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Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides
an important source of fixed nitrogen input into the soil ecosystem. The improvement of
symbiotic nitrogen fixation is one of the main challenges facing agriculture research.
Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the
development of sustainable agriculture practices to deal with the increasing global
human population. Sociomicrobiological studies of rhizobia have become a model
for the study of the evolution of mutualistic interactions. The exploitation of the wide
range of social interactions rhizobia establish among themselves, with the soil and
root microbiota, and with the host plant, could constitute a great advantage in the
development of a new generation of highly effective rhizobia inoculants. Here, we
provide a brief overview of the current knowledge on three main aspects of rhizobia
interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication
and possible synergistic effects; and warfare, as antagonism and plant control over
symbiosis. Then, we propose new areas of investigation and the selection of strains
based on the combination of the genetic determinants for the relevant rhizobia symbiotic
behavioral phenotypes.
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RHIZOBIA AS A MODEL FOR SOCIOMICROBIOLOGISTS

Microorganisms have become popular models for addressing sociobiological questions related
to the evolution of multicellularity, communication, and to the exchange of nutrients. Indeed,
microbial systems are suitable for the study of mutualistic interactions due to their readiness of
manipulation, their short generation times, and the simple methods for tracking of resources (West
et al., 2006). Moreover, the social behaviors of microorganisms (e.g., cell–cell communication) have
profound impacts on human health. In particular, cell–cell communication has been extensively
studied with the aim of developing new antimicrobial strategies that block the social organization
of pathogenic microorganisms, such as biofilm formation (Xavier, 2016).

Plant-associated bacteria, and more specifically rhizobia, have gained the attention of
sociomicrobiologists thanks to the exchange of goods they experience with their host plant (West
et al., 2002; Denison et al., 2003; Gubry-Rangin et al., 2010). Rhizobia are a polyphyletic group
of Proteobacteria, with all rhizobia identified to date belonging to two proteobacterial classes:
Alphaproteobacteria and Betaproteobacteria. Rhizobia live as free bacteria in soil or plants (as
commensal endophytes), and may form symbiotic nitrogen fixing associations with compatible and
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leguminous plants. Fabaceae (Leguminosae) is the third largest
family of Angiosperms and includes more than 20,000 species
(Lewis, 2005). Access to nitrogen through the symbiosis is an
important part of the evolutionary success of legumes, which
are able to colonize a multitude of ecosystems and has led
to expanded diversity. Moreover, symbiotic nitrogen fixation
contributes to legumes being the second most important family
of crop plants after the Poaceae; they account for 27% of world
grain crop production and contribute up to 33% of the protein in
the human diet (Smýkal et al., 2015).

The high economical relevance of the symbiotic interaction
has promoted the production of commercial rhizobia inoculants.
Inoculation of leguminous crops with rhizobia strains is known
to considerably increase crop yield, mediated largely through
symbiotic nitrogen fixation (Lupwayi et al., 2006). Soybean
in Europe and South America, as well as several legumes
in Australia, are probably the most emblematic examples
(Thilakarathna and Raizada, 2017). Rhizobia inoculants also
influence the overall rhizosphere microbiome, which may lead
to biostimulation of other non-legume crops and can inhibit the
growth of opportunistic bacterial pathogens (Trabelsi et al., 2011,
2012; Das et al., 2017). Moreover, rhizobia are ubiquitous in soil
and in association with plants. Indeed, they can be viewed as
plant-associated bacteria that colonize both legumes and non-
leguminous plants (Mengoni et al., 2013). Several authors have
found rhizobia in the endosphere and rhizosphere of cereals, such
as rice [see for instance (Tan et al., 2001; Yanni et al., 2001)] and
showed that rhizobia can promote plant growth in these non-
legumes species (Bashan et al., 2014; Gopalakrishnan et al., 2015).
In sum, rhizobia are important elements of an upcoming new
green revolution, where plant-associated microorganisms are key
players of eco(nomical) and eco(logical) crop yield increases,
both as a direct source of fixed nitrogen in the agroecosystem,
as well as through acting as promoters of plant growth and plant
health.

