
REVIEW
published: 16 November 2017

doi: 10.3389/fmicb.2017.02183

Frontiers in Microbiology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 2183

Edited by:

Alexandre Morrot,

Universidade Federal do Rio de

Janeiro, Brazil

Reviewed by:

Debora Decote-Ricardo,

Universidade Federal Rural do Rio de

Janeiro, Brazil

Mario M. D’Elios,

University of Florence, Italy

*Correspondence:

Alexis Kaushansky

alexis.kaushansky@cidresearch.org

Specialty section:

This article was submitted to

Microbial Immunology,

a section of the journal

Frontiers in Microbiology

Received: 10 September 2017

Accepted: 24 October 2017

Published: 16 November 2017

Citation:

Zuck M, Austin LS, Danziger SA,

Aitchison JD and Kaushansky A

(2017) The Promise of Systems

Biology Approaches for Revealing

Host Pathogen Interactions in Malaria.

Front. Microbiol. 8:2183.

doi: 10.3389/fmicb.2017.02183

The Promise of Systems Biology
Approaches for Revealing Host
Pathogen Interactions in Malaria

Meghan Zuck 1, Laura S. Austin 1, Samuel A. Danziger 1, 2, John D. Aitchison 1, 2 and

Alexis Kaushansky 1, 3*

1Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States,
2 Institute for Systems Biology, Seattle, WA, United States, 3Department of Global Health, University of Washington, Seattle,

WA, United States

Despite global eradication efforts over the past century, malaria remains a devastating

public health burden, causing almost half a million deaths annually (WHO, 2016). A

detailed understanding of the mechanisms that control malaria infection has been

hindered by technical challenges of studying a complex parasite life cycle in multiple

hosts. While many interventions targeting the parasite have been implemented, the

complex biology of Plasmodium poses a major challenge, and must be addressed

to enable eradication. New approaches for elucidating key host-parasite interactions,

and predicting how the parasite will respond in a variety of biological settings, could

dramatically enhance the efficacy and longevity of intervention strategies. The field of

systems biology has developed methodologies and principles that are well poised to

meet these challenges. In this review, we focus our attention on the Liver Stage of the

Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches

to forge a new era in malaria research. These approaches will reveal insights into

the complex interplay between host and pathogen, and could ultimately lead to novel

intervention strategies that contribute to malaria eradication.
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INTRODUCTION

Parasitic diseases infect over half a billion people worldwide, and are a tremendous public health
burden. Malaria is the most lethal, causing infection and death primarily in young children
in sub Saharan Africa (WHO, 2016). In humans, five Plasmodium species are known to cause
disease, with the greatest burden arising from infection with P. falciparum and P. vivax. Despite
multifaceted control efforts, the adaptive nature of the Plasmodium parasite has confounded
vaccine development (Neafsey et al., 2015; Schats et al., 2015), and has contributed to the emergence
of widespread drug resistance (reviewed in Blasco et al., 2017).

The life cycle of Plasmodium is complex. The parasite cycles between mosquito and mammalian
hosts, with elaborate developmental and differentiation processes within each. Every transition
represents an opportunity to arrest the parasite, and to stop subsequent life cycle progression.
A systematic approach that identifies key components required by the parasite at each stage
of its life cycle could ultimately elucidate fundamental pathogenesis strategies, which will
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aid the development of cohesive intervention approaches. By
contrast, any approach that reduces the biology of the parasite
to a single antigen or drug target leaves open the possibility of
parasite adaptation and, ultimately, intervention failure. Here,
we propose a systems biology approach to interrogate the
Plasmodium parasite that, although not without its challenges,
will result in a global view of the host-parasite interactions during
key transition states in the life cycle. This view could inform
interventions that are not easily circumvented by the parasite and
therefore contribute to malaria eradication.

PLASMODIUM PARASITES HAVE A
COMPLEX LIFE CYCLE THAT ENGAGES
MULTIPLE HOST ENVIRONMENTS

Plasmodium infection of mammals begins with injection of the
sporozoite into the skin of the vertebrate host during the bite
of a female Anopheles mosquito. After migration through the
skin and entrance into a capillary, sporozoites travel through
the blood stream to the liver. The parasite then traverses
through the sinusoidal barrier to gain access to hepatocytes
(Mota et al., 2001; Ishino et al., 2004; Tavares et al., 2013;
Cha et al., 2016; Yang et al., 2017). Once within the liver
parenchyma, sporozoites infect a host hepatocyte within which
they will reside for the next 2–10 days (reviewed in Kaushansky
and Kappe, 2015b; Vaughan and Kappe, 2017). Following liver
stage development, parasites exit the liver, re-enter the blood
stream and infect erythrocytes. During asexual blood stage
infection, parasites undergo cycles of replication, followed by
destruction of the host cell. It is this cycle that causes disease
symptoms.

