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Despite the active and intense treatment of wastewater, pathogenic microorganisms
and viruses are frequently introduced into the aquatic environment. For most
human pathogens, however, this is a rather hostile place, where starvation,
continuous inactivation, and decay generally occur, rather than successful reproduction.
Nevertheless, a great diversity of the pathogenic microorganisms can be detected,
in particular, in the surface waters receiving wastewater. Pathogen survival depends
majorly on abiotic factors such as irradiation, changes in water ionic strength,
temperature, and redox state. In addition, inactivation is enhanced by the biotic
interactions in the environment. Although knowledge of the antagonistic biotic
interactions has been available since a long time, certain underlying processes and
mechanisms still remain unclear. Others are well-appreciated and increasingly are
applied to the present research. Our review compiles and discusses the presently
known biotic interactions between autochthonous microbes and pathogens introduced
into the aquatic environment, including protozoan grazing, virus-induced bacterial cell
lysis, antimicrobial substances, and predatory bacteria. An overview is provided on the
present knowledge, as well as on the obvious research gaps. Individual processes that
appear promising for future applications in the aquatic environment are presented and
discussed.

Keywords: pathogens, antimicrobial substances, grazing, bacteriophages, BALO, antagonistic interactions,
aquatic environment

INTRODUCTION

Pathogenic microorganisms are frequent visitors, or even inhabitants, of the aquatic environments.
Their paths of entry into the natural water cycle are manifold; however, the primary sources include
treated and untreated wastewater, as well as manure applied to the agricultural lands. Wastewater
from households and hospitals undergoes a moderate reduction of pathogens when it is collected
and treated in the sewage treatment plants, approximately 1 to 3 orders of magnitude; therefore, we
know that higher numbers of pathogens are continuously released into the recipient surface waters,
in particular in times of increased bacterial and viral infections in the human population (George
et al., 2002; Reynolds and Barrett, 2003; Gerba and Smith, 2005; Arnone and Walling, 2007). From
these recipient water bodies, pathogens are then distributed into the connected surface waters,
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such as rivers and lakes, as well as groundwater. In rural areas
and less developed countries, pathogens enter the terrestrial and
aquatic environments through active discharge or accidental loss
(e.g., leakages from onsite sanitation systems). Direct entry into
groundwater and surface water also occurs when the manure
disposed on agricultural lands encounters heavy precipitation,
and surface run-off and seepage occur through the unsaturated
zone.

Extreme hydrological events, such as floods, may become
more frequent in the future due to ongoing global change,
increasing the pressure on the already stressed terrestrial and
aquatic environments. Insufficiently treated manure, wastewater,
and discharge from the sewage treatment plants are frequently
spread to the water sources used for drinking water production
or recreation (Schwarzenbach et al., 2010). Once present in the
aquatic environment, pathogens become a frequent cause of
outbreaks of water-borne diseases, constituting a severe risk for
human health (Mounts et al., 2000; Albinana-Gimenez et al.,
2006; Jiang, 2006).

For most human pathogens, the aquatic environment is a
hostile place, where they starve, are continuously inactivated,
and eventually decay, rather than reproduce successfully.
Despite these hostile conditions, a great diversity of pathogenic
microorganisms are often detected, in particular, in the surface
waters receiving wastewater (Seidel et al., 2016), and occasionally
persist for several years (Krauss and Griebler, 2011).

Prominent examples of pathogenic bacteria regularly found
in the surface and subsurface waters include Escherichia coli,
Vibrio cholerae, Yersinia enterocolitica, as well as species of the
genera Salmonella and Legionella (Macler and Merkle, 2000;
Krauss and Griebler, 2011; Seidel et al., 2016). Some pathogenic
bacteria, such as Pseudomonas aeruginosa, E. coli, as well as
species of the genera Legionella and Mycobacterium, have been
found repeatedly surviving, and even multiplying, outside their
human hosts (Vital et al., 2007, 2008); however, in most cases,
in order to propagate, several human pathogenic bacteria require
specific conditions (favorable temperatures, available nutrients,
specific redox states) that are rarely fulfilled simultaneously in
the environment (Riffard et al., 2001; Leclerc et al., 2002; Brookes
et al., 2004; Vital et al., 2008).

In the aquatic environment, diversity among the water-
borne pathogens is highest with enteric viruses (Wyn-Jones and
Sellwood, 2001). Being obligate intracellular parasites, viruses
depend on their specific hosts for propagation; therefore, human
pathogenic viruses do not have a natural host in the environment,
and thus, are only able to persist to some extent, but not
to replicate. Upon an acute infection, the enteric viruses like
Coxsackievirus, Norovirus, Hepatitis A, and Hepatitis E, or
respiratory viruses like Adenovirus or Echovirus, are released
in higher numbers via feces into the wastewater, where they
eventually end up in the environment (Macler and Merkle,
2000; Fong and Lipp, 2005). When encountering a new host,
generally only few, sometimes only one, intact particle is needed
to provoke an infection (Zwart et al., 2009). Moreover, viral
particles may maintain their infectivity over long durations, even
longer than enteric bacteria under certain circumstances (Fong
and Lipp, 2005; Krauss and Griebler, 2011; Stevenson et al., 2015).

For example, E. coli needed 250 days to become undetectable by
plate counts, whereas for Poliovirus, persistence times of 550 days
in groundwater have been reported (Althaus et al., 1982; Filip
et al., 1986).