During symbiotic interaction, the rhizobia induce the
formation of specialized plant structures, known as nodules
(Sprent et al., 2017), where nitrogen fixation takes place. Rhizobia
provide the plant with fixed nitrogen in the form of ammonia,
while the plant provides the rhizobia a homeostatic environment
to undergo heterotrophic multiplication using carbon derived
from photosynthates and additional micronutrients (e.g., Fe,
S, Mo, etc.). Due to this exchange of nutrients, rhizobia have
gained attention in sociomicrobiological studies as a model of
the evolution of mutualistic interaction. In particular, Hamilton’s
rule [for a recent discussion see (Van Veelen et al., 2017)] has
been investigated with respect to the exchange of goods taking
place between rhizobia and plants (Kiers and Denison, 2008). In
fact, by supplying its host with fixed nitrogen, rhizobia strains
enhance host growth, thereby potentially increasing its access
to photosynthates. However, several rhizobia strains can inhabit
nodules found on the same host plant, even co-inhabiting the
same nodule (Checcucci et al., 2016). This means that a nitrogen-
fixing rhizobia benefits not only its own kin, but also other
rhizobia (and non-rhizobia) strains. Those strains compete for
host resources and future nodulation opportunities, which paves
the way for cheating to occur. However, it has been shown that

plants sanction nodules that are inefficient at fixing nitrogen,
providing a direct advantage (in the nodule endosphere) only for
the mutualistic rhizobia (Kiers et al., 2003).

When considering the molecular mechanisms of social
interactions among bacteria, and between plants and bacteria,
a plethora of systems can be included, spanning from quorum
sensing to volatile molecules, to the classical Nod Factors
and flavonoids, to plant immunity cascades and NCR peptides
(Mergaert et al., 2006; Van de Velde et al., 2010; Mine et al., 2014;
Schulz-Bohm et al., 2015; Kai et al., 2016; Cao et al., 2017). In
the last years, studies on competition for nodule occupancy by
rhizobia have highlighted the role of several components [for
a review see (Onishchuk et al., 2017)]. Here, we divide such
components into systems for trade, diplomacy, and warfare. This
of course should be considered as an approximation, as in the real
global economy, trade and politics have tight and, in some case,
combined roles in the same affair.

TRADE

Keeping on the parallelism between mutualistic interaction
and biological markets (Werner et al., 2014), the collaborative
behavior established by rhizobia and legumes can be compared
to a trading partnership. The main good of exchange is fixed
nitrogen, passed from bacteroids to the plant cell. In return, the
rhizobia are compensated by the plant with space for growth
(the nodule) and carbon compounds for the heterotrophic
metabolism of the bacteroid. Nodule colonization by rhizobia
indeed could be a high remunerative reward offered by the plant.
However, the number of rhizobia released back to the soil from
dehiscent nodules depends on the type of nodule [indeterminate
and determinate, where bacteroids are terminally differentiated
or not, respectively (Denison and Kiers, 2004a)], questioning if
we can consider legume-rhizobial partnership a full mutualistic
interaction (Cao et al., 2017).

Determining the exchange of metabolites (Prell and Poole,
2006; Udvardi and Poole, 2013), and measuring the relative costs
invested by the plant and the bacterium during the symbiosis, is
necessary to define a predictive model of the metabolic (trade)
advantages of symbiotic nitrogen fixation. This model will not
be trivial since symbiotic nitrogen fixation is a developmental
process. Various cellular metabolites change in relation to the
developmental zone of the nodule (White et al., 2007; Ogden
et al., 2017). Consequently, the exchange of goods may be
related to several biosynthetic and catabolic pathways. Finally,
we have to keep in mind that, as large rhizobia genomes
provide a high level of metabolic redundancy (diCenzo and
Finan, 2015), the (horizontally transferred) dispensable genome
fraction may promote considerable strain-specific metabolic
variation. Such variability may imply a corresponding variation
in the exchange of goods between the plant and rhizobia
cells (Remigi et al., 2016). A main point going forward is
to better understand this variability in order to select those
rhizobia strains more effective in “rewarding” the plant (through
the fixed nitrogen offered to the plant) for use as elite
inoculants.
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DIPLOMACY

Aside from the classical exchange of benefits and the reciprocal
control of the fitness (trade), the rhizobia–plant mutualism
evolved the capacity for partner discrimination. Molecularly, the
“entry visa” is based on the lipochitooligosaccharide molecule
known as Nod Factor (NF) and NF receptors (Cao et al., 2017).
Depending on their particular set of nod genes, different rhizobia
produce structurally distinguishable NFs that establish the first
line of partner choice (Geurts and Bisseling, 2002). However, nod
genes are not particularly relevant in the selection of elite rhizobia
bioinoculants, as they primarily dictate whether a strain can
nodulate a specific legume but contribute little to the efficiency
of nodulation.