During the blood stage, a portion of parasites commit
to sexual development (Coleman et al., 2014; Kafsack et al.,
2014; Sinha et al., 2014; Poran et al., 2017) and initiate a
differentiation process that occurs largely in the bone marrow
(Joice et al., 2014). Once female and male forms have nearly
completed maturation, they re-enter the blood stream and are
transmitted to mosquitoes. In the mosquito midgut, fertilization
occurs, generating a motile diploid (ookinete), which then
replicates its DNA and develops into a stationary oocyst.
Sporozoites then form within the midgut oocyst, become motile,
and travel to the salivary glands. Once within the salivary
glands, the parasite is transmitted to the next mammalian
host during a blood meal. Each of these stage transitions is
initiated by, and induces, broad, systematic changes that alter
cellular behaviors (Table 1, Figure 1). Yet, these changes cannot
be fully represented by any single transcript or individual
cellular measurement. Rather, comprehensive changes within
interconnected networks occur on multiple scales. This includes
changes in gene regulatory networks, protein interactions with
other biomolecules, and morphological variation of host and
parasite subcellular structures. Together, these changes drive
stage transitions. The goal must therefore be to establish
a comprehensive picture of the host and parasite effector
molecules and networks that are required to facilitate life cycle
transitions.

TABLE 1 | Stage transitions in the Plasmodium life cycle.

Life cycle stage

transition

System-level

alteration reported

References

Development from midgut

sporozoite to salivary

gland sporozoite

Transcriptome

changes

Matuschewski et al.,

2002; Mikolajczak et al.,

2008

Transmission between

mosquito and mammalian

host

Translational

repression

Zhang et al., 2010;

Gomes-Santos et al.,

2011; Muller et al., 2011;

Lindner et al., 2013;

Silvie et al., 2014; Silva

et al., 2016

Development through

Liver Stage

Transcriptome and

proteome changes

Tarun et al., 2008;

Albuquerque et al., 2009;

Vaughan et al., 2009

Exit from Liver Stage and

Entry into Blood Stage

Transcriptome

changes

Tarun et al., 2008

Differentiation into sexual

forms

Epigenetic and

Transcriptome

changes

Coleman et al., 2014;

Kafsack et al., 2014;

Sinha et al., 2014; Poran

et al., 2017

Transmission from

mammalian to mosquito

host

Translational

repression

Mair et al., 2006;

Guerreiro et al., 2014;

Lasonder et al., 2016

Gametocyte to gamete

transformation

Proteome changes Khan et al., 2005

PLASMODIUM PARASITES
SIGNIFICANTLY ALTER THE BIOLOGY OF
THEIR HOSTS

To illustrate the need to comprehensively evaluate changes
during the Plasmodium life cycle, we will consider one stage of
the complex life cycle of the parasite in detail—the Liver Stage of
infection. Once within the liver sinusoid, the parasite traverses
through phagocytic Kupffer cells, liver-resident macrophages,
and liver endothelial sinusoidal cells, to access hepatocytes, while
avoiding phagocytosis (Mota et al., 2001; Ishino et al., 2004;
Usynin et al., 2007; Tavares et al., 2013; Cha et al., 2016; Yang
et al., 2017). Once in the liver parenchyma, the parasite continues
to traverse through several hepatocytes before selecting a suitable
host for invasion. While the precise properties that make one
hepatocyte more hospitable than another remain unknown,
altered levels of specific hepatocyte receptors dramatically
alter infection rates (Silvie et al., 2003; Ishino et al., 2004;
Rodrigues et al., 2008; Yalaoui et al., 2008a; Kaushansky et al.,
2015).

