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Models are important tools in microbial ecology. They can be used to advance

understanding by helping to interpret observations and test hypotheses, and to predict

the effects of ecosystem management actions or a different climate. Over the past

decades, biological knowledge and ecosystem observations have advanced to the

molecular and in particular gene level. However, microbial ecology models have changed

less and a current challenge is to make them utilize the knowledge and observations at

the genetic level. We review published models that explicitly consider genes and make

predictions at the population or ecosystem level. The models can be grouped into three

general approaches, i.e., metabolic flux, gene-centric and agent-based.We describe and

contrast these approaches by applying them to a hypothetical ecosystem and discuss

their strengths and weaknesses. An important distinguishing feature is how variation

between individual cells (individuality) is handled. In microbial ecosystems, individual

heterogeneity is generated by a number of mechanisms including stochastic interactions

of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry,

small-scale environmental heterogeneity, and differential transport in a heterogeneous

environment. This heterogeneity can then be amplified and transferred to other cell

properties by several mechanisms, including nutrient uptake, metabolism and growth,

cell cycle asynchronicity and the effects of age and damage. For example, stochastic

gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which

in turn results in heterogeneity in intracellular nutrient levels. Individuality can have

important ecological consequences, including division of labor, bet hedging, aging and

sub-optimality. Understanding the importance of individuality and the mechanism(s)

underlying it for the specific microbial system and question investigated is essential for

selecting the optimal modeling strategy.
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INTRODUCTION

Microbes are important drivers of biogeochemical cycles in all
ecosystems and impact their environments in a plethora of ways.
For example, in lakes, the harmful cyanobacterium Microcystis
aeruginosa can bloom and produce toxins that make the water
unsafe to drink (Paerl et al., 2011). The common gut bacterium
Bacteroides fragilis produces a chemical that helps the host
develop its immune system (Atarashi et al., 2013).

Models are important tools for understanding and managing
ecosystems. They can be used to advance scientific understanding
by interpreting field observations and aid in hypothesis testing.
For example, Jöhnk et al. (2008) used a model to quantify
the roles of temperature range and buoyancy regulation in the
fitness of the toxic cyanobacteriumMicrocystis during heat waves.
Buffie et al. (2015) applied the model of Stein et al. (2013)
to infer an antagonistic interaction in the gut between the
pathogen Clostridium difficile and another species of that genus,
Clostridium scindens. For ecosystemmanagement, models can be
used to answer “what if ” questions and make predictions about
the effects of future environmental conditions. For example,
Blumberg and Di Toro (1990) used a model to predict the effects
of climate warming on phytoplankton and dissolved oxygen in a
lake. Bucci et al. (2016) predicted the composition of the mouse
gut microbiota following infection with C. difficile.

In the past decades, microbiology has experienced rapid
advances in observational and experimental technologies,
resulting in substantial progress in the understanding ofmicrobes
at the molecular level. For example, nitrogen (N) fixation
by the cyanobacterium Anabaena involves a division of labor
among N-fixing heterocysts and photosynthesizing vegetative
cells. The nitrogen-containing β-aspartyl-arginine is produced
by cyanophycinase in heterocysts, transferred intercellularly to
vegetative cells where it is converted to aspartate and arginine
by isoaspartyl dipeptidase (Burnat et al., 2014). Another example
involves transcription of genes to messenger RNA (mRNA)
and translation to proteins, which is performed by RNA
polymerase (RNAP) and the ribosome complex, respectively. In
bacteria, those can form a single transcribing and translating
“expressome” complex, with known 3D structure and functional
consequences on transcriptional pausing, backtracking and
termination (Kohler et al., 2017). Characterization of ecosystems
is following the same trend. For example, lakes used to be
characterized using bulk measures, like Chlorophyll a and total
phosphorus concentrations, but observations are now often at
the molecular level, including gene expression (transcript levels)
(Vila-Costa et al., 2013). Animal and human microbiota are now
routinely characterized using multiple omics technologies, such
as community characterization using bacterial 16S ribosomal
RNA (rRNA) polymerase chain reaction (Costello et al.,
2009), and increasingly meta-genomics, transcriptomics and
proteomics (Wang et al., 2015).

The development of models is lagging behind as most models
still do not make use of molecular level understanding or
observations. It is recognized that there is a substantial gap
between our microbial ecology models and current microbiology
knowledge and environmental observations (Fuhrman et al.,

2013; Trivedi et al., 2013; Hellweger, 2015; Dick, 2017; Stec et al.,
2017). For example, lake phytoplankton models still simulate
phytoplankton biomass concentrations (e.g., µg Chlorophyll a
L−1) and the effect of a nutrient on the growth rate using an
equation developed 75 years ago (Monod model). Likewise, most
models of the gut aggregate species into functional groups based
onmetabolic pathways (Kettle et al., 2015). Models are now being
developed that explicitly resolve genes and make predictions at
the population and ecosystem level.

This paper has two parts. First, we review existing modeling
approaches. Here, we focus on mechanistic models that explicitly
include genes and simulate population-level properties (e.g.,
microbe concentration, nutrient uptake) rather than empirical
models. One aspect in which the existing approaches differ
is their representation of microbial individuality. The second
part of our review will use examples to explain why including
individuality is important.

PART 1: REVIEW OF EXISTING MODELING
APPROACHES

In this section we describe three modeling approaches that have
been used to bridge the gap between genes and ecosystems,
including metabolic flux, gene-centric and agent-based modeling
(ABM). We illustrate each approach using a hypothetical
ecosystem, where two microbial species grow and interact via
three metabolites (Figure 1). We then discuss a number of
examples from the literature, focusing mostly on the modeling
aspects of the studies. Then we highlight the weaknesses and
strengths of each approach. Finally, we characterize the models
along a number of dimensions, including space, time, function,
heterogeneity, species diversity and genes.

Literature Selection Criteria
The review is focused on the use of gene-level models for
advancing understanding and making predictions of microbial
ecosystems. To keep the scope of the review manageable,
we included only quantitative models, which are required for
predictions, although qualitative models may be sufficient to
advance understanding. We applied the following selection
criteria: (1) model uses a mechanistic (vs. empirical) approach,
(2) model explicitly considers at least one actual gene or protein;
(3) model includes some form of direct or indirect interaction
among microbes; (4) model includes multiple microbial species
(or strains) or phenotypes in different locations; and (5) model
makes predictions at the population level. We therefore exclude
empirical models that correlate observed gene distributions to
environmental factors and function (e.g., carbon export in the
ocean, Guidi et al., 2016), models that use hypothetical genes or
digital genomes describing behavioral traits (e.g., Lenski et al.,
1999; Clark et al., 2011), scale up single-cell models using
multiple independent simulations where the cells do not interact
(e.g., Emonet and Cluzel, 2008; Labhsetwar et al., 2013) and
studies that infer interactions from comparison of metabolic
networks and do not make quantitative predictions (e.g., Levy
and Borenstein, 2013; Zelezniak et al., 2015).
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FIGURE 1 | Hypothetical ecosystem used to illustrate different modeling

approaches. Species 1 takes up metabolites A and B, produces metabolites

C, D, E, and F and excretes metabolite C. Species 2 takes up metabolites A

and C and produces metabolites D, G, and H.