The fate of pathogens in the aquatic environment is majorly
determined by a broad range of abiotic factors, and indeed,
these factors are the core drivers of pathogenic inactivation and
degradation (e.g., Burkhardt et al., 2000; Sinton et al., 2002;
Brookes et al., 2004). In the surface waters, UV irradiation is a
major factor responsible for the effective inactivation and decay of
microorganisms, although it may occur at different rates (Jacquet
and Bratbak, 2003; Hijnen et al., 2006). With respect to soils and
sediments, adsorption to the sediment matrix causes attenuation
that can be reversible or irreversible (Jin et al., 2000; Chu et al.,
2001; Blanford et al., 2005; Brusseau et al., 2005). Moreover, the
hydrophobicity of soils and sediments, as well as their porosity,
grain size distribution, and pore water chemistry (such as pH or
ionic strength), are additional factors that influence the bacterial
and viral retention (Gordon and Toze, 2003; Klitzke et al., 2005;
Cao et al., 2010; Sadeghi et al., 2011).

Little consideration has been given to the influence of
natural microbial antagonists, such as protozoa, bacteria, and
phages, on the fate of incoming pathogens in the aquatic
environment. Microbial communities in the environment form
a complex interactive network of commensalism, antagonism,
and parasitism (Hibbing et al., 2010), thus, biotic interactions
are essential determinants of the natural microbial communities
(Vos et al., 2009). Relationships between species (e.g., bacteria–
bacteria) and between members of different trophic levels
(guilds) within a food web (e.g., phage–bacteria, protozoa–
bacteria, protozoa–phage) may be mutualistic or antagonistic,
both fostering community development through co-evolutionary
processes. Autochthonous microorganisms not only have an
advantage over introduced pathogens in terms of competitiveness
but also are assumed to contribute actively to the pathogen
inactivation and elimination. With regard to this, initial evidences
were collected in the early 20th century revealing that persistence
times of pathogenic microorganisms are significantly shorter
in the biologically active soil compared to the sterile soil
(Gärtner, 1915). Since then, numerous observations from
laboratory experiments and a few field studies have supported
the assumption that microbially active soils reduce the amount
of introduced pathogenic microorganisms; however, these studies
have a mostly descriptive character, and the specificity as well
as the extent of this biotic inactivation is not well-understood
(Cutler, 1923; Postma et al., 1990; van Veen et al., 1997).
This is, in particular, true regarding the combined action of
several antagonistic processes that have received little attention
to date. To fill this gap, our review aims to provide an
overview of the biotic interactions between the autochthonous
microbes in the aquatic environment and the pathogens
that are being introduced. Individual antagonistic interactions
(i.e., biotic mechanisms acting negatively on pathogens) are
emphasized here (Figure 1) including: (i) protozoan grazing
on prokaryotes and viruses, (ii) the virus- and phage-induced
lysis of bacteria (prokaryotes) and protozoa, (iii) the bacterial
production and release of antimicrobial (e.g., bacterial toxins)
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FIGURE 1 | Antagonistic microbial interactions: (A) Protozoan grazing on
pathogenic microorganisms and viruses by amoeba, ciliates, and flagellates.
(B) Phage-induced lysis of pathogenic bacteria and protozoa. (C) Predation of
pathogenic bacteria by BALOs. (D) Microbial chemical war-substances with
antimicrobial activity like lactic acid (LA) and violacein (Vi), as well as
proteolytic substances, such as lacticin (La), are produced and excreted by
bacteria to inhibit and kill/lyse opponents.

and proteolytic substances, and (iv) the activity of predatory
bacteria (e.g., Bdellovibrio). A discussion follows regarding the
possible role(s) of these antagonistic processes in the fate of
pathogens in aquatic systems. Eventually, the present options and
limitations are discussed regarding human use of antagonistic
microbial processes to reduce the number of human pathogens
in the aquatic environment.

ANTAGONISTIC INTERACTIONS AND
APPLICATIONS

Protozoan Grazing on Pathogenic
Bacteria and Viruses
In the natural aquatic ecosystems, mortality of prokaryotes
is caused, to a great extent, by protozoan grazing (Menon
et al., 2003). Ingestion rates vary widely across the different
groups of protozoa (amoebae, heterotrophic nanoflagellates,

and ciliates), depending on their feeding behavior, prey size, and
prey abundance (Pernthaler, 2005). The daily reduction of the
bacterial standing stock by ciliate grazing may range between
1 and 8% (Kemp, 1988; Wieltschnig et al., 2003; Tuorto and
Taghon, 2014). Clearance rates of heterotrophic nanoflagellates
have been estimated to account for up to 50%, although grazing
efficiencies vary strongly according to the study (Weisse and
Müller, 1990; Wieltschnig et al., 2003; Bettarel et al., 2004). While
ciliates and heterotrophic nanoflagellates are effective grazers in
the open water column, amoeba graze primarily on biofilms
(Zhang et al., 2014). Bacterial and viral losses through grazing
are most often influenced by the trophic status of the water
source and by season (Jacquet et al., 2005). Losses of the bacterial
standing stock in the eutrophic lakes have been measured at
values up to 28%, whereas researchers have reported losses in the
oligotrophic lakes of up to 70% (Šimek et al., 1997; Domaizon
et al., 2003).