Following establishment of an intracellular niche within
the hepatocyte, Plasmodium replicates extensively, stretching
the hepatocyte to 50–100 times its normal volume (Shortt
and Garnham, 1948; Vaughan et al., 2012). This rapid
expansion is surprising, given the cell’s strict cell size
regulations under normal conditions (Sinturel et al., 2017).
This observation suggests that Plasmodium effectively overwrites
the hepatocyte’s hardwiring to exert massive influence over
the host cell. Plasmodium likely disrupts a multitude of
classical signaling pathways during infection, only a small
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FIGURE 1 | Plasmodium life cycle. (A) Each stage of the malaria life cycle is accompanied by unique transcriptional or translational changes, which ultimately allow for

successful transition to each stage of the life cycle. Red Blood Cell is abbreviated “RBC.” (B) Liver stage infection of a hepatocyte is a unique microenvironment that

allows the parasite to invad and differentiate into several forms to ensure growth, replication, and eventual egress from the hepatocyte. These key transitions occur in

specific subcellular locations during liver stage infection.

fraction of which have been described (Kaushansky et al.,
2013a,b; Ruivo et al., 2016). Interrogating single proteins
in a pathway to determine functionality is limiting in this
context, and ignores secondary effects within the complex
cell system. Instead, it is critical to comprehensively and
quantitatively evaluate changes that occur during infection
to illuminate mechanisms of control employed by the
parasite.

WHAT CAN SYSTEMS BIOLOGY DO FOR
MALARIA?

Understanding biology is a systems-level problem. Interactions
between components of a system lead to the emergence of
properties that cannot be understood from the study of the
components individually. The study of systems biology is
predicated on two basic assumptions. First, that the whole
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is far greater than the sum of its parts; and second, that a
more comprehensive understanding of the components and
their relationships within a system will allow for more accurate
predictions of the system’s behavior. It is through this lens
that systems biology aims to determine the relationships and
interactions of the components of a system. In practice, systems
biology is a set of principles and processes by which we
take complex systems apart and put them back together,
with the aim of understanding the properties of the entire
biological system. The approach generally starts with the
systematic and comprehensive identification and quantification
of molecules, called omics datasets, as a biological system
transitions from one state to another. Initially, these data are
evaluated using standard statistical tools, resulting in ordered
lists, with significance values for each observed difference.
These data provide the basis for the deployment of simple
tools such as pathway analysis and clustering to interpret
the data, or more complex analysis, such as regression or
inference methods, to suggest causal or correlative relationships
between components. These approaches can, and have, identified
major molecular players at each stage, but fall short of a
detailed and comprehensive understanding. Visualizing the data
is also important for generating insights and predictive models
that describe key determinants of the stage transition being
interrogated (Figure 2). Predictions that are generated are then
tested, often using “classic” or “reductionist” approaches. This
process results in the refinement of both the model, and of
our biological understanding. Molecular details are important,
and systems biology must not ignore them. Examining the
individual components of a system allows us to understand
their molecular and physicochemical properties, as well as the
function of the components in context of the entire system
(Van Regenmortel, 2004). As the data that informs a model
becomes more detailed, the predictions generated become
more mechanistic. This level of insight is critical for rational
intervention.

Modeling is not unique to systems biology. Indeed, all
scientists generate “models,” sometimes in the form of cartoons
to aid in the design of the next line of inquiry. Systems biology
models are often in the form of networks composed of balls
and sticks, where balls (also called nodes) represent genes or
proteins, and the sticks (or lines, also called edges) between
them represent a relationship between molecular players. These
simple visualizations can themselves facilitate the development
of novel hypotheses. Many representations allow scientists to
superimpose multiple types of data onto these networks (for
example, molecule types, confidence of the interactions or
subcellular organization). There are many popular and facile
tools for these network visualizations (reviewed in Gehlenborg
et al., 2010; Pavlopoulos et al., 2017). Once established, these
networks can be mined to design subsequent experiments,
and also used as a foundation for more complex models
of the dynamics of molecular interactions and information
flow. Depending on the complexity and the question to be
addressed, models can take many forms. Some widely used
approaches include Boolean networks, ordinary differential
equations, and stochastic simulations. Different model classes

involve different approximations, assumptions and levels of
granularity. All models are best informed by quantitative, high
quality, and biochemical data. While omics approaches can
contribute to a more comprehensive view than possible with
classical biochemical approaches, many models also incorporate
data from rigorous reductionist approaches. Regardless of
model class, the power of modeling lies in its capacity to
capture insights that are difficult to reach through intuition
alone.

Many of the technological and computational tools of systems
biology are modular, and the resulting data can be integrated
in different ways to inform the biological question (Danziger
et al., 2014). Indeed, modeling biological data increasingly
aims to incorporate a range of types of information, which
monitor changes at different scales. This allows the researcher
to determine what types of data are most informative when
predicting a biological outcome of interest (Hwang et al., 2005a,b;
Janes et al., 2005; Bonneau et al., 2007; AlQuraishi et al., 2014)
and design subsequent experiments accordingly. Nevertheless,
in most applications, applying computational analysis to
quantitative datasets enables predictions (or new hypotheses)
about how a perturbation, such as a gene deletion, drug
treatment, or new environment, will influence the system as a
whole.