Metabolic Flux Modeling
Definition
This approach builds on the genome-scale, constraint-based
modeling approach most commonly applied to single species
(Feist et al., 2008). In this approach, the genome sequence
is used to derive a network of potential metabolic reactions
by a combination of automated and manual (curation) steps.
Then, a flux distribution is predicted, typically by optimizing
the flux distribution to maximize an objective function, like
maximization of biomass production (Schuster et al., 2008). The
extension of this approach to multiple species builds on efforts
to extend it to multiple compartments of higher eukaryotic
organisms. There are three approaches tomulti-speciesmetabolic
flux modeling, which we will refer to as environmentally coupled,
directly linked and aggregated approaches. The environmentally
coupled approach builds on the dynamic flux balance analysis
(FBA) approach (Varma and Palsson, 1994), where the microbes
and extracellular metabolites are represented using concentration
state variables. The growth rate and metabolite fluxes are
computed from FBA assuming a common pool for extracellular
metabolites and that the system is in a steady state during
each time step. The directly linked approach explicitly links
the metabolic networks of the species using exchange reactions.
This is conceptually the same way in which multi-compartment
organisms are modeled. The aggregated approach (also referred
to as pooled, supra-organism or enzyme soup approach) involves
constructing one network by combining the individual networks
and removing duplicates. This ignores cellular boundaries and
is most applicable to metagenomic datasets. Box 1 illustrates
these three approaches for the hypothetical ecosystem shown in
Figure 1. This approach has also been referred to as Ecosystems
Biology (Klitgord and Segrè, 2011) or Community Systems
Biology (Zengler and Palsson, 2012).

Examples
There have been several applications of metabolic flux models
to communities of microbes. For recent reviews see Zengler and
Palsson (2012), Biggs et al. (2015), Tan et al. (2015), Zomorrodi

and Segrè (2016), Perez-Garcia et al. (2016), and Gottstein et al.
(2016).

Environmentally coupled models
Scheibe et al. (2009) applied FBA to learn about the growth
of Geobacter and uranium bioremediation in a contaminated
groundwater site where Geobacter dominates the community.
They coupled a genome-scale FBA model to a two-dimensional
reactive transport model. The FBA model computes growth
rate and fluxes based on ambient acetate, Fe(III) and ammonia
concentrations in each grid element. Those growth rates and
fluxes are then used by the reactive transport model to
compute the Geobacter biomass, acetate, Fe(III) and ammonia
concentrations, as well as other processes like U(VI) reduction.
The new ambient concentrations are then again used by the
FBA model to compute the growth rate and fluxes at the next
time step and so on. Due to computational constraints, the
FBA calculations were done a priori for 1,000 combinations of
metabolite concentrations and stored in a look-up table, rather
than a dynamic coupling between the models. One of the main
advantages of the FBA-based approach is that it allows for
variable substrate utilization and growth yields, which is not
supported by conventional models. The model was able to make
predictions of similar quality as the previous reactive transport
model (i.e., without FBA component), but it did so without the
need to calibrate rate parameters (Figure 2).

Tzamali et al. (2009) and Tzamali et al. (2011) used the
dynamic FBA approach to simulate the interaction among
various E. coli strains, including wild type and single gene
knockouts. For various substrates, they identified potential
communities of co-existing strains. For example, growth on
pyruvate supported communities with up to 6 strains. The most
efficient community of 4 mutants produced 2.2% more biomass
than a pure culture of the wild type.

Zhuang et al. (2011) developed a dynamic, genome-scale FBA
model of two species in competition in a uranium-contaminated
aquifer. Rhodoferax and Geobacter both oxidize acetate and
reduce Fe(III), but only Geobacter can reduce U(VI), rendering
it less soluble and therefore contributing to the clean-up of the
site. The FBA models of the two species calculate growth and
metabolite production/consumption rates, which are used to
integrate biomass and metabolite concentration state variables.
The model predicted that, under low-ammonia conditions,
Rhodoferax is outcompeted by Geobacter, which can fix nitrogen,
and that this promotes respiration (vs. biomass production) and
associated U(VI) reduction, which are patterns consistent with
observations.

Zhuang et al. (2012) expanded the model by Zhuang et al.
(2011) and applied it to design remediation scenarios. In
particular, they used two separate FBA models for attached and
planktonic Geobacter to differentiate their functions: planktonic
cells reduce U(VI) and attached cells reduce Fe(III). Attachment
and detachment rates were used to transfer biomass among
these two fractions. This illustrates one approach by which
heterogeneity can be simulated in these types of models.

Harcombe et al. (2014) developed dynamic FBA models of
two and three species on a two-dimensional grid, where biomass

Frontiers in Microbiology | www.frontiersin.org 3 November 2017 | Volume 8 | Article 2299

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kreft et al. From Genes to Ecosystems

BOX 1 | From genes to ecosystems using metabolic �ux modeling.

Single species

The starting point for a metabolic flux model is a set of mass balance equations:

dx

dt
= S · v (B1.1)

where x (mmol gDW−1, i.e., per gram biomass dry weight) is a vector of metabolite concentrations, S is the stoichiometric matrix and v (mmol gDW−1 h−1 ) is a

vector of reaction rates for uptake, excretion, internal metabolism and growth. Typically, a steady-state is assumed so the derivatives are zero. The stoichiometric

matrix (S) for species 1 of the hypothetical ecosystem is presented in Table B1, where columns are reactions and rows are metabolites. Lower and upper bounds

for the reaction rates, determined based on thermodynamics, enzyme kinetics or measurements, can be included in the optimization procedure.

There are typically infinitely many solutions that satisfy the equation. For example, in species 1 (Figure B1.1), biomass (metabolite F) can be produced by any

combination of two pathways (A:E:F or A:D:F). Computational methods are available that decompose the stoichiometric matrix into unique sets of functional

units (pathways) such as elementary modes or extreme pathways (Papin et al., 2004). A more common approach, flux-balance analysis (FBA), involves optimizing

reaction rates to maximize the value of some objective function using linear programing (LP). Several objective functions have been used, such as minimizing ATP

production and maximizing production of some metabolite, but maximizing biomass production yield or rate is often considered to be the most appropriate in an

ecological context. When biomass production is maximized, it is assumed that the cell regulates fluxes through its metabolic network in a way that maximizes

biomass production. The corresponding objective function for the species 1 of our example system is to maximize the production of metabolite F (VMetE1 + VPrdF1
or VGrowth1 in Table B1). This is relatively simple and real models typically use a more complex biomass growth function, e.g., a genome-scale model may include

various precursors (e.g., G6P, F6P) and cofactors (e.g., ATP, NADH). Algorithms that integrate gene expression data are also available (Becker and Palsson, 2008).

FBA is fundamentally a steady-state approach, but a pseudo-time-variable model can be constructed (Varma and Palsson, 1994; Mahadevan et al., 2002).

Multiple species—environmentally coupled models

Figure B1.1 illustrates the dynamic, multi-species metabolic flux modeling methodology. The model includes state variables for microbial biomass (X ) and

extracellular metabolites (C). The microbes grow according to a growth rate (µ) and consume/produce metabolites according to specific consumption/production

rates (V ). Those values are calculated from the metabolic flux models, which are optimized to maximize the growth yield subject to a number of constraints, including

a maximum consumption rate for each metabolite based on its concentration. A simulation will proceed in a step-wise manner: (1) Calculate the constraints based

on all C. (2) Optimize the metabolic model of each species, which yields µ and V. (3) Calculate the new X for both species based on µ. (4) Calculate the new C

for both metabolites based on V from both species. Repeat. When the metabolic model does not lead to a viable solution, a simple death routine can be invoked

(Zhuang et al., 2011). It is conceptually straightforward to include other reactions (e.g., between extracellular compounds) and transport (Scheibe et al., 2009).

FIGURE B1.1 | Multi-species metabolic flux modeling—environmentally coupled models. After Figure 2 in Zhuang et al. (2011). X (gDW L−1) = microbial biomass

concentration, C (mmol L−1) = extracellular metabolite concentrations, µ (h−1) = specific growth rates, V (mmol gDW−1 h−1) = specific flux velocities.