Although other small protozoa and bacteria are the favored
food sources, studies have reported that Tetrahymena and other
ciliates, heterotrophic nanoflagellates, and amoeba take up non-
attached viral particles as well (Groupé and Pugh, 1952; Knorr,
1957, 1960; Suttle and Chen, 1992; Gonzalez et al., 1993; Bettarel
et al., 2005; Evans and Wilson, 2008; Bouvy et al., 2011).
Deng et al. (2014) compared the reduction in the population
of the model bacteriophage MS2 in the presence of three
heterotrophic flagellates: the filter-feeding flagellate Salpingoeca
sp.; the benthivorous grazer Thaumatomonas coloniensis; and
the active raptorial feeder Goniomonas truncate. The experiment
was performed in the presence of a natural bacterial community
in groundwater. Grazing by Salpingoeca sp. or T. coloniensis,
decreased the MS2 titer by six orders of magnitude within a 90-
day period (Figure 2). In the absence of protozoa, a reduction
of only 2 log units was observed, and that was attributed to
the antagonistic activities of the bacterial community. Although
ingested, viruses only marginally contribute to the protozoan diet
in terms of carbon (Deng et al., 2014). Hennemuth et al. (2008)
demonstrated that protozoa may directly reutilize viral amino
acids for their own protein biosynthesis.

FIGURE 2 | Microbially active water leads to the reduction of allochthonous
viruses. The model coliphage MS2 is reduced in the presence of native
groundwater bacteria (dashed line) and the benthivorous heterotrophic
nanoflagellate, Thaumatomonas coloniensis (solid line). The dotted line reveals
the virus-only control (modified from Deng et al., 2014).
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As grazing efficiency is strongly affected by prey size, motility,
nutritional quality, and cell-surface characteristics, there is debate
regarding whether the pathogenic bacteria and viruses are
consumed by protozoa selectively, or merely by chance. Early
evidence was provided by Bahr (1954) that there is some selective
discrimination. A mixture of different bacterial strains was
offered to various ciliate cultures. After some days, the individual
ciliate cells were picked and transferred into a saline solution to
induce cell lysis. Bacteria released from the bursting cells were
cultured on selective agar (endoagar). Although E. coli could be
isolated in the early stages of the experiment, at later time points
only Bacillus subtilis, and to a lesser extent Staphylococcus aureus,
were found present inside the ciliates. Moreover, besides the
evidence for selective avoidance, E. coli was even found harmful
for the ciliate grazers, as uptake of these species led to protozoan
decay. It is important to consider that not all particles ingested
by the protozoa are inactivated and/or digested. Occasionally,
some bacteria, like V. cholerae or Legionella pneumophila, have
revealed resistance to phagocytosis (e.g., by preventing the fusion
of the lysosome with the phagosome, thus avoiding digestion)
and may even replicate within amoebas or cause the death of their
grazers (Barker and Brown, 1994; Kirby et al., 1998; Hägele et al.,
2000; Greub and Raoult, 2004; Abd et al., 2007). Co-evolutionary
selective forces continuously drive the development of bacterial-
evading mechanisms by altering the cell surface molecules, cell
morphology, speed of motility, biofilm formation, or toxin release
(Matz and Kjelleberg, 2005; Matz et al., 2005; Pernthaler, 2005;
Siddiqui and Khan, 2012). Similar anti-grazing mechanisms are
not known for viruses, to date, but may indeed exist.

Protozoa play a key role in balancing the bacterial populations
not only in natural aquatic systems but also in the wastewater
treatment plants or other kinds of bioreactors. In particular,
during the biological phase of the wastewater treatment process,
protozoa are important for the flocculation and reduction of
bacterial biomass (Lee and Welander, 1996; Pauli et al., 2001).
The effectiveness of protozoa as biocontrol agents against human
pathogenic bacteria and viruses in both manmade and natural
aquatic systems depends upon many factors, including protozoan
abundance, growth and grazing rates, predation (in) specificity,
pathogen abundances and growth rates, as well as rates of
predation on protozoa by higher organisms (e.g., copepods)
(Brabrand et al., 1983; Sigee et al., 1999). Improved removal
of enteric bacteria due to protozoan grazing has been observed
in the biological filters (Stevik, 1998). Although concentrations
of undesired bacteria and/or viruses, as well as of grazers, are
less in the natural aquatic environments, similar effects may
be expected; however, no conclusive data are available at this
point.

Viruses and Phage-Induced Lysis of
Pathogens
Viruses that prey exclusively on prokaryotes are called
bacteriophages or phages. In the aquatic environment, phages
outnumber bacteria and archaea by 10-fold or more (Fuhrman,
1999) and phage-induced lysis of prokaryotes accounts for 5–50%
of the day-to-day bacterial mortality (Fuhrman and Noble, 1995;
Wommack and Colwell, 2000; Weinbauer, 2004; Suttle, 2007;