The Role of Quantitative and
Comprehensive Datasets in Malaria
Research
In the case of malaria, numerous studies have generated
omics data during life cycle transitions (Table 1). These
include the cataloging of genes (genomics), mRNA transcripts
(transcriptomics), translated protein (proteomics), metabolites
(metabolomics), and translational repression/de-repression of
transcripts as the parasite transitions through its life cycle
stages. The genome of the Plasmodium parasite was initially
published in 2002 (Gardner et al., 2002), and has been refined
since. Initial transcriptomes and proteomes of P. yoelii and
P. berghei Liver Stages have been generated, which have
provided lists of the components involved in liver stage
development, and further revealed the requirement of fatty acid
synthesis from both the parasite and host during liver infection
(Tarun et al., 2008; Albuquerque et al., 2009; Vaughan et al.,
2009).

Insights that originate from transcriptomic analysis of Liver
Stage infection reveal that Type I interferons and ER stress
are systematically upregulated during liver stage infection and
can modulate the level of liver stage infection (Liehl et al.,
2014; Miller et al., 2014; Inacio et al., 2015; Kaushansky and
Kappe, 2015a). Additional information can be obtained by
monitoring changes in the parasite and host during infection
under different environmental conditions. These, and related
datasets can inform models that predict causality and cellular
outcomes. The goal of this effort would be to identify
networks of parasite and/or host factors that facilitate the
development or demise of the parasite during its infection of the
liver.
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FIGURE 2 | The processes involved in generating systems biology-informed models. To inform the biological question, quantitative datasets are generated, which are

then used in quantitative analysis, data visualization, and modeling to describe how the system behaves. These tools can be used interchangeably and/or in

succession before further refining the model. Refinement of the model can then provide new biological insights.

Protein-Protein Interactions
A major goal of host-pathogen studies is to elucidate specific
interactions that dictate success or failure of the pathogen.
While transcriptomics and proteomics can catalog changes that
occur in the infected cell, a list of alterations alone does not
provide mechanistic insight, and is unsatisfying to most cell
biologists. Databases of protein interactions in many organisms,
including humans, are becoming highly populated (Hein et al.,
2015; Huttlin et al., 2015). Yet, many immunopurification—
mass-spectrometry (IP-MS) based approaches to study protein-
protein interactions do not meet the standard of quantitative and
comprehensive. As datasets become larger, statistical tools can be
used to predict which interactions are more likely to be specific,
compared to commonly identified (abundant or promiscuous)
proteins (Mellacheruvu et al., 2013). The pitfalls of qualitative
and low throughput data have been partially overcome in model
organisms such as yeast, where whole-genome GFP tag libraries
have been generated and used in IP-MS experiments, although
even these datasets remain incomplete, and are error prone
(Ghaemmaghami et al., 2003; Huh et al., 2003; Mellacheruvu
et al., 2013).

More sophisticated approaches designed to distinguish
between bona fide and spurious interactions are being developed
and applied. For example, Isotopic Differentiation of Interactions
as Random or Targeted (I-DIRT) and variants (Tackett
et al., 2005; Selbach and Mann, 2006; Trinkle-Mulcahy et al.,
2008; Byrum et al., 2012; Trinkle-Mulcahy, 2012) exploit
isotopic labeling and immunopurification to distinguish between
interactions that occur before cell lysis, from those interactions
that are introduced during the purification process. While these
approaches improve confidence in interactions, they are neither

widely adopted, nor have they been applied in genome scale
studies.

The Role of Imaging in Defining
Quantitative Stage Transitions
Since the initial discovery of liver stage parasites by microscopy
in 1948 (Shortt and Garnham, 1948), imaging has been an
invaluable tool of malaria research. However, most common
imaging methods are neither quantitative nor comprehensive,
limiting their capacity to inform modeling approaches. This is
particularly troubling for applying a systems biology approach,
as cellular outcomes are what we aim to predict, but are often
poorly defined. Traditional imaging also falls short of reaching
the temporal resolution necessary to elucidate the dynamic
cellular processes during invasion and throughout liver stage
infection.