(Continued)
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BOX 1 | Continued

Multiple species—directly linked model

Figure B1.2 illustrates the multi-species metabolic flux modeling approach developed by Stolyar et al. (2007). The metabolic models for each species (Figure B1.1)

are combined into a single model. Exchange of metabolites among the species occurs by directly linking their reactions, which constrains them to be the same.

This is equivalent to assuming there is no change in the extracellular metabolite concentrations. The model is optimized to maximize a weighted combination of the

biomasses.

Multiple species—aggregated model

Figure B1.3 illustrates the multi-species metabolic flux modeling approach developed by Taffs et al. (2009). The reactions and metabolites for the two species (as

shown in Figure B1.1) are merged into a single model and a single objective function is used to determine the flux distribution.

FIGURE B1.2 | Multi-species metabolic flux modeling—directly linked model. After Figure 2 in Stolyar et al. (2007). The metabolic models for each species

(Figure B1.1) are combined into one model, with exchange reactions linking their metabolisms.

FIGURE B1.3 | Multi-species metabolic flux modeling—aggregated model. After Figure S2 in Taffs et al. (2009). The metabolic models for each species (as

shown in Figure B1.2) are merged into one model.

(Continued)
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BOX 1 | Continued

TABLE B1 | Stoichiometric Matrix (S) and lower and upper bounds for the FBA of species 1.

VMetA1 VMakE1 VMetE1 VPrdF1 VUptA1 VUptB1 VExcC1 VGrowth1

A −1 −1 0 0 1 0 0 0

B 0 0 0 −2 0 1 0 0

C 0 0 0 2 0 0 −1 0

D 1 0 0 −1 0 0 0 0

E 0 1 −1 0 0 0 0 0

F 0 0 1 1 0 0 0 −1

Lower 0 – ∞ 0 0 0 0 0 0

Upper ∞ ∞ ∞ ∞ MM∗ MM∗
∞ ∞

Rows are metabolites and columns are reactions. ∗Calculated from extracellular substrate concentration using the Michaelis-Menten function (see Figure B1.1).

grows and dies, extracellular metabolites are consumed and
produced, and biomass and metabolites move by diffusion. Cole
et al. (2015) extended the dynamic FBA approach further to
three dimensions and used it to simulate growth of E. coli in
colonies on agar. The model was able to simulate the small-scale
environmental heterogeneity in dissolved oxygen and nutrient
concentrations, and the resulting phenotypic differentiation of
the bacteria (i.e., fermenting cells in the interior). Other multi-
species, environmentally coupled metabolic flux models were
presented by Salimi et al. (2010), Hanly and Henson (2011),
Hanly and Henson (2013), Biggs and Papin (2013), Chiu et al.
(2014) and Louca and Doebeli (2015). Zomorrodi et al. (2014)
presented a dynamic version of the multi-level optimization
routine presented previously (Zomorrodi andMaranas, 2012, see
below).

Directly linked models
Stolyar et al. (2007) developed an FBA model of two microbes
that are mutualistic in the absence of sulfate, Desulfovibrio
vulgaris and Methanococcus maripaludis. In the scenario
evaluated, D. vulgaris grows on lactate, producing H2, formate,
CO2 and acetate, which support the growth of M. maripaludis.
The model consists of three compartments, representing the
metabolism of the two species and the exchange between
them. The metabolite fluxes in the central metabolism of each
species and exchange reactions are represented using 89 and
82 equations, respectively. The third compartment represents
the exchange flux of H2, formate, CO2 and acetate, where H2

and formate were not allowed to accumulate in the medium, so
that their rates of production by D. vulgaris and consumption
by M. maripaludis are the same. The combined model was
optimized to maximize biomass production of both species,
with a larger weight for D. vulgaris, based on observations.
However, the biomass ratio of the two species is constrained by
the exchange reaction, so it was relatively invariant to the weights
used. The model suggested that the H2 was essential, but that
formate could be eliminated.

Wintermute and Silver (2010) applied the FBA modeling
approach at the genome scale to 46 E. colimutants, each incapable

to synthesize an essential metabolite. Growth experiments were
conducted with 1,035 binary strain combinations. A joint FBA
of each pair allowing for exchange of all shared metabolites
between the strains was developed. The models were optimized
to minimize the difference between the flux distributions of the
wildtype and mutant (minimization of metabolic adjustment,
MOMA, Segrè et al., 2002). The idea behind this objective
function is that the regulatory system is still based on the wildtype
and has not yet adjusted to the mutation. The joint FBA models
were consistent with the finding that pairings of mutants blocked
in the same biosynthetic pathway rarely show synergistic growth
(4% of the cases) while pairings of mutants in separate pathways
did so in 18% of cases. The model correctly predicted that strains
grow best when they require small amounts of metabolites that
are cheap to produce by the other strain. The ability of simple
stoichiometric models to predict fitness costs and benefits of
metabolic cross-feeding is encouraging.

Klitgord and Segrè (2010) applied the FBAmodeling approach
to binary pairs of seven species and identified the media
composition that would support symbiosis. They developed
genome-scale FBA models of all possible binary pairs and did
a systematic search for media compositions that would support
growth of the pair but not the individual species.

Huthmacher et al. (2010) generated an FBA model of the
metabolism of the malaria causing Plasmodium falciparum and
its host, the erythrocyte (red blood cell). By constraining the
metabolic network with gene expression data of P. falciparum,
they were able to predict metabolic fluxes for different life cycle
stages of the pathogen.

Zomorrodi and Maranas (2012) developed a community FBA
modeling framework and applied it to a number of systems,
including those of Stolyar et al. (2007) and Taffs et al. (2009).
A novel aspect in this work is the consideration of multiple
objective functions, including maximization of growth of each
species as well as biomass production at the community level,
which can be used to explore tradeoffs between selfish and
altruistic driving forces.

Other multi-species, directly linked metabolic flux models
were produced by Taffs et al. (2009), Bizukojc et al. (2010),
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FIGURE 2 | Comparison of observations (symbols), traditional model (solid lines) and FBA-based model (dashed lines). Reproduced from Scheibe et al. (2009) with

permission. The figure shows acetate and U(VI) concentrations at a groundwater bioremediation site. Concentration time series are presented at 3.7, 7.3, and 14.6m

distance from the acetate injection gallery. Acetate increases at progressively later times as the distance from the injection gallery increases. Consistent with this, U(VI)

decreases at progressively later times. Colors identify single wells.

Bordbar et al. (2010), Freilich et al. (2011), Khandelwal et al.
(2013), Nagarajan et al. (2013), Shoaie et al. (2013), Ye et al.
(2014), El-Semman et al. (2014), Merino et al. (2015) and
Heinken and Thiele (2015).

Aggregated models
Taffs et al. (2009) applied different approaches to model
three species (oxygenic phototrophs, filamentous anoxygenic
phototrophs and sulfate-reducing bacteria) in the thermophilic,
phototrophic mat communities from Octopus and Mushroom
Springs in Yellowstone National Park (USA). One of their
approaches does not consider compartments, but lumps all
reactions into one species (see Box 1). This approach ignores
compartmentalization and the fact that intermediate intracellular
metabolites from one species may not be available to another.
However, it does not require assigning individual enzymes or
reactions to species, functional groups or guilds and is well suited
for data from metagenomics. A unique aspect of this study is the
use of elementary mode analysis (EMA), which is an alternative
to FBA and characterizes the set of all possible flux distributions,
rather than just the optimal one.