Brussaard et al., 2010). Phages generally display certain specificity
for a host; however, that range can be very narrow, for a particular
species only, or relatively broad, including various species within
a common grouping. This includes human pathogenic bacteria.
It is assumed that every organism has its own subset of viruses
to which it is susceptible. In a study undertaken by Khan et al.
(2002), it was reported that viral predation can even encompass
both Gram-negative and Gram-positive bacteria. Indeed,
lytic phages influence the microbial diversity and population
structures, thus adding a significant selective pressure on the
microbial communities (Letarov and Kulikov, 2009; De Paepe
et al., 2014). In the oligotrophic environments, phage-induced
lysis may stabilize the co-existence of bacteria by avoiding the
overgrowth of a single species (a scenario known as the “killing-
the-winner” theory) (Thingstad and Lignell, 1997; Shapiro et al.,
2010; Winter et al., 2010). Additionally, fitness costs for carrying
phage-resistance genes in nutrient-poor environments, such as
groundwater, are comparably high. This indicates that, in this
type of environment, phages cause minor, but continuous long-
term diminishing effects on the bacterial biomass (Lopez-Pascua
and Buckling, 2008). Likewise, the evolution of phage resistance
in these environments reveals a strong association with the
presence of co-occurring phages (Gómez and Buckling, 2011).
As a type of protective function, certain bacteria may organize
themselves into biofilms, which are more difficult for phages
to access; however, as a remedy to the bacterial solution, some
phages have evolved polysaccharide depolymerases attached to
their tail fibers that digest the bacterial extracellular polymeric
substances (EPSs), gaining access to bacterial cell surfaces
(Adams and Park, 1956; Hughes et al., 1998a,b). Temperate
phages (or prophages) can contribute to phenotypic changes
via horizontal gene transfer, driving bacterial evolution and
adaptation to new habitats, and this is often accompanied by
an increase in bacterial virulence (Jiang and Paul, 1998). Both
human-pathogenic serotypes of V. cholerae (O1 and O139) can
acquire two pivotal virulence factors (toxin-co-regulated pilus
and cholera toxin) that were found being mediated by phages
(Waldor and Mekalanos, 1996; Karaolis et al., 1999). Indeed,
most toxin-coding genes are linked to a lysogenic lifestyle, as with
the diphtheria toxin or the cholera toxin, leading to a great risk
of emerging new pathogenic bacteria (Freeman, 1951; Waldor
and Mekalanos, 1996; Brüssow et al., 2004; Tinsley et al., 2006).

Of all the participants acting in antagonistic microbial
interactions, viruses (and here mainly bacteriophages) probably
represent the most powerful ones. Isolated bacteriophages were
used in the early 1920s to treat the pathogenic bacteria in humans,
a therapy that has recently regained attention due to the growing
number of multidrug-resistant pathogenic bacteria (Thiel, 2004;
Viertel et al., 2014). To date, lytic activities of phages against a
broad variety of pathogenic bacteria have been reported (e.g.,
against S. aureus, P. aeruginosa, Salmonella enterica, V. cholerae,
or E. coli) (Slopek et al., 1987; Capparelli et al., 2010; Ceyssens
and Lavigne, 2010).

A 1-year surveillance study by Mookerjee et al. (2014)
impressively presented data of a phage controlling a human
pathogen that was indigenous to an aquatic environment. The
team monitored the dynamics of the toxigenic V. cholerae strain
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O1 and its lytic phage (vibriophage) at two different sites of
the Hooghly River in West Bengal over the three seasons,
summer, monsoon, and winter. With an increasing abundance of
V. cholerae, the corresponding phage titer increased, then leading
to a responsive decline in the V. cholerae load (Figure 3). These
repeating patterns strikingly underline the potential control that
phages may render on pathogenic bacteria in a natural setting.

Active “phage therapy” in the environment has been suggested
for several years. At present, phages are used routinely for
the biocontrol of herbal or food borne pathogens, or for
decontamination in aquacultures and food industries (Nakai and
Park, 2002; Balogh et al., 2010; Goodridge and Bisha, 2011).
The rapid generation time of cyanophages, for example, makes
them attractive agents for controlling the toxic and bloom-
forming cyanobacteria (Sigee et al., 1999 and references therein).
When isolated from lake water and treated with a natural
viral cocktail, Microcystis aeruginosa decreased in abundance
by 95% within only a few days (Tucker and Pollard, 2005).
In the aforementioned study, two phages displaying a T7-like
morphology and belonging to the Podoviridiae group (short tails)
were assumed to be responsible for killing the cyanobacterial
strain. Yoshida et al. (2006) isolated a cyanophage (Ma-LMM01)
that specifically infected and killed Microcystis aeruginosa.
Baudoux and Brussaard (2005) isolated several lytic viruses from
freshwater infecting the eukaryotic algae Phaeocystis globosa, an
abundant and harmful, bloom-forming phytoplankton. Phages
infecting Vibrio coralliilyticus and Thalosomonas loyaeana, both
aggressive coral pathogens, were isolated and applied to curing
infected corals (Efrony et al., 2007; Cohen et al., 2013). Another
example of beneficial phage use is the dewatering process of
sludge in wastewater treatment plants, which is an important
process for condensing the sludge volume. High levels of
EPS (up to 99% water content) are problematic in this step
of the treatment, generally interfering with effective volume
reduction (Costerton, 1999). The presence of some extensive EPS

FIGURE 3 | The natural occurrence and the Lotka–Volterra dynamics of Vibrio
cholerae O1 (solid line) and its vibriophage (dashed line) during the
predominant months, March to June, Hooghly River, West Bengal (modified
from Mookerjee et al., 2014).

producers, like Zoogloea and Thauera, may be controlled by the
application of selective bacteriophages (Kang et al., 1989; Thomas
et al., 1993; Sanin and Vesilind, 1994). Another interesting
feature for phage application has been observed recently by
Chan et al. (2016). This group isolated a naturally occurring
phage that forces a desired genetic trade-off between phage
and antibiotic resistance, thus favoring a development toward
increased antibiotic sensitivity for P. aeruginosa in the presence of
this particular phage. Besides the successful application of phages
in patients and other hot spots of pathogens in the laboratory and
the environment, the effectiveness of bacteriophages selectively
inactivating and killing target hosts in natural settings remains
unclear and co-evolutionary mechanisms of hosts’ phage
resistance needs further attention as it may limit a long-term
application (see below).