Instead, the most relevant “diplomacy” genes for selection of
elite bioinoculants strains with high competitiveness for nodule
occupancy are, in principle, genes related to the modulation
of communication and to the direct positive and negative
interaction between the plant and bacterium (Figure 1). Among
the most studied examples is the apparatus involved in quorum
sensing. This apparatus is related to phytohormone modulating
genes, such as those for auxin production and ACC deaminase
that are potentially related to modulation of the rhizobia–
legume interaction (Ma et al., 2004; Okazaki et al., 2004;
Sugawara et al., 2006; Bianco and Defez, 2009; Checcucci
et al., 2017). Additionally, quorum sensing in rhizobia is also
linked to the transfer of symbiotic plasmids in several strains,
including Rhizobium leguminosarum bv. viciae, Sinorhizobium
frediiNGR234, and SinorhizobiummelilotiRm41 [for a review see
(Sanchez-Contreras et al., 2007)]. Interestingly, while the quorum
sensing apparatus is present in several rhizobia species (González
and Marketon, 2003), individual strains may show different
responses to quorum sensing signaling molecules (Sanchez-
Contreras et al., 2007). This can be related to the large variability
in the quorum sensing regulons of rhizobia (Galardini et al.,
2015a). It is important to note that symbiotic nitrogen fixation
abilities are uncoupled from colonization and nodulation abilities
(Westhoek et al., 2017); i.e., rhizobia strains highly competitive
for nodule occupancy do not necessarily fix nitrogen efficiently.
This has resulted in the evolution of plant imposed sanctions
toward ineffective nodules that do not fix nitrogen (Kiers et al.,
2003, 2006; Denison and Kiers, 2004b; Kiers and Denison,
2008); otherwise, cheaters (non-mutualist strains) could possibly
outcompete the mutualist ones (Gubry-Rangin et al., 2010;
Checcucci et al., 2016; Westhoek et al., 2017).

Given that nodulation and nitrogen fixation abilities are not
intrinsically linked, it will be necessary to separately consider
both processes in the development of elite rhizobia bioinoculants.
The exploration of the cornucopia of signaling pathways and
of their role in determining the competitive abilities of strains,
as well as their effect over the whole rhizosphere microbiome,
will probably be one of the greatest challenges of the future.
Signaling is mediated at many levels and in many ways, i.e., as
cell–cell interaction, diffusible molecules, and possibly by other
still poorly known or unknown mechanisms (i.e., volatile organic
compounds, electric signals). Moreover, signaling is strongly
dependant on the context where strains are growing, and can

be influenced by co-resident microbes. Thus signaling cannot be
fully examined using conventional microbiological investigations
based on pure culture. Reconstructed root microbiotas and
easy-to-use gene reporter systems coupled with genome-wide
assessments of transcriptional activation during the various
stages of symbiosis (Karunakaran et al., 2005; Gao and Teplitski,
2008; Pini et al., 2017) could be a strategy to help define the
“diplomatic” relationships of rhizobia strains and the ways to
exploit them for elite rhizobia strain selection.