Tobalina et al. (2015) applied the aggregated approach
to naphthalene-contaminated soil communities. An interesting
aspect of that study was that the model was based on
metaproteomics data, which implicitly accounts for regulation.

Cerqueda-García and Falcón (2016) applied the aggregated
approach to study the metabolism of communities in microbial
mats and microbialites (living carbonate rock structures similar
to corals and stromatolites). Starting with metagenomic datasets,
they reconstructed a metabolic network, and then used EMA
to identify feasible pathways through this network for C and N
assimilation. They identified a number of alternative CO2 fixation
pathways, which were not identified for these systems previously.

Strengths
• The FBA approach can directly utilize molecular data,

genomics, transcriptomics, proteomics and metabolomics,
from pure laboratory cultures and the environment (e.g.,
metagenomics) as long as annotations are available, which is
increasingly the case.

• The approach is comprehensive in terms of functions and
metabolites. This is likely to be increasingly useful, as
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recent observations from a number of environments suggest
that bacteria have a high substrate specificity (Kindaichi
et al., 2013; Salcher et al., 2013). For example, when a
freshwater community was presented with 14 radiolabeled
low-molecular weight (LMW) organic substrates, the two
most abundant microbes belonging to the Actinobacteria ac1
and Alphaproteobacteria LD12 tribes had no overlap in their
substrate acquisition spectra. The concept of dissolved organic
carbon (DOC) as a common currency for heterotrophic
microbes is too simplistic. One of themain applications of FBA
has been to understand complex substrate uptake patterns.

Weaknesses
• The directly linked and aggregated approaches assume the

system to be in a steady-state. The environmentally coupled
approach also assumes steady-state flux distributions during
each time step, but flux distributions can change from time to
time. For many cases this assumption will be sensible, but for
others not. For example, planktonic bacteria experience a very
heterogeneous nutrient regime and may experience nutrient
patches with short durations (∼60 s, Taylor and Stocker, 2012),
comparable to the time required for gene expression, protein
translation and maturation. Genome-scale models are being
developed that go beyond steady-state metabolite fluxes (e.g.,
include dynamic transcript, protein andmetabolite pools, Karr
et al., 2012) and this technology will eventually be applied at
the ecosystem scale.

• It is not always clear what objective function should be
used to optimize the flux distribution (Schuster et al., 2008).
Maximization of biomass production seems like a good
choice from a biotechnological perspective. However, there
are cases where it is advantageous to divert production away
from biomass, including to storage products, toxins or EPS
(Merino et al., 2015), which may conflict with the biomass
objective. Moreover, in a well-mixed, stable environment,
specific growth rate will likely be maximized by natural
selection while in a spatially structured environment such as a
biofilm, the biomass yield is likely to be maximized by natural
selection (Kreft, 2004).

• The approach typically entails specifying a biomass
composition, and commonly this is applied across different
conditions. However, the biomass composition is known to
change (Benyamini et al., 2010).

• Growth dilution of metabolites, other than the ones used in the
growth equation (see above), is typically ignored (Benyamini
et al., 2010). Specifically, there should be a “–µ x” on the right-
hand side of Equation B1.1. Accounting for growth dilution
is conceptually straightforward but it requires specifying the
metabolite concentrations, which are not typically available
at the genome scale. Metabolomics data can help to fill this
gap, but this would be difficult for all metabolites, times
and locations in the model and impossible for prediction
simulations. Another hurdle is the computational cost. The
metabolite dilution FBA (MD-FBA) model of Benyamini et al.
(2010) uses mixed-integer linear programming (MILP, vs. LP
used by FBA), which is computationally more demanding
than LP. This limitation may be especially important for

applications that require solutions for multiple species, times
and locations.

• The approach does not account for individual heterogeneity
(see Part 2).

Gene-Centric Modeling
Definition
In the gene-centric or functional gene approach, the model is
built based on genetic information, as inmetabolic fluxmodeling,
but focused on capturing the dynamic behavior of specific
genes or gene activities in the system. Thus, the biogeochemical
fluxes are based on the genetic composition of the microbial
community. Microbes are grouped based on specific functional
or proxy genes and tracked using corresponding concentration
state variables. This is similar in spirit to modeling functional
groups (e.g., N-fixers, lactate producers, Le Quéré et al., 2005;
Kettle et al., 2015). The concentrations of genes (e.g., number
of gene copies per liter) are simulated using mass balance
differential equations, which is how typical microbial ecology
models simulate species. The rate of gene production (or
growth) can be tied to the Gibbs free energy released by the
reaction catalyzed by the corresponding enzyme. The approach
is illustrated in Box 2.

Examples
Reed et al. (2014) presented the gene-centric approach and
applied it to study nitrogen cycling in the Arabian Sea oxygen
minimum zone (OMZ). The model includes eight functional
genes, including those for denitrification (nitrate reductase, narG,
nitrite reductase, nirK), aerobic ammonia oxidation (ammonia
monooxygenase, amoA) and anaerobic ammonium oxidation
(anammox, hydrazine oxidoreductase, hzo), as well as relevant
metabolites, including dissolved oxygen (O2), ammonium
(NH+

4 ), nitrate (NO
−

3 ), and nitrite (NO−

2 ). The model-predicted
gene abundances were compared directly to observations from
qPCR (gene copies L−1, Figure 3). The authors also compared
model-predicted changes in gene abundances over time to
observed mRNA concentrations in a qualitative manner (gene
copies L−1 s−1 vs. mRNA copies L−1, Figure 3). An interesting
problem addressed by this model is the dual role of nitrogen
as an energy source and biomass component, where the latter
is not considered by the gene-centric approach. This was
handled by calculating the total biomass increase/decrease and
removing/adding corresponding amounts of N from/to the
extracellular metabolite pools. The model was used to show that
denitrification is the dominant nitrogen loss process in this area,
which is different from many other OMZs, where anammox
dominates.

Reed et al. (2015) applied the gene-centric approach to
simulate functional genes for sulfur, nitrite, ammonia, methane
and hydrogen oxidation and associated metabolites in a
submarine hydrothermal vent plume. The pathways for oxidation
of a number of reduced sulfur species (e.g., hydrogen sulfide,
thiosulphate) co-occur in one species (SUP05), so the pathways
were combined into one functional gene in the model. The
authors compared their model-predicted relative abundance (%)
of functional genes to observations. The hydrogen concentration
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BOX 2 | From genes to ecosystems using gene centric modeling.

The following description is based on Reed et al. (2014), but adapted to the hypothetical ecosystem considered here and some of the nomenclature is altered to

facilitate comparison with the other approaches. The first step in the development of the model is to identify the functional genes. For the hypothetical example, we

will use prdF and metC and ignore the others (Figure B2). Thus, state variables prdFg and metCg (no. L−1) represent species 1 and 2, respectively. The reactions

mediated by these gene products are assumed to be the limiting reactions along the pathway, but exchange with extracellular metabolites requires accounting for

the input and output of the entire pathway. For prdF, the overall reaction is:

Aext
+ 2 Bext

prodF
→ 2 Cext (B2.1)

The production rate of metC genes as a result of metabolism associated with the metC gene (RmetC , no. L
−1 d−1) is:

RmetC = metCg FT,metC µmax,metC
CC

Km,metC,C + CC
(B2.2)

metCg (no. L
−1) is themetC gene concentration. FT,metC is a thermodynamic potential factor, which accounts for the chemical energy available to drive themetabolism,

and can be estimated from the energy yield of the associated reaction. µmax,metC (d−1) is the maximum specific growth rate. CC (molC L−1) and Km,metC,C (molC