A number of new imaging modalities enhance our ability
to increase resolution, quantification and throughput. A
comprehensive review of the advances made in increasing
throughput, quantification and resolution in the imaging field is
outside the scope of this review, we will highlight some examples
that are particularly relevant to malaria research. One example,
correlated light microscopy and electron microscopy (CLEM)
combines fluorescence microscopy with electron microscopy,
thereby increasing the throughput of monitoring rare events
like liver stage infection at EM-level resolution (van Rijnsoever
et al., 2008), and has already been applied to monitor liver stage
development (Grutzke et al., 2014). Intravital imaging (IVM) has
been adapted for malaria research and facilitates analysis of live
tissue with microscopic resolution to reveal cellular responses
that closely mimic in vivo infection, both spatially and temporally
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(Pittet and Weissleder, 2011; De Niz et al., 2017). Additional
instrumentation, such as the Lattice Light Sheet Microscope
(Betzig et al., 2006), enhances temporal and spatial resolution,
with applications in both in vivo and in vitro systems, which could
enable a more quantitative assessment of cellular outcomes.

The Power of New Genetic Tools and
Screens in Determining Function
An essential component of systems biology is the experimental
testing of predictions made by modeling efforts. This testing is
greatly assisted by the capacity to perform genetic perturbations.
Indeed, one of the major shortfalls of employing systems
biology is that testing predictions is largely performed by single
candidate-based approaches, and thus often fails to recapitulate
the complexity of the system. Inmany cases, it remains difficult to
determine if the model is incorrect, or if reductionist approaches
cannot fully capture the emergent properties associated with
a complex system. New genome-editing approaches, like
CRISPR/Cas, can assess multiple perturbations in combination,
in both mammalian and parasite genomes, which will facilitate
testing more complex models (Cong et al., 2013; Mali et al., 2013;
Ghorbal et al., 2014; Wagner et al., 2014; Lu et al., 2016).

In addition to evaluating individual or groups of gene
candidates for function, new genome-editing approaches also
have the ability to globally evaluate both host and parasite
genes. Whole genome CRISPR/Cas9 knockout screens are now
common in mammalian cells (Cong et al., 2013; Mali et al.,
2013) and can be adapted to the Plasmodium genome. The
Plasmodium Genetic Modification Project (PlasmoGEM), a new
community resource from the Wellcome Trust Sanger Institute,
aims to produce new tools for the genetic modification of
malaria parasites at genome scale. This resource has already
demonstrated that two-thirds of P. berghei genes contribute
to normal blood stage development (Bushell et al., 2017).
Subsequent studies should not only focus on the role of parasite
genes in other life cycle stages, but also interrogate the role of host
genes during each stage of parasite development.

KEY QUESTIONS AND FINDINGS IN
MALARIA LIVER STAGE BIOLOGY

The existing literature provides a basis upon which global
experiments can be designed and modeled, and also highlights
the most critical questions that remain. Given the potential and
increasing power of systems biology, the challenge lies in how to
use this approach to bolster the rich collection of findings that
have been amassed by the Plasmodium research community, and
address hurdles that have been unattainable by more traditional
approaches. In this next section, we focus on some of the key
findings on liver stagemalaria with an emphasis on questions that
remain.

Hepatocyte Invasion
During hepatocyte invasion, the parasite attaches to the host cell,
at least partially through circumsporozoite protein (CSP), which
interacts directly with highly sulfated proteoglycans (HSPGs) on

the cell surface to trigger CSP cleavage, inducing the sporozoite to
switch to an invasive state (Table 2A) (Coppi et al., 2007, 2011).
Thrombospondin-related anonymous protein (TRAP) is also
involved in this process (Kappe et al., 1999; Matuschewski et al.,
2002; Morahan et al., 2009). Additionally, Plasmodium proteins
P36 and P52 play a role in invasion, parasitophorous vacuole
membrane (PVM) formation, and protecting the host against
apoptosis (Ishino et al., 2005; van Dijk et al., 2005; Ploemen et al.,
2012). How each of these factors works in concert to facilitate
productive invasion of the hepatocyte remains unknown.