WARFARE

In order for rhizobia to enter into a symbiotic nitrogen
fixing relationship with a host plant, they have to effectively
compete for rhizosphere colonization with other rhizobia and
non-rhizobia. From the bacterial point of view, competition
implies preventing the colonization of the niche by other
strains. This can take two forms: exploitative (indirect), and
interference (direct). Exploitative competition involves more
effectively utilizing a common limiting nutrient. As examples,
rhizobia can produce siderophores that sequester all available
iron for use by themselves, limiting the ability of competitors to
grow (diCenzo et al., 2014), or strains can better exploit specific
carbon sources present in root exudates (Gage and Long, 1998;
Ramachandran et al., 2011). Interference competition, which we
refer to as “warfare,” occurs when one cell directly prevents
another cell from growing/surviving in the environment. This
can occur, for example, through the production of antibacterial
compounds, such as bacteriocins, that may play a still poorly
defined role in the antagonistic interactions taking place during
competition for nodule occupancy (Hirsch, 1979; Oresnik et al.,
1999). Bacteriocin-encoding gene clusters can be found in many
rhizobial genomes. A search of the IMG database (on August
7, 2017) reported the presence of 11 annotated bacteriocin-
related proteins within the members of the genus Sinorhizobium
(out of 61 genomes, from 1 to 3 per genome), spanning from
bacteriocin transporter genes to bacteriocin protection genes.
We hypothesize that such bacteriocins may promote antagonistic
interactions among members of the same species both in the
rhizosphere and within the nodule.

In several host species (e.g., members of the Inverted-
Repeat Lacking Clade that includes the majority of agriculturally
relevant legumes), plant–rhizobia interaction involves the tight
control of bacterial cell proliferation and differentiation based on
antimicrobial peptides [nodule cysteine-rich peptides (NCRs)], as
well as the suppression of the host immune response mediated
through NF (Cao et al., 2017). The evolution of NCR peptides
resulted in the emergence of some antagonistic, warfare-like
features to the plant–rhizobia interaction. In the classical sense,
NCR peptides do not represent warfare, and are perhaps better
considered in a “policing” analogy as the “handcuffs” that capture
the bacteria within the nodule. Nevertheless, NCR peptides fall
into our somewhat broad definition of warfare as they represent
a method used by the plant to prevent the bacterium from
replicating. NCR peptides promote terminal differentiation of the
rhizobia in the nodule, likely increasing the efficiency of nitrogen
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FIGURE 1 | Overview of the genetic and molecular signals of rhizobia social interaction. A schematic division into trade, diplomacy and warfare systems is shown
(see text for details).

fixation but preventing the bacterium from ever living as a
free-living microbe (increased plant fitness, decreased bacterium
fitness). However, on the other hand, rhizobia have evolved NCR
peptidases that can cleave NCR peptides, preventing terminal
differentiation and nitrogen fixation, but promoting improved
bacterial nodule colonization (decreased plant fitness, increased
bacterium fitness). Recently, NCR peptidases were found to be
involved in determining rhizobia – host compatibility (Price
et al., 2015; Wang et al., 2017a,b; Yang et al., 2017). Interestingly,
the genes encoding NCR peptidases are harbored by plasmids
(Crook et al., 2012), which can be horizontally transmitted and
are part of the dispensable genome fraction. This allows for
the determination of partner compatibility at the level of a
single strain, providing additional complexity to the variability
of symbiotic and nitrogen-fixation abilities of possible inoculant
strains.

A SOCIOMICROBIOLOGY AND
GENOMICS ASSISTED QUEST FOR
ELITE INOCULANT STRAINS

Whereas crop breeding is used to develop new plant cultivars
with the desired features, very few research efforts have been
dedicated to the development of ad hoc rhizobia inoculant strains
(Catroux et al., 2001; Sessitsch et al., 2002). There are only a few

strains currently used as seed inoculants. They have been selected
(when known) on the basis of trials that showed increased crop
yield. However, these studies included only a few plant cultivars
and few pedo-climatic conditions (Denton et al., 2003). Variables
such as plant cultivar, soil pedo-climatic conditions, and more
specifically, variables related to the social interaction of rhizobia,
have been only cursorily considered.