L−1 ) are the extracellular concentration and half-saturation constant for metabolite C. The production rate of prdF genes (RprdF ) is:

RprdF = prdFg FT,prdF µmax,prdF
CA

Km,prdF,A + CA

CB

Km,prdF,B + CB

Ki,prdF,C

Ki,prdF,C + CC
(B2.3)

The last fraction accounts for inhibition by metabolite C. The mass balance equation for extracellular metabolite B is (transport and other reactions are omitted for

clarity):

dCB

dt
= −

γprdF,B

γprdF,A

RprdF

qprdF YprdF
(B2.4)

γprdF,B and γprdF,A are stoichiometric coefficients. Here, 2mol B are consumed for every 1mol A, so γprdF,B = 2 and γprdF,A = 1. qprdF (no. gDW−1, i.e., per gram

biomass dry weight) is the intracellular concentration of prdF genes, which depends on the number of gene copies in the genome. YprdF (gDW molA−1 ) is the yield,

which depends on the energy yield of the associated reaction. For metabolite A, we have to consider consumption by both species:

dCA

dt
= −

RprdF

qprdF YprdF
−

γmetC,A

γmetC,C

RmetC

qmetC YmetC
(B2.5)

Here, A and C are consumed in equal amounts, so γmetC,A = γsmetC,C = 1. Metabolite C is consumed by the reaction associated with metC and produced by the

reaction associated with prdF:

dCC

dt
= −

RmetC

qmetC YmetC
+

γprdF,C

γprdF,A

RprdF

qprdF YprdF
(B2.6)

Here, 2mol C are produced for every 1mol A consumed, so γprdF,C = 2 and γprdF,A = 1. The mass balance for gene prdF is:

dprdFg

dt
= RprdF − kd prdFg (B2.7)

where kd (d−1) is the death rate. The first term in the gene mass balance equation accounts for the production of the gene due to the growth associated with its

reaction and the second term accounts for mortality.

FIGURE B2 | Gene centric modeling.

is relatively low in this system and their model predicted no
significant increase in hydrogenase gene abundance due to
aerobic hydrogen oxidation. However, substantial quantities of
hydrogenase genes were observed suggesting that they may be
produced because they co-occur with a gene that does experience
substantial growth as observed (SUP05 may have genes for sulfur

and hydrogen oxidation, Anantharaman et al., 2013). When this
coupling is included in the model, it was able to reproduce the
observations.

Louca et al. (2016) presented a gene-centric model of
six functional genes and eight metabolites for a number of
dissimilatory redox pathways involved in nitrogen and sulfur

Frontiers in Microbiology | www.frontiersin.org 9 November 2017 | Volume 8 | Article 2299

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kreft et al. From Genes to Ecosystems

FIGURE 3 | Comparison of gene-centric model predictions (solid lines) to observations (dotted line in top left and symbols in other panels) of metabolites, gene and

mRNA levels in the Arabian Sea oxygen minimum zone. From Reed et al. (2014). Copyright © (2014) by the National Academy of Sciences. The figure shows an

oxygen low from about 400 to 900m and a coincident low in ammonia monooxygenase (amoA) DNA and mRNA, and an increase in anaerobic ammonium oxidation

(anammox, hydrazine oxidoreductase, hzo) DNA and mRNA.

cycling in a seasonally anoxic fjord (Saanich Inlet, Vancouver
Island, Canada). That model extends the gene-centric modeling
approach by explicitly simulating mRNA and proteins, assuming
their production rates are proportional to the corresponding
reaction rates and subjecting them to transport and decay
processes. Model predictions for mRNA and proteins were
compared to observations on a qualitative basis. The model
was used to gain insights into the sulfur and nitrogen pathways
in this system. For example, the model predicted incomplete
denitrification by the SUP05 clade, which results in leakage of
nitrite that supports anammox and loss of nitrogen.

Strengths
• The approach is readily integrated into existing models based

on concentration state variables (Reed et al., 2014).
• The approach makes quantitative predictions of gene levels

that can be compared directly to observations.

Weaknesses
• While this modeling approach is readily applied to

chemotrophs where there is a direct link between the

rate of the reaction and the growth rate of the microbe, it
is less clear how to apply it to a phytoplankton species that
may be limited by nitrate, but uses the energy derived from
sunlight to reduce it to ammonia for incorporation into
amino acids. Heterotrophs growing on a complex mixture
of dissolved organic matter (DOM) may also be difficult to
model with this approach.

• The extension of the method to mRNA and proteins
(Louca et al., 2016) includes simulating them as independent
concentration variables. This does not account for their
natural co-existence in the cell and may lead to some odd
effects, like mRNA and protein appearing in locations where
there are no corresponding genes.

• The method supports multiple co-occurring genes (see Reed
et al., 2014 for equations), but that is based on constant
fractions within a community, which may change dynamically
and spatially in a natural community (e.g., species succession
in phytoplankton). This method is also more difficult to
implement. The reader is invited to rework the example in
Box 2 for a model that uses metA and metC (which co-occur
in species 1) as functional genes.
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• The approach does not account for individual heterogeneity
(see Part 2).

Agent-Based Modeling (ABM)
Definition
ABM or individual-based modeling (IBM) involves simulating
microbes as individuals. This is in contrast to the traditional
population-level approach, where microbes are simulated as
concentration state variables. ABM is already an established
modeling technology in microbial ecology (Hellweger et al.,
2016a). Microbial ABMs increasingly resolve intracellular
mechanisms and the extension to genes is a natural progression
and already well on the way. The approach is illustrated in Box 3.
This approach has also been referred to as Systems BioEcology
(Hellweger, 2009).

Examples
ABM was used by Hellweger (2009) to explore the role of
photosynthesis genes (psbA, hli) carried by viruses that infect the
marine cyanobacterium Prochlorococcus. The idea is that these
genes help to maintain the host photosynthesis apparatus during
the latent period, increasing energy to support the replication of
the virus. The model simulates individual viruses and host cells
and explicitly resolves mechanisms of gene expression, protein
synthesis, photosynthesis and events associated with infection at
the molecular level. The model was calibrated to observations
of virus and host gene transcript and protein levels and then
used to simulate population dynamics in the water column of
the Sargasso Sea. Modeled populations were diverse, including
multiple virus types (different combinations of psbA and hli
copies) and cells with different light histories, cell cycle phases
and infection stages. Using competition experiments between
virus strains that have different combinations of psbA and hli,
and evolution experiments (i.e., gene packaging error), the model
predicted an optimal gene content that matched that of the
wild-type.

An ABM of the cyanobacterium Synechococcus and its
circadian clock was constructed by Hellweger (2010). The model
structure is similar to the Prochlorococcusmodel described above.
A new feature was the explicit simulation of the concentration
of proteins with different phosphorylation states and their
interaction. The modeled population includes cells at different
phases in their cell and circadian cycles and gene expression
levels (psbAI luminescence) were compared to observations at
the individual level.

Mina et al. (2013) used an ABM of genetically-engineered
quorum sensing E. coli cells in a three-dimensional microfluidics
chamber. The model simulates a heterogeneous population of
individual, motile cells, each with a number of genes (luxI, aiiA,
and yemGFP) and associated proteins, which communicate via a
diffusible substance. They showed that autoinducer oscillations
on the population level do not follow simply from synchronizing
single cell oscillations. Single cells can switch between a state of
constant signal concentration and oscillations, depending on the
parameters of the positive and negative feedback loops in the gene
regulatory network. Yet in a population of these cells, only the
oscillatory state is stable—once cell density exceeds a threshold.