A collection of host factors have also been described to impact
parasite infection (Table 2B). Scavenger Receptor B1 (SRB1)
and the tetraspanin CD81 both play roles in cholesterol-rich
microdomain formation and are critical for hepatocyte invasion
(Silvie et al., 2003; Rodrigues et al., 2008; Yalaoui et al., 2008a;
Valacchi et al., 2011). More recently, it has been described that
CD81 and SRB1 are involved in invasion in different species;
CD81 is required for P. yoelii and P. falciparum infection, but
appears to be dispensable for P. berghei and P. vivax infection.
SRB1 plays a more substantial role in P. vivax and P. berghei
infections (Silvie et al., 2003; Manzoni et al., 2017). It remains
unknown if either protein makes contact with the sporozoite,
although it has been suggested that SRB1 might directly engage
the parasite, whereas CD81 indirectly impacts infection (Yalaoui
et al., 2008b; Manzoni et al., 2017). The receptor tyrosine
kinase EphA2 is also critical for hepatocyte infection, at least
in part by engaging the parasite protein P36 (Kaushansky
et al., 2015). While each of these factors contributes to the
infection process, how they work in concert, and how changes
in one invasion factor impacts another remain unknown. New
approaches that integrate biochemical information and omics
datasets are well-suited to merge with existing candidate-based
research to create a more comprehensive view of the molecular
components required for hepatocyte invasion (AlQuraishi et al.,
2014; Gujral et al., 2014). The capacity to integrate biochemical
data into a more global framework also paves the way for the
identification of molecules or networks that could be targeted for
intervention.

Liver Stage Development
Once the parasite has taken up residence in the hepatocyte, the
sporozoite dedifferentiates over the course of 12 h in rodents,
or 2–3 days in humans. This process results in a rounded
trophozoite, which is characterized by dramatic changes in the
parasite including the disassembly of molecular and cellular
structures and the expulsion of invasion machinery (Bano et al.,
2007) (reviewed in Kaushansky and Kappe, 2015b; Vaughan and
Kappe, 2017). Following dedifferentiation, schizogony begins,
which involves the massive replication the genome, and takes
place over the course of 2–10 days, depending on the Plasmodium
species. During this time, cellular structures including lysosomes
and late endosomes sequester around the parasitophorous
vacuole membrane and associate with the tubovesicular network
(Lopes da Silva et al., 2012; Grutzke et al., 2014). The unfolded
protein response is triggered, which promotes endoplasmic
reticulum stress and the survival of the Liver Stage parasite
(Inacio et al., 2015; Kaushansky and Kappe, 2015a). The most
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TABLE 2 | Determinants of hepatocyte liver stage infection: (A) Plasmodium determinants of infection and (B) Host determinants of infection.

Host/Parasite factor Stage of infection Main findings References

(A)

SPECT Traversal Essential for cell traversal Ishino et al., 2004, 2005

PLP1 (SPECT2) Essential for cell traversal Ishino et al., 2004, 2005

CelTOS Hypothesized to play a role in the exit step of traversal Kariu et al., 2006

TRAP-like protein (TLP) TLP-deficient sporozoites show a diminished ability to traverse Moreira et al., 2008

PL (UIS10) Hepatocyte Invasion PL-deficient sporozoites show reduction in Liver Stage burden Bhanot et al., 2005

Circumsporozoite protein

(CSP)

Multiple roles in motility and invasion, including transition from

traversing state to invasive state

Coppi et al., 2007

P36 Contributes to PVM formation Ishino et al., 2005; Labaied et al.,

2007

P52/P36p Contributes to PVM formation Ishino et al., 2005; Labaied et al.,

2007

Cysteine proteases Inhibition of sporozoite cysteine proteases completely inhibits

infectivity

Coppi et al., 2005

Calcium Dependent Protein

Kinase-6 (CDPK-6)

Sporozoites from CDPK-6-deficient parasites show decrease in

invasion and CSP cleavage

Coppi et al., 2007

TRAP Direct role in invasion through attachment with cytoplasmic tail Kappe et al., 1999;

Matuschewski et al., 2002;

Morahan et al., 2009

Upregulated in Sporozoite 4

(UIS4)

Liver stage Development UIS4-deficient P. berghei parasites severely impaired in Liver Stage

development

Mueller et al., 2005

Upregulated in Sporozoite

(UIS3)

UIS3-deficient parasites severely impaired in Liver Stage

development. UIS3 has been hypothesized to play a role in fatty

acid uptake

Mikolajczak et al., 2007

EXP1 Interacts with host Apolipoprotein H to promote liver stage

development

Sa et al., 2017

LISP2 Hypothesized to be involved in merozoite formation and exported

to host cytosol

Orito et al., 2013

B9 P9 mutants show liver stage growth arrest Annoura et al., 2014

Sequestrin Mutants lacking sequestrin show a reduction in liver stage

development

Annoura et al., 2014

MSP1 Conditional mutagenesis of MSP1 in sporozoites impaired

merozoite formation

Combe et al., 2009

LISP1 Hepatocyte Exit In P. berghei, LISP1 is required for lysis of the PVM prior to egress Ishino et al., 2009