Elite rhizobia bioinoculants must effectively compete with the
native rhizobia for nodule occupancy. This involves appropriately
interacting with the soil and rhizosphere microbiomes, and
surviving in the soil sufficiently long to interact with the
plant. The elite strains should also be highly effective at
providing the plant with fixed nitrogen. However, they should
also combine a subset of other important, growth-promoting
abilities. These could include, for example, producing auxin
that can improve legume and non-legume growth, protecting
the plant from pathogens, or being able to cope with drought,
salt, pollutants, and/or acidic stress conditions. Moreover,
but certainly not less important, the elite strain should be
amenable to production by industrial fermentation, and stay
viable on coated and inoculated seeds as well as in liquid or
grain formulations. Finally, the inoculant could have limited
year-to-year persistence in unplanted soil, to guarantee the
possibility of applying newly improved strains each year
without concern of competition from the previous year’s
inoculant.
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We would argue that taking into account a sociomicrobiology
perspective is a necessity to ensure success in the engineering of
rhizobia inoculants. This view is re-enforced when considering
the effect of the native rhizobia population on the success of
rhizobia bio-inoculants. The success of rhizobia inoculants in the
cases cited above was partially due to the absence of an established
symbiotic rhizobial populations (Deaker et al., 2004). However,
for most crops, an indigenous rhizobia can limit, or completely
abolish the positive effects of the inoculant [for a review see
(Dwivedi et al., 2015)]. This is especially true if the indigenous
rhizobia are highly competitive for nodule occupancy but with
low nitrogen fixing abilities. Because of this, the competitiveness
of rhizobia strains is one of the key aspects that should be
considered when inoculant formulations are developed (Lupwayi
et al., 2006).

Going forward, attention should be paid to all aspects of the
social interactions that rhizobia strains have with the indigenous
rhizobia and non-rhizobia rhizosphere population. As reported
in the previous sections, social behaviors span from the efficiency
of metabolite exchange with the plant, to interactions with the
rhizosphere microbiota and access to the nodule endosphere, to
the antagonism toward other strains or species, to the modulation
of differentiation operated by NCR peptides. Most, if not all,
such rhizobia behavioral phenotypes are ideal candidates for
the selection of the most appropriate panel of strains to be
used as inoculants in agriculture. The knowledge we currently
have on the genetic determinants for some of these phenotypes
may already permit the ad hoc design or selection of improved
inoculant strains. Moreover, from an evolutionary point of view,
rhizobia present a fascinating panorama to be explored to better
understand such social behaviors and the mechanisms that
maintain this high diversity of social-related phenotypes, such as
selective pressure, drift, and genetic exchange.

The genomes of rhizobia are extremely variable (Maclean
et al., 2007), and among species they span from the single
large chromosome of ∼9 Mb of the bradyrhizobia, to the
highly multipartite genomes of the Rhizobium and Sinorhizobium
genera that include several accessory replicons such as chromids,
megaplasmids, and smaller plasmids (Galibert et al., 2001; Tian
et al., 2012). Rhizobia also have large pangenomes, with a
considerable portion of their genome consisting of accessory
and dispensable genes (Tian et al., 2012; Galardini et al.,
2015b; Young, 2016). For rhizobia with multipartite genomes, a
functional modularity of the genome has been shown (Galardini
et al., 2013, 2015a; diCenzo et al., 2016). Additionally, the
secondary replicons are generally more genetically diverse
between strains than the primary chromosome (Galardini et al.,

2013). These properties can, in theory, permit the construction
of “hybrid” strains by combining accessory replicons that harbor
gene functions related to competition, symbiotic efficiency, and
possibly tolerance to harsh soil conditions, from different donor
strains in a single genome. This would be similar to the approach
recently employed by Agnoli et al. (2017) with Burkholderia
cepacia complex species. Additionally, the large pangenomes may
harbor many genes related to the important “social” phenotypes
referred in the previous paragraphs. Such “social” genes may be
useful candidates for strain improvement and may be combined
together (in a single strain) by shuffling secondary replicons
from different donors. We can imagine the development of
an approach to promote horizontal gene transfer of such
genetic determinants between strains in a sort of “pangenome-
assisted selection,” conceptually analogous to the marker-assisted
selection in crops (Collard and Mackill, 2008). In this process,
we could choose (select) from the pangenomic space of a given
rhizobial species those genes that can, once combined in a single
strain, provide the elite features. However, to efficiently deal
with “pangenome-assisted selection,” new experimental settings
and knowledge are compulsory to (i) perform high throughput
screenings of the symbiotic potential of rhizobial strains, and (ii)
have detailed information about the signaling between rhizobia,
the plant, and the rhizosphere microbiota. Experiments aimed at
deciphering the exchange of signals and the effect on plant growth
in reconstructed root microbiotas are needed to move toward
a more comprehensive view of the intimate sociobiological
relationship between the plant and its rhizobial partners, and then
promote a rationale selection of elite rhizobial inoculants.
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