Hellweger et al. (2014) built an ABM of the yeast
Saccharomyces cerevisiae and used it to explore the fitness effect
of age-correlated stress resistance. The model explicitly simulates
the regulation of the proteins Tsl1 and Tps3, which synthesize
the stress protectant trehalose. Their expression is modeled using
constant, age-dependent and stochastic terms. The population is
diverse consisting of cells in different phases of their cell cycles as
well as different ages, damage and Tsl1/Tsl3 expression levels. The
modeled heterogeneity was compared to observations obtained
using flow cytometry. Comparison of the various expression
strategies showed that age-correlated stress resistance can be
beneficial under some conditions.

A model of Anabaena—nitrogen interactions was developed
by Hellweger et al. (2016b). This model simulates the uptake
of various forms of nitrogen and early intracellular assimilation
pathways. Uptake and intracellular reactions are mediated by
enzymes (e.g., GlnA) and their expression is controlled by a
number of regulatory proteins (e.g., NtcA). A novel feature
of this model is the explicit simulation of cell differentiation
and division of labor. When fixed nitrogen is depleted, the
cells become nitrogen-stressed and some differentiate into
heterocysts, which are anoxic cells that fix nitrogen and pass the
fixed nitrogen to their neighboring vegetative cells (Figure 4C).
The model was informed by observations from 269 laboratory
experiments from 55 papers published from 1942 to 2014,
including transcript levels and enzyme activities (Figures 4A,B).
Hellweger et al. (2016b) also applied the model to a hypothetical
lake, but validation by comparison to field observations was not
performed.

Another gene-level ABM was developed by Hellweger (2013)
to explore the mechanisms underlying adaptation of E. coli to
tetracycline resistance.

Strengths
• The main advantage of ABM is the ability to resolve intra-

population heterogeneity. We will discuss the importance of
individuality in the second part of this review.

• In ABM, the description of the system is very flexible and
not constrained by having to use one specific mathematical
formalism (e.g., the stoichiometric matrix of the FBA
approach). For example, on/off control of a gene by light can
be modeled simply using an “if” statement (if light is on, then
turn on gene, otherwise turn it off). It is much more difficult
to incorporate this into a stoichiometric matrix or differential
mass balance equation.

Weaknesses
• This approach is relatively complex and difficult to apply.

Although it can theoretically be extended to the whole-
genome scale, past models have focused on a handful of
genes, transcripts, proteins and metabolites. This is due to the
limited availability of rate formulations and parameters, and
the difficulty of calibrating a model with numerous non-linear
feedbacks.

Summary of Examples
The models reviewed above are characterized along six different
dimensions, including space, time, function, heterogeneity,
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BOX 3 | From genes to ecosystems using agent-based modeling.

Here the approach for dynamic, molecular-level, mechanistic modeling is illustrated by application to the hypothetical ecosystem (Figure 1). The model explicitly

resolves genes, transcripts, proteins and metabolites (Figure B3). Following the central dogma of biology, genes are transcribed by the RNA polymerase to yield

transcripts (mRNA), which are translated by the ribosomes to yield proteins, which then carry out various functions. Once a biomass (in the case of strain 1 the

metabolite E, QE) threshold is reached, the DNA polymerase is induced, which synthesizes DNA. Once that is complete, cell division is induced and the cell divides,

which involves division of all intracellular components. The approach entails explicitly modeling genes, transcripts and proteins. However, typically only a handful of

representative genes are simulated using a coarse-grained approach (Castellanos et al., 2004; Hellweger, 2013).

FIGURE B3 | Agent-based modeling of microbes. Gene/protein: rpoMH/RNAP, RNA polymerase; rptMH/RPT, ribosome; ftsMH/Fts, cell division; polMH/Pol, DNA

polymerase; dumMH, dummy (accounts for genes not explicitly considered); uptA/UptA, uptake A; metA/MetA, metabolism A; excC/ExcC, excretion C. Substrates

and metabolites (extracellular, concentration C; intracellular, quota Q): CA, substrate A; QH, metabolite H, etc. After Figure 1 of Hellweger (2009).

To illustrate the approach, we present the equations for uptB1 transcription, UptB1 synthesis, UptB1 rate and QB mass balance. Here, intracellular concentrations

are defined on a per biomass dry weight (DW) basis, but carbon and volume can also be used. The uptB1 transcript (uptB1t , mol mRNA gDW−1, i.e., per gram

biomass dry weight) mass balance equation is:

duptB1t

dt
=

kS,T

LDNA
RNAP1 γuptB1 uptB1g − kd,TuptB1t − µguptB1t (B3.1)

(Continued)
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BOX 3 | Continued

where kS,T (bp RNAP−1 s−1) is the transcription rate, LDNA (bp) is the total DNA length, RNAP1 (mol protein gDW−1) is the RNA polymerase level, yuptB1 is the uptB1

expression level (may depend on various factors), uptB1g is the number of uptB1 gene copies, kd,T (s−1) is the mRNA decay rate and µg (s−1) is the specific growth

rate. The UptB1 (mol gDW−1) protein mass balance is:

dUptB1

dt
= kS,P

uptB1t

TxL
RPT1− kd,P,UptB1UptB1− µG UptB1 (B3.2)

where kS,P (nt RPT−1 s−1) is the translation rate, TxL (mol mRNA gDW−1) is the total mRNA, RPT1 (nmol protein gDW−1) is the ribosome level and kd,P,UptB1 (s−1)

is the UptB1 decay rate. The UptB1 rate (VUptB1, mol gDW−1 s−1) is:

VUptB1 = UptB1 kUptB1
CB

Km,UptB1 + CB

Ki,UptB1

Ki,UptB1 + QB
(B3.3)

where kUptB1 (molB molUptB1−1 s−1) is the UptB1 catalytic rate constant, Km,UptB1 (molB L−1 ) is the half-saturation constant and Ki,UptB1 (molB gDW−1) is the

inhibition constant. The intracellular metabolite B (QB, mol gDW−1) mass balance is:

dQB

dt
= VUptB1 − 2 VSynF1 − µG QB (B3.4)

where VPrdF1 (molF gDW−1 s−1) is the PrdF1 reaction rate (the factor 2 accounts for 2mol B per 1mol F, see Figure 1).

species diversity, and genes (Figure 5). These dimensions were
selected as they highlight differences between the reviewed
models, nevertheless, the list is not exhaustive and other
dimensions can be used, like types of interactions. The figure
illustrates that, together, the population of past models covers the
entire space. However, no single model or approach has covered
the entire space by itself. The gene centric approach is amenable
to space, time and species diversity and those dimensions have
been explored in past models. Function and genes dimensions
are linked in this approach, and limited because each species is
typically associated with only one function. Simulating individual
heterogeneity is difficult with the population-level gene centric
approach and has not been explored in past models. Metabolic
flux models are routinely genome-scale, and past models have
pushed the boundaries along other dimensions, including space,
time (although only quasi-time-variable), and species diversity.
Function is often limited to metabolism and heterogeneity
to phenotypes. The agent-based approach is flexible along
most dimensions, but limited in terms of gene coverage and
models with more than a handful of genes have yet to be
developed.

PART 2: THE IMPORTANCE OF
INDIVIDUALITY

A key distinction between the modeling approaches reviewed
above is their consideration of individuality and heterogeneity.
It is now well established that microbial populations in the
environment and laboratory exhibit substantial heterogeneity in
properties and behaviors. There are probably cases where this
individuality averages out and is of no consequence to the ecology
or biogeochemistry of the system (e.g., steady-state growth of
a single species on a single nutrient). However, there are also
cases where individuality has been shown to critically affect the
fitness of a population. A thorough understanding of individual

heterogeneity and its potential ecological consequences is critical
for selecting the most appropriate modeling strategy.