SUB1 SUB1-deficient P. berghei parasites fail to rupture the PVM prior to

egress

Tawk et al., 2013

(B)

CD68 Traversal Putative receptor of Kupffer cells, gateway for liver stage infection Cha et al., 2016

Hepatocyte Growth Factor Hepatocyte Invasion Secretion of HGF renders P. berghei host hepatocytes susceptible

to infection

Carrolo et al., 2003

CD81 Required on hepatocytes for P. yoelii invasion with PVM formation Silvie et al., 2003

Cholesterol Involved in assembly of CD81 microdomains on the cell surface Silvie et al., 2003, 2006, 2007

HSPGs Binds CSP, increased sulfation on HSPGs triggers invasion of

migrating sporozoite

Frevert et al., 1993; Coppi et al.,

2007

EphA2 Engages parasite protein P36 to facilitate hepatocyte invasion Kaushansky et al., 2015

Scavenger Receptor B1 Required for CD81 microdomain formation, additional roles

independent of CD81 for P. berghei and P. vivax

Rodrigues et al., 2008; Yalaoui

et al., 2008a; Manzoni et al.,

2017

HGF/MET signaling Liver Stage Development Prevents the apoptosis of P. berghei infected cells, promoting

successful infection

Leiriao et al., 2005

Endosomes and lysosomes Endosomes and lysosomes are localized around the PVM during

development

Lopes da Silva et al., 2012;

Grutzke et al., 2014

(Continued)
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TABLE 2 | Continued

Host/Parasite factor Stage of infection Main findings References

Phosphatidylcholine Required for correct localization of proteins within the PVM;

important for parasite survival

Itoe et al., 2014

P53 Decreased levels of P53 are important for successful Liver Stage

infection.

Kaushansky et al., 2013b

Apolipoprotein H Interacts with parasite protein EXP1 to promote successful Liver

Stage infection

Sa et al., 2017

ALK4 Knockdown reduces Liver Stage infection Arang et al., 2017

CAMKK2 Knockdown reduces Liver Stage infection Arang et al., 2017

CSK Knockdown reduces Liver Stage infection Arang et al., 2017

FGFR4 Knockdown reduces Liver Stage infection Arang et al., 2017

FLT1 Knockdown reduces Liver Stage infection Arang et al., 2017

FLT3 Knockdown reduces Liver Stage infection Arang et al., 2017

IKBKB Knockdown reduces Liver Stage infection Arang et al., 2017

IRAK1 Knockdown reduces Liver Stage infection Arang et al., 2017

MAPK1 Knockdown reduces Liver Stage infection Arang et al., 2017

MAPKAPK2 Knockdown reduces Liver Stage infection Arang et al., 2017

MARK2 Knockdown reduces Liver Stage infection Prudencio et al., 2008; Arang

et al., 2017

MARK4 Knockdown reduces Liver Stage infection Arang et al., 2017

MET Knockdown reduces Liver Stage infection Prudencio et al., 2008; Arang

et al., 2017

PKCζ Knockdown reduces Liver Stage infection Prudencio et al., 2008; Arang

et al., 2017

PRKWNK1 Knockdown reduces Liver Stage infection Prudencio et al., 2008

SGK2 Knockdown reduces Liver Stage infection Prudencio et al., 2008

STK35 Knockdown reduces Liver Stage infection Prudencio et al., 2008

TGFBR1 Knockdown reduces Liver Stage infection Arang et al., 2017

TYRO3 Knockdown reduces Liver Stage infection Arang et al., 2017

ULK1 Knockdown reduces Liver Stage infection Arang et al., 2017

WEE1 Knockdown reduces Liver Stage infection Arang et al., 2017

dramatic change, however, is the replication of the liver stage
schizont, which produces tens of thousands of merozoites
(membrane-bound, haploid, red blood cell invasive forms) that
eventually invade erythrocytes during blood stage development.
During this process, some parasites survive, and re-wire their
host cells to resist certain types of apoptotic stimuli, while
others succumb to host cell apoptosis or alternative cell death
stimuli (Leiriao et al., 2005; van de Sand et al., 2005; Kaushansky
et al., 2013a,b; Douglass et al., 2015). While these dramatic
cellular changes have been qualitatively observed, they are rarely
monitored quantitatively.