Bacterial Release of Toxins and
Proteolytic Substances
In complex and diverse communities, competition for nutrients
and space is high. Interspecific competition between prokaryotes
often is mediated by the use of a variety of antimicrobials, such
as secondary metabolites (e.g., lactic acids from lactobacilli),
extracellular enzymes (e.g., lysozymes, exotoxins, bacteriocins),
or antibiotics (e.g., streptomycin, tetracycline, or vancomycin)
(Jack et al., 1995; De Boer et al., 2005; Riley and Chavan, 2007;
Hibbing et al., 2010; de Lima Procópio et al., 2012). While
we all got accustomed to the use of antimicrobial substances,
such as antibiotics, against pathogens, we often forget that these
substances are naturally produced by microbes, giving them a
competitive advantage. Indeed, natural microbial communities
have a yet unrecognized arsenal of substances that they apply
daily in their “microbial war” (Hibbing et al., 2010). Bacteriocin
production, for example, is found in a vast majority of bacteria
(e.g., within the genera Myxococcus, Lysobacter, and Bacillus).
Bacteriocins, such as colicin, are primarily active against closely
related species, and work by degrading the antagonist’s inner
membrane or nucleic acids. Gram-negative bacteria, in particular,
lack a specific secreting system for bacteriocins; therefore, the
release of these substances occurs via their own cell lysis. This
indicates that only a small fraction of the bacterial population
produces bacteriocins, thus providing a competitive edge to
their population (Cascales et al., 2007). Nevertheless, for Gram-
positive bacteria, bacteriocin production is not necessarily
lethal, as some express a bacteriocin-specific transport system
that is used for shuffling the antimicrobial back out of the
cell (Riley and Wertz, 2002). The expression of antimicrobial
substances generally occurs in the stationary phase of the
bacterial growth cycle, when they are running short of nutrients.
These compounds may enable or disable the invasion of a strain
into an established community; they may provide the release of
nutrients by cell lysis, and they may even affect the interbacterial
communication (e.g., quorum sensing) (Miller and Bassler, 2001;
Riley and Wertz, 2002).

Early studies on “lytic” bacteria emphasized their potential in
controlling specific groups of microbes; however, those studies
were primarily descriptive. Hirsch and Rades-Rohkohl (1983)
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isolated aerobic bacteria from groundwater and monitored
their ability to reduce E. coli K12 numbers using a simple
agar overlay method. From the 214 different bacterial isolates
tested, 24% revealed inhibitory/lytic effects against E. coli.
In total, 39% of the isolates displayed negative interactions
against the fecal pathogen. As another example of potentially
controlling cyanobacteria in aquatic environments, scientists
found a direct statistical correlation between the chlorophyll-a
concentration, the cyanobacterial biomass, and the abundance
of lytic bacteria (Daft et al., 1975; Fallon and Brock, 1979).
Similarly, the filtrate of different actinomycetes (e.g., Streptomyces
sp.) revealed antimicrobial properties against 50% of more
than 400 prokaryotic strains tested (Safferman and Morris,
1962). Similar studies on antimicrobial substances released by
algae and actinomycetes reported not only antimicrobial effects
but also antiviral effects (e.g., Coxsackievirus or Poliovirus)
(Husmann, 1966; Cliver and Herrmann, 1972; Daubner,
1972; Herrmann and Cliver, 1973; Rehse, 1977). Nasser
et al. (2002) examined the potential for proteases and
elastases produced by Pseudomonads to reduce different viral
titers, and found that the effects were dependent on the
virus type (Figure 4). Cox-A9 virus and Hepatitis A virus
were significantly affected by the presence of extracellular
bacterial enzymes, whereas Polio-1 virus remained unaffected.
Although similar in size, the viruses were characterized by
pronounced differences in the compositions of their capsid
proteins, as evidenced by differences in the isoelectric points.
Accordingly, different viruses may react in a distinct manner
in the presence of extracellular enzymes (Nasser et al., 1991,
2002).

Some reports are available on the bacteriocin responses against
certain medically important human pathogenic Gram-negative
bacteria (e.g., Campylobacter, Heliobacter, and Neisseria) (Mota-
Meira et al., 2000). In the food industry, antimicrobials are used
routinely as preservative agents and for the reduction of specific
unwanted germs (Burnham et al., 1981; Riley and Gordon,
1992; Lin and McBride, 1996; Gautam and Sharma, 2009). For
example, Nisin is a bacteriocin produced by Lactococcus lactis
spp., and is used worldwide against a wide variety of Gram-
positive bacteria (e.g., lactic acid bacteria) or heat-resistant
bacterial spores (e.g., Clostridium botulinum) (Brewer et al.,
2002; López-Pedemonte et al., 2003; Sobrino-López and Martín-
Belloso, 2006; Lucera et al., 2012). Lysozymes are another type
of antimicrobial compounds used specifically against Gram-
positive bacteria, because they act by hydrolyzing the murein
layer (Cunningham et al., 1991). The examples we have described
here only provide insight into the actions of single antimicrobial
substances that have been tested in the laboratory settings
or applied under controlled conditions. Environmental-based
studies, including those for human bacterial pathogens, are
scarce. The effectiveness of intrinsically produced antimicrobial
compounds at ambient concentrations in a heterogeneous
and complex aquatic environment, as well as the co-evolving
development of resistance, remains unclear and a better
understanding is urgently needed (see below).