In this part, we review the importance of individuality. There
are a number of mechanisms that produce heterogeneity in a
population, which we refer to as sources. Once heterogeneity
is introduced, it can be maintained and amplified in a number
of ways. Finally, there are a number of important ecological
consequences of heterogeneity (Figure 6).

From a modeling perspective, the distinction of sources,
amplifiers and consequences is important. Specifically, sources
of heterogeneity are included in the design of the model.
In other words, there are equations or parts of the model
code that produce heterogeneity. For example, stochastic cell
division asymmetry can be included in an agent-based model
by randomly varying the daughter biomass from the perfect
50/50 split after division. Amplifiers are mechanisms that operate
at the individual level and change the cell’s properties. The
resulting additional heterogeneity is not prescribed in the model
design, but it emerges from running it (i.e., it is a model
output). For example, heterogeneity in birth sizes may lead to
heterogeneity in generation times without any added equation
or code. Consequences are also not included in the design of
a model, but they emerge as population- or ecosystem-level
properties rather than individual-level properties.

Sources of Individuality
There are many mechanisms that can produce and maintain
individual heterogeneity. Here we consider a mechanism that
would lead a colony growing up from a single cell to become
heterogeneous to be a “source of heterogeneity.” Of course these
mechanisms can also operate and produce/modify heterogeneity
in other scenarios.

Stochastic Interactions of Molecules
Intracellular “concentrations” of transcription factors and
macromolecules (DNA, mRNA, proteins) are often low. For
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FIGURE 4 | Anabaena—nitrogen interaction model. (A,B) Comparison to observations of transcript levels in filaments (fil., i.e., all cells), vegetative cells (veg.) and

heterocysts (het.) (A) and enzyme activities (B) of cells grown under different conditions (data are from Martin-Figueroa et al., 2000). (C) N fluxes for growth on N2.

Red, heterocysts; Green, vegetative cells. Numbers are fluxes in pmol N cell−1 d−1. From Hellweger et al. (2016b). The figure shows that heterocysts have higher

levels of nitrogenase (nifH) transcripts, higher levels of glutamine synthetase (glnA, GS) transcripts and enzyme levels and lower levels of glutamate synthase (glsF,

GOGAT) transcripts and enzyme activities. These observations support the model where N2 is fixed in heterocysts and combined with glutamate (GLU) that is

imported from adjacent vegetative cells to yield glutamine (GLU), which is then exported to vegetative cells and further incorporated into labile nitrogen (LN) and

structural nitrogen (SN) pools.

example, natural populations have on average less than one
transcript per gene (Cottrell and Kirchman, 2016). That means
the continuum assumption underlying deterministic chemical
reaction kinetics is not met and corresponding regulatory or
signaling networks can exhibit substantial stochasticity. This
leads to intra-population heterogeneity and when coupled with
positive feedbacks can lead to bi-stability and phenotypic
differentiation (Veening et al., 2008). For example, the expression
level of heterodisulfide reductase subunit A (central for
respiration in sulfate reducers) in Desulfovibrio vulgaris cells
varied by as much as 50-fold in a sample of 30 individual
cells (Qi et al., 2014). Another example is stochasticity in the

chemotaxis regulatory network. Low concentrations of signaling
molecules, specifically phosphorylated CheY, lead to behavioral
variability of individuals, and this can be reduced by increasing
the concentration of this element in the network (Korobkova
et al., 2004). However, stochastic gene expression may be more
the exception than the rule as the expression of most genes
in E. coli does not show any bursts (Silander et al., 2012).
Metabolic pathways are usually considered to be unaffected
by stochasticity because of the higher numbers of metabolic
enzymes and metabolites in the cell, but the stochastic expression
of catabolic enzymes has been found to lead to fluctuations in
growth rate that can perturb the expression of other enzymes
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FIGURE 5 | Comparison of modeling approaches along various dimensions. Based on metabolic flux (N = 32), gene-centric (N = 3) and agent-based (N = 6) models

included in this review. Dimensions: Space: 0 (i.e., well-mixed reactor), 1, 2 or 3 dimensional; Time: steady-state, quasi-time-variable (e.g., dynamic FBA),

time-variable; Function: None, metabolism, + regulation, + division, + additional functions; Heterogeneity (individuality): None, types (i.e., phenotypes), individuals;

Species diversity: None, one, two, three or more; Genes: None, a handful, core/central metabolism, whole genome. Symbols represent averages and “error bars” the

range between minimum (i.e., dimensions covered by all models) and maximum. For example, agent-based models have been developed with zero to three spatial

dimensions, and the average is 0.67.

(Kiviet et al., 2014). Heterogeneity may also arise from changes
to the DNA, including mutation, recombination andmethylation
(Avery, 2006; van der Woude, 2011).

Stochastic Cell Division Asymmetry
Another source of cell-to-cell variability is stochastic partitioning
of cellular components during cell division. This may be due to
low copy numbers of mRNAs, proteins, plasmids and genomes
(Huh and Paulsson, 2011; Jahn et al., 2015), or imperfections
in the cell division machinery leading to unequal daughter cell
sizes and consequently asymmetry in all cellular components.
Bacteria can control this heterogeneity by molecular mechanisms
that are increasingly understood. For example, interactions of
MinCDE proteins with themselves and the polar membranes
set up a spatial gradient inside the cell that favors assembly of
the FtsZ cell division ring in the middle of the cell (Kieser and
Rubin, 2014). Missing components of this regulatory system have
been implicated in the higher division asymmetry observed for
Mycobacterium smegmatis compared to E. coli (Aldridge et al.,
2012).

Deterministic Cell Division Asymmetry
In addition to stochastic processes, there are deterministic
mechanisms that lead to cell division asymmetry. Replication
in budding bacteria and yeast obviously produces two different
individuals and population heterogeneity. In Saccharomyces
cerevisiae, the mother cell is larger and accumulates damage,
including bud scars, extrachromosomal DNA circles (ERCs)
and carbonylated proteins, which are retained preferentially by
the mother cell during division by binding to special cellular
compartments (Unruh et al., 2013; Figure 7). Also, for cells that
divide by apparently symmetric binary fission, one “daughter”
inherits the old pole and one the new pole. The old pole may
have accumulated more damage or other properties over its
longer lifetime. For example, division in E. coli is associated with
asymmetric segregation of damaged protein aggregates (Lindner
et al., 2008). The aggregates diffuse by stochastic Brownian
motion but they are too large to enter the nucleoid region and
therefore get trapped at the poles (Coquel et al., 2013). The
asymmetry goes beyond damage. For example, since the outer
membrane (OM) is synthesized mostly along the cylindrical part
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FIGURE 6 | Sources, amplifiers and consequences of individual heterogeneity.

of the cell, old poles have older OM andmay include proteins that
were previously expressed and now repressed (Ursell et al., 2012).
Bacteria with flagella at one pole will also generate two different
daughter cells at division (Christen et al., 2010).

Small-Scale Environmental Heterogeneity
Spatially structured microenvironments constitute another
driver of heterogeneity. For example, microbes in colonies,
biofilms or granular sludge flocs experience gradients in dissolved
oxygen and nutrient concentrations (Wimpenny and Coombs,
1983; Matsumoto et al., 2010). The response of the microbes
to these different conditions, including growth and acclimation,
leads to a microbial population with heterogeneous properties.
For example, the growth rate of Pseudomonas putida cells in
biofilms was monitored using a reporter consisting of the growth
rate-regulated rrnBP1 promoter and unstable GFP (Sternberg
et al., 1999). Cells along the periphery of the biofilm were
observed to grow rapidly, whereas those on the inside grew
slower or not at all.