Some molecular determinants have been linked to Liver Stage
survival and development. For example, Plasmodium proteins
Upregulated in Infectious Sporozoites (UIS) UIS3 and UIS4
have been hypothesized to play an active role in host nutrient
acquisition, in part because of the demonstration that UIS3
associates with the host Liver Fatty Acid Binding Protein (L-
FABP) (Mikolajczak et al., 2007; Blume et al., 2011; Slavic et al.,
2011; Favretto et al., 2013) and localizes both proteins to the PVM
(Mueller et al., 2005). Fatty acids of both host and parasite origin,
including host phosphatidylcholine, have been demonstrated to
be required for optimal liver stage development (Mazumdar

et al., 2006; Vaughan et al., 2009; Itoe et al., 2014). How each of
these components specifically contributes to the observed cellular
changes, and how each factor co-opts host defenses remains
unknown. Amore quantitative assessment of the cellular changes
that occur, matched to molecular information, will enable the
development of models that describe networks of host-parasite
interactions required for development of the liver stage parasite.

Liver Stage Exit
Intracellular pathogens must exit their host cell in order
to propagate and survive. The precise strategies they use
directly impact their ability to disseminate within a host,
transmit to new hosts, and engage or avoid host immune
responses. Despite these important functions of exit, detailed
investigations into the mechanisms governing Plasmodium exit
have been lacking. This process is important not only for
our basic understanding of liver stage development, but also
for immunity. This is illustrated by the finding that the
most potent stimulus of the immune system is elicited by
parasites that develop through the liver stage and exit, but
cannot undergo replication within the blood stage (Bijker et al.,
2013).
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Egress from hepatocytes occurs through the rupture of the
PVM, followed by destabilization of the actin cytoskeleton, to
allow the budding of merozoites from the host cell through
the formation of merozoite-filled vesicles (merosomes). These
structures are surrounded by a membrane of host origin (Graewe
et al., 2011), and have been hypothesized to shuttle merozoites
into the bloodstream to begin blood stage infection (Burda et al.,
2017). This process inhibits exposure of phosphatidylserine (PS)
on the outer surface of the cell, thereby simultaneously ensuring
migration of parasites to the bloodstream and protection from
host immune responses (Sturm et al., 2006; Tarun et al.,
2006; Baer et al., 2007). Recent methodological advances have
developed a platform for quantifying exit events (Stanway et al.,
2009). This quantification, and a global assessment of molecular
changes that occur during exit, will drive the development of
models that describe networks of host-parasite interactions that
underlie the exit process. Importantly, these networks could
then be used to predict host and parasite determinants of
dissemination to the blood stream, and the ability to engage or
avoid host immune responses.

CONCLUSIONS AND NEW DIRECTIONS

Parasites must successfully navigate a wide variety of different
environmental milieus, and each alternative setting presents
challenges for the parasite, as well as opportunities for
intervention. Here, we have described how the tools and
approaches of systems biology can be deployed to more
comprehensively characterize the complex interaction between
parasite and host. This will inform our understanding of how the
parasite and the host interact, and also facilitate future strategies
to combat the parasite. Interventions that have been designed
and employed without a comprehensive understanding of the
complex dynamic between the Plasmodium parasite and its host
have only partially controlled malaria in the field.

Despite the challenges, many influential leaders have called for
malaria eradication in recent years (Gates, 2007; WHO, 2017).
This goal is most likely to be realized if control strategies are

deployed rationally with the capacity to predict how a given
treatment will impact systematic changes in the parasite and host
alike, to facilitate readiness for these changes. The integration
of systems biology could evaluate the capacity of the parasite to
circumvent new interventions, and in doing so, contribute to the
success of eradication efforts. While references to the principles
of systems biology first occurred decades ago, the field was
established in earnest ∼15 years ago with the completion of the
human genome. Since then, most systems biology studies have
steered clear of the complexity that is introduced when multiple
genomes collide, as is the case during infection. Pathogens
and their host cells have coevolved, introducing alterations to
both genomes along the way (Miller et al., 1976; Zimmerman
et al., 2013). What has resulted is the capacity of a pathogen
to fundamentally alter the biology of its host, by changing the
size, shape, composition and function of the cell. Intracellular
pathogens thus are expert cell biologists, controlling the host

cell to their own advantage. As such, the study of host-
pathogen interactions presents an unmatched opportunity for
the field of systems biology, just as the approach of systems
biology presents an unmatched opportunity for the eradication
of malaria.
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