Activity of Predatory Bacteria
(Bdellovibrio-Type Feeding)
An antagonistic interaction that is rarely considered is the
predation of bacteria by other bacteria. Bacteria that share this

FIGURE 4 | Effects of the extracellular activity from Pseudomonas aeruginosa on the persistence of the pathogenic viruses, Hepatitis A (dashed line), Cox-A9 (solid
line), and Polio-1 virus (dotted line), during coincubations for 400 min. The Y-axis represents the calculated log values of virus titer in the P. aeruginosa incubations
versus the virus concentration in a bacteria-free control (modified from Nasser et al., 2002).
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feeding mode are commonly described as “Bdellovibrio and like
organisms” (BALO), with Bdellovibrio being the most studied and
best characterized organism in this group. BALOs can be found in
several environments including soils, waters of various qualities,
and in wastewater treatment plants (Martin, 2002). Bdellovibrio
is a Gram-negative Deltaproteobacterium, known for invading
the periplasm of other bacteria. Suitable prey comprise mostly
Gram-negative, planktonic, or attached bacteria (Dashiff et al.,
2010). Bdellovibrio attacks by entering the periplasm of its prey,
where it forms a bdelloplast, septates, and finally lyses its prey,
releasing progeny cells (Stolp and Starr, 1963; Rendulic et al.,
2004; Lambert et al., 2006; Davidov and Jurkevitch, 2009; Sockett,
2009). The bdelloplast serves as a protective shield against
phototoxic and chemical damage or phage attack (Friedberg,
1977; Markelova, 2002). Other, less extensively studied BALOs,
like Micavibrio, Ensifer, Vampirococcus, or Daptobacter have
evolved different feeding behaviors (Guerrero et al., 1986; Yair
et al., 2003; Davidov et al., 2006; Dashiff et al., 2010). Micavibrio,
for example, is an Alphaproteobacterium that attaches to the
surface of various planktonic and sessile bacteria (Burkholderia,
Enterobacter, Klebsiella, Pseudomonas, etc.) without entering the
prey, but instead, works to exhaust it from the outside (Davidov
et al., 2006; Dashiff et al., 2010; Koval et al., 2013). While the
exact mechanisms are not yet clear, a transcriptome analysis has
provided the first evidence for the involvement of porins that may
facilitate the uptake of metabolites derived from the degrading
prey cells (Wang et al., 2011). Another extracellular predation
strategy is applied by Vampirococcus, where the predator attaches
via cytoplasmic bridge structures to the cell membrane of
Chromatium, a phototrophic purple sulfuric bacterium living
in freshwater. Subsequently, the introduction of hydrolytic
enzymes leads to the degradation of the prey’s cytoplasm and the
ingestion of its contents (Guerrero et al., 1986; Martin, 2002).
Another example is Daptobacter, a Gram-negative, facultative
anaerobic freshwater bacterium, that is also endobiotic, meaning
it resides and replicates within the cytoplasm of its prey (e.g., the
phototrophic Chromaticeae) (Guerrero et al., 1986).

Given the aforementioned highlighted details, our
understanding of bacterivorous bacteria is still far from
complete. There is, for example, still no proof for how BALOs
are attracted to suitable prey. Chemotaxis toward certain amino
acids and attraction to high bacterial concentrations, prey or not,
seem to play important roles (LaMarre et al., 1977; Straley and
Conti, 1977; Rendulic et al., 2004); however, it is not clear at this
point (i) how they identify and distinguish their Gram-negative
prey from Gram-positive bacteria or particles, (ii) how they come
into contact with their prey, or (iii) how they manage to survive
changes in osmolarity or pH that would be prevalent when
encountering the periplasm of their victims (Rendulic et al.,
2004; Sockett, 2009). In particular, BALOs’ preferred temperature
range is 18–30◦C, which questions its activity in cold aquatic
habitats, such as the deep sea or groundwater in temperate
regions (Filip et al., 1991; Dashiff et al., 2010).

The ability for bacterivorous bacteria to significantly reduce
the pathogenic bacteria in vitro and in vivo has raised
high expectations. Dashiff et al. (2010) confirmed the activity
of Bdellovibrio bacteriovorus and M. aeruginosavorus strains

against several pathogenic bacterial genera, like Aeromonas,
Burkholderia, Enterobacter, Salmonella, Shigella, Vibrio, and
Yersinia. Moreover, a strong reduction potential for the predatory
bacteria against multidrug-resistant Acinetobacter baumannii,
E. coli, Klebsiella pneumoniae, P. putida, and P. aeruginosa was
indicated by Kadouri et al. (2013). Two experimental treatments
testing the application of bacterivorous bacteria have proven
successful: (1) oral applications of B. bacteriovorus in chickens
infected with S. enterica, and (2) their topical applications in cows
suffering from Moraxella bovis infections (Atterbury et al., 2011;
Boileau and Clinkenbeard, 2011). It is important to note that
individual BALOs are tolerant, or even immune, to some toxic,
antibiotic, or antiseptic agents due to the presence and activities
of specific efflux pumps (Markelova, 2002). Even in human
saliva, which acts as an antibacterial agent through protective and
antimicrobial proteins (e.g., peroxidases, mucins, or lysozymes),
some BALOs are able to retain their activities (Slowey et al., 1968;
Van Nieuw Amerongen et al., 2004).

