branch 2), key taxa for
maintaining ecosystem stability varied. As sites with higher
wilt infection rate formed simple networks (fewer edges and
lower average degree) with fewer modules, it is possible
that some key bacteria in disease-causing soils inhibited the
formation of complex, modular networks that were characteristic
of suppressive soils. In this context, we proposed that they
could possibly promote the formation of complex, modular
microbial community networks, thus making soils wilt-
suppressive when plant-beneficial taxa played important roles
in maintaining the ecosystem stability. Taking the microbial
community composition and the important taxa together,
the results indicate that when the soil microbial community
composition is similar to that of the ‘healthy’ group with plant-
beneficial microbes, the soil ecosystem may remain stable and
disease-suppressive.

We proposed that complex, modular microbial community
networks might make soils wilt-suppressive, however, since
the soil ecology is very complex, with the flow of energy,
matter, and information not well understood a majority of
the soil microbes still unculturable, most of the microbe–
microbe interactions remain unclear. More research is still
needed to reveal the relationship between below-ground ecology
networks and above-ground plant health. Previous studies have
indicated that networks could be altered by environmental
properties, such as pH (Tylianakis et al., 2007; Barberán
et al., 2012; Shi et al., 2016). This was consistent with
the present study which showed a significant correlation
between soil pH and network complexity (Supplementary
Table S5). We also observed that the bacterial community
diversity showed significant positive correlation with the network
complexity, which is, however, in contrast with the finding in
rhizosphere networks (Shi et al., 2016) whose complexity was
accompanied by decreased bacterial diversity. This might be
because the rhizosphere and the surrounding bulk soils have
very different bacterial communities (Kourtev et al., 2002; Berg
and Smalla, 2009; Shi et al., 2015) and ecological networks
were more complicated in rhizosphere than in surrounding bulk
soils.

The present study showed a range of correlations between
plant wilt infection and soil microbial properties. We conducted
PLSPM analyses (Figure 5) to profile the complex relationship
between soil microbial community properties and plant
health. Soil properties had strong effect on microbial diversity
and weak direct effect on microbial composition, microbial
networks and disease infections, however, soil properties
can also affect plant disease infection indirectly through soil
microbial diversity, composition and network interactions.
Among soil microbial properties, microbe diversity showed the
strongest effects (negatively, −0.4545) on plant disease infection,
followed by microbial community composition (negatively,

−0.3082 and molecular ecology network complexity (negatively,
−0.2972).

In summary, the present study offered an integrate view of
the relationship between soil bacterial community and plant
health. We found that (i) soil microbial diversity had a strong
effect on plant disease level, with diversity and rate of wilt
disease showing an inverse relationship; and (ii) soils with
similar microbial community composition have similar disease
infection rate. When the soil had similar composition with
‘healthy’ group, the soil might tend to be disease-suppressive.
According to the inferred molecular ecology networks, we
proposed that a more complex network might be beneficial
for tobacco wilt suppression. In addition, some potential
plant-beneficial microbial groups could act as network key
taxa, thus reducing the chance of plant soil-borne pathogen
invasion. However, as the soil microbial ecology network are
extremely complex, more work, particularly the experimental
work, is still needed to test the proposal. We concluded
that microbial community in disease-suppressive soils may be
consisted with high diversity, consistent composition with plant-
beneficial microbes as the important component and complex
network.
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