Studies addressing the application of bacterivorous bacteria
in specific ecosystems are scarce, and little is known about
the quantitative effects of bacterial predation on pathogens.
Like other antagonistic processes, previous research was mainly
restricted to the well-defined laboratory experiments rather
than the field studies. In a microcosm experiment, the
BALO Bacteriovorax was inoculated simultaneously with two
pathogenic Vibrio species (V. vulnificus and V. parahaemolyticus)
and the change in optical density (OD) was monitored over
a period of 120 h (Figure 5). During this time, a constant
decrease in OD was observed, indicating a reduction in the
Vibrio strains. As depicted in Figure 5, Bacteriovorax revealed a
higher preference toward V. parahaemolyticus (Chen et al., 2011).
A successful application of BALOs in an aquaculture system was
documented by Chu and Zhu (2010), where induced Aeromonas
hydrophila infections in fishes were cured by the administration
of B. bacteriovorus. Considering the very few environmental
applications, a better and fundamental understanding of the role
of BALOs in natural aquatic ecosystems is greatly desired.

FIGURE 5 | Concentrations of Vibrio parahaemolyticus and Vibrio vulnificus in
the presence (solid black and gray line) and absence (dashed black and gray
line) of bacterivorous Bacteriovorax (modified from Chen et al., 2011).
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POTENTIAL LIMITATIONS

When entering the natural aquatic environment, pathogens
become involved in food web interactions and competition,
and by that become victims of the “microbial war” (Hibbing
et al., 2010). In contrast, microorganisms, in particular,
bacteria and viruses, exhibit an immense drive for developing
adaptations to cope with unfavorable conditions or changing
environments. Thereby, microorganisms (including pathogens)
develop protections and resistance measures for circumventing
one or more antagonistic processes, whether they are abiotic
or biotic. Besides the fact that natural microbial communities
in the aquatic environments respond antagonistically to human
pathogens, and the fact that there are multiple lines of
evidence from laboratory studies indicating that biocontrol is
indeed possible, translating the potential effects of individual
antagonistic interactions into the complex natural aquatic
environment at this time seems difficult, at best. In most studies,
antagonistic effects of microbes and phages on certain pathogens
were evaluated either under well-defined laboratory conditions
examining only isolated processes, or at only a descriptive level.
Moreover, in most of these studies, fecal-indicator organisms,
as well as model bacteria and viruses, were applied almost
exclusively at concentrations exceeding the typical expected
abundances of pathogens in the environment by orders of
magnitude. As a consequence, various limitations require serious
consideration. In the following, we briefly discuss the types of
defense and resistance mechanisms that may be developed by
pathogens against the antagonistic organisms and their agents.
Moreover, additional practical shortcomings and risks associated
with the active field applications are mentioned.

Prokaryotes may efficiently escape the pressures from various
phages by developing infection resistance. Herein, bacteria and
archaea have developed different strategies that reduce, or even
inhibit, phage invasions, or at least minimize the associated
effects. One prominent example is the recently discovered
prokaryotic immune system, known as CRISPRs (clustered
regularly interspaced short palindromic repeats). CRISPR is
based on small RNAs (“spacers”) that restrict phage and plasmid
infections (Barrangou et al., 2007; Labrie et al., 2010; Samson
et al., 2013). There is also an increasing evidence that points
toward bacterial quorum sensing (QS), a form of bacterial
signaling that allows gene expression regulation to be involved
in modulating the phage response (Høyland-Kroghsbo et al.,
2013; Tan et al., 2015; Qin et al., 2016). Although data on
the evolutionary rates for developing phage resistance and
mechanisms for the development of new infection strategies by
phages are rare, reports of rapid appearances of resistant host
mutants within days to weeks deserves consideration (Padan and
Shilo, 1973; Barnet et al., 1981; Tucker and Pollard, 2005).

Since viruses are incapable of active movement, they
encounter their hosts by passive transport and diffusion. As
a result, greater abundances of suitable hosts lead to higher
encounter rates between viruses and their bacterial hosts (De
Paepe et al., 2014). As such, certain host and phage densities are
required for successful phage infections to occur, resulting in the
death of the host population (Chibani-Chennoufi et al., 2004).

Active applications of phage therapy against pathogens in the
aquatic environment, therefore, involve the production of large
amounts of active inoculum, as well as appropriate quantitative
distribution to the target hosts. Regardless, it is unlikely that
lytic phage activities will ever result in the complete elimination
of their targeted hosts, as drastic reductions in the host density
reduce the chances of phages successfully encountering new host
cells. Besides, phages often have a narrow host range, making
a prior identification of the causative bacterial agent necessary.
Another concern is the potential toxic effects of components
released from lysed pathogenic bacteria.

To successfully apply phage therapy for the control of
pathogens in the environment, several strategies can be
implemented to overcome certain limitations and to increase
the efficacy. First, phage cocktails containing a mixture of
several lytic phages may be used to broaden the susceptible
host range. Second, a combination of several lytic phages
collectively with antimicrobials may be favorable to prevent the
rapid development of resistance. Third, specifically engineered
bacteriophages are a promising option as well, providing
benefits such as expressing EPS-degrading enzymes, expressing
certain receptor-binding domains during their infection cycle, or
delivering dominant genes that reverse the bacterial antibiotic
resistance (Marzari et al., 1997; Lu and Collins, 2007; Edgar et al.,
2012; Viertel et al., 2014).

As aforementioned, the effectiveness of protozoa as
antagonistic agents against pathogens highly depends on
their growth and grazing rates, their specialization for the prey,
as well as the grazing pressure faced by the predators from
higher organisms, such as copepods (Sigee et al., 1999 and
references therein). It is also well-known that, facing grazing
pressure, some bacteria escape from or compensate for predation
by physiological and morphological adaptations (Hahn and
Höfle, 2001; Justice et al., 2008). Recently, a correlation has
been observed between the development of resistance against
protozoan grazing and an increase in virulence (Adiba et al.,
2010).

The resistance of microbes against antimicrobials (e.g.,
antibiotics) has been extensively studied and there is no doubt
that bacteria may develop immunity against specific drugs after
a period of exposure (Tenover, 2006). Moreover, a drug-specific
immunity may be spread and shared with others through plasmid
conjugation or horizontal gene transfer (Rosenblatt-Farrell,
2009). Nevertheless, the selective force leading to the resistance
toward different antimicrobials is directly related to their absolute
concentrations and times of exposure. In the environment,
exposures may be transient and concentrations are rather
low. Assuming that human pathogens, initially exposed to the
environment, are non-growing and under physiological stress,
they may be unable to develop resistance in the first instance upon
exposure to antimicrobials. Alternatively, low concentrations
caused by the dilution of extracellular excreted compounds may
considerably limit the effectivity. Since most molecules act in a
concentration-dependent manner, it is worth mentioning that
antimicrobial substances may, at lower concentrations, also act as
chemical signals in inter- and intracellular communication (Yim
et al., 2007; Hibbing et al., 2010).
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Application of these concepts requires knowledge of threshold
concentrations of lytic bacteria and compounds, as well as an
understanding of the spatial vicinity of the antagonist and the
pathogen (e.g., Fallon and Brock, 1979). Notably, the processes
leading to the inactivation and elimination of pathogens also
may shape their genetic diversities, assuming that the more
persistent pathogens are transmitted to the human host and later
may re-enter the environment, becoming a second generation
of pathogen. In face of the increasing number of multidrug-
resistant bacteria, the environmental application of antimicrobial
substances at high concentrations must be handled with caution.

While the resistance of microbes against BALOs remains
unclear, experiments in chemostats have revealed the occurrence
of bacteria that are transiently resistant to BALOs; however, in
the absence of a predator, resistant bacteria were outcompeted
quickly by susceptible bacteria, indicating that resistance is
more of a plastic phenotypic response, rather than a mutational
event (Varon, 1979; Shemesh and Jurkevitch, 2004). Although
studied for decades now, our understanding of the entire biology
of BALOs is still rather incomplete, which greatly limits its
targeted application in the field. The mechanisms, by which
the predatory bacteria identify a suitable prey, while beneficial
bacteria are unaffected, remain cryptic. For an active application,
their unspecific operating modes and their broad range of hosts
must be considered (Dwidar et al., 2012).

Facing the potential repertoire and diversity of resistance
mechanisms that microbes may develop, successful and
sustainable applications of natural antagonists is challenging.
Indeed, biological control may represent only a short-term
measure for reducing the unwanted populations of microbes
and viruses (Sigee et al., 1999). Long-term control strategies may
need to involve steering abiotic factors, such as wastewater load
or nutrient limitations (bottom–up control). Complementary
effects of abiotic environmental factors can be detrimental or
beneficial to pathogens, as well as to the biological agents (phages,
lytic bacteria, or grazers), and can contribute to the complexity
and unpredictability of antagonistic processes and their targeted
applications; an aspect that, in particular, awaits consideration in
future research. Integrative strategies based on physical, chemical,
and biological processes are most promising.

Eventually, it is important to consider that most human
pathogens entering aquatic habitats experience unfavorable,

or even hostile, environmental conditions, preventing significant
reproduction and posing physiological stress. This fact may
reduce the likelihood that pathogens acquire resistance.
Alternatively, global climate change scenarios, leading to warmer
waters and increased nutrient loads, may trigger the survival and
reproduction of human pathogens in aquatic environments, such
that biocontrol by antagonistic interactions will gain a greater
importance in the near future.

CONCLUSION

Biotic antagonistic mechanisms interfere with the propagation
and survival of pathogenic microorganisms in the aquatic
environment. Since environment-based data are rare, a
preliminary evaluation of contributions of the microbial and
viral antagonists in inactivating and eliminating pathogens
is possible presently on a qualitative scale only. To the best
of our knowledge, lytic phages, predatory bacteria, as well as
antimicrobial substances produced by autochthonous bacteria
promise a broad range of applications, not only for the medical
and food industries but also as a means of controlling and
restoring the aquatic environment. Applying a combination of
several mechanisms will increase the effectiveness of the methods
used, and will broaden the range of susceptible pathogens being
targeted. In face of the rapidly increasing number of multidrug-
resistant microbes, further discoveries in the field of microbial
antagonistic interactions are urgently needed.
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