Differential Transport and Environmental

Heterogeneity
Transport, whether passive (e.g., with water or air) or active
(e.g., chemotaxis), can act differently on individuals within a

homogenous population. Water flow velocities tend to be larger
near the center of conduits (e.g., pores, pipes, rivers). Even
for a uniform flow field, advection is generally associated with
diffusion causing individuals from one location to be transported
to different locations. On leaf surfaces, cells can be dispersed
to different locations and grow into microcolonies, followed by
detachment and colonization elsewhere (van derWal et al., 2013).
Also, transport by active mechanisms, like chemotaxis, entails
stochastic variability and can lead to different paths of individuals
(due to stochastic signaling, see above) (Korobkova et al., 2004).
Often the environment exhibits substantial heterogeneity at this
scale. For example, the nutrient concentrations in surface waters
are highly heterogeneous, with microscale patches created by
lysing cells, phytoplankton exudates or marine snow (Stocker,
2012; Taylor and Stocker, 2012; Zehr et al., 2017). Similarly,
nutrient availability on plant leaf surfaces varies greatly at a
micrometer scale and often correlates with local topography
(Remus-Emsermann et al., 2011). Even environments that are
designed to be homogenous, like strongly agitated small-scale
fermentors, can be heterogeneous (Dunlop and Ye, 1990). When
differential transport occurs in a heterogeneous environment, it
can lead to intra-population heterogeneity as microbes respond
to their individual conditions (i.e., by gene expression, nutrient
uptake, and growth). By the same argument, the population at
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FIGURE 7 | Deterministic cell division asymmetry in the budding yeast

Saccharomyces cerevisiae leads to heterogeneity in size and bud scars

(stained bright). Scale bar is 5µm. Reproduced from van Deventer et al. (2015)

with permission.

any given location may be comprised of individuals with vastly
different life histories (Bucci et al., 2012). For example, depending
on how they were formed (by a mechanism of staying-together
or coming-together), aggregates of bacteria on leaf surfaces may
consist of cells that are either clonal with similar life histories or
represent a variety of previous leaf surface experiences (Tecon
and Leveau, 2012).

Amplifiers of Individuality
The heterogeneity produced by the above sources can manifest
itself in a number of properties and behaviors, which can then
feed forward and produce heterogeneity in other properties and
behaviors, effectively amplifying the overall heterogeneity.

Nutrient Uptake, Metabolism, and Growth
Stochastic gene expression, or any of the other primary sources
of heterogeneity discussed above, may result in different levels
of some functional enzyme and behavior, such as nutrient
uptake. For example, the assimilation of nitrate and urea is very
heterogeneous when a cultured population of nitrate-acclimated,
marine dinoflagellate Prorocentrum minimum cells is exposed
to a sudden input of urea (a preferred N source) (Figure 8;
Matantseva et al., 2016). This may in turn affect nutrient
metabolism and growth. For example, single-cell observations
for Methylobacterium extorquens AM1 showed high variability
in cell size at division, division time (2.5-fold range) and
growth rate (Strovas et al., 2007). Consequently, even some bulk
housekeeping functions, like metabolism and growth, which are
generally considered to be relatively homogenous, can be very
heterogeneous, even in cultured populations.

Cell Cycle Asynchronicity
Asymmetric division can lead to an asynchronous population
(i.e., where cells are in different phases in the cell cycle) because
size can be a major checkpoint for various cell cycle phases.
Since the cells perform different tasks at different phases in the
cell cycle, this translates into a population with heterogeneous
behavior. For example, in Saccharomyces cerevisiae, 800 genes are
cell-cycle regulated (Spellman et al., 1998) and in Caulobacter
crescentus, over 500 genes (Laub et al., 2000). In photosynthetic
microorganisms, such as microalgae and cyanobacteria, gene
expression is also tied to the light-dark cycle, often via a
circadian clock (Ito et al., 2009). Unless the population grows at a
generation time of 1 day, it will consist of cells with various phase
differences between their cell and diel cycles. This effectively
adds another dimension of variation and increases the number
of phenotypes and population heterogeneity.

Age and Damage
Asymmetric segregation of damage during cell division produces
younger and older cells and therefore an age distribution in the
population. This affects the growth rates and other behaviors of
cells. For instance, damaged protein aggregates are partitioned
asymmetrically in E. coli and new-pole cells with less damage
have a 4% higher specific growth rate (Lindner et al., 2008). In
S. cerevisiae, older cells also grow slower and they synthesize
more of the stress protectant trehalose (Levy et al., 2012).

Ecological Consequences of Individuality
In many cases the heterogeneity may simply average out and be
of little consequence to the fitness of the population. However,
there are a number of cases where heterogeneity has been shown
to have important ecological consequences.

Division of Labor
Phenotypic differentiation forms the basis for a division of
labor, where different cells carry out complementary tasks that
benefit the population. For example, oxygenic photosynthesis
and nitrogen fixation are incompatible processes. Specifically,
the enzyme nitrogenase, encoded by genes nifH, nifD and nifK
and responsible for reducing N2 to NH+

4 , breaks down in the
presence of oxygen. To overcome this problem, the filamentous
cyanobacterium Anabaena can differentiate into two types:
photosynthesizing vegetative cells and nitrogen fixing heterocysts
(Flores and Herrero, 2010). Another example includes evolved
populations of E. coli where the labor of converting glucose to
CO2 is divided over two cell types: one that converts glucose to
acetate while the other converts acetate to CO2 (Harvey et al.,
2014). There is also altruistic division of labor, which is the tasked
sacrifice of some members of the group to benefit others. For
example, Salmonella cells that invade the gut tissue get killed
by the host immune system, but not before triggering a host
response that kills other bacteria in the gut lumen but not the
subpopulation of Salmonella cells that stayed behind and now
have a competitive advantage in the gut lumen (Ackermann et al.,
2008). The basis for this strategy lies in the stochastic expression
of genes coding for a Type III Secretion System (T3SS) within
the clonal Salmonella population: only a subset of cells within
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this population express a T3SS and it is this subset of cells that
is capable of invading the gut tissue. Another example is the
split into motile and immotile subpopulations of Pseudomonas
aeruginosa that only together can generate mushroom-shaped
biofilms (Ghanbari et al., 2016). Division of labor does not have
to involve a direct effect of one phenotype on the other, but it may
simply involve growing on different nutrients, like nitrate and
urea, allowing the population to maximize uptake (Matantseva
et al., 2016).

Bet Hedging
The future is uncertain and may bring unpredictable changes in
stresses or any other environmental factors. If cells could react
instantly to changes in their environment, a good strategy may be
to rely on sensing and responding, but if the response is too slow,

it is better to maintain a diversity of phenotypes (Kussell and
Leibler, 2005), which is referred to as bet hedging. In the context
of stress resistance, bet hedging is when a population contains
some cells that are ill-adapted to the current environment but
better adapted to potential future stresses. An important example
are persister cells that are produced spontaneously, make up
a small fraction of the population, are inhibited in growth
(dormant) but can survive antibiotics (Balaban et al., 2004,
2013; Figure 9). Dormancy is widespread in microbes (Lennon
and Jones, 2011), and when it involves a fraction of the cells
and is not purely responsive to environmental conditions (i.e.,
at least partially spontaneous) it can also be considered a bet
hedging strategy. For example, the cyanobacterium Anabaena
forms akinetes that sink to the sediment bed and can serve as a
seedbank for future blooms. This can be considered a bet hedging

FIGURE 8 | Heterogeneity in urea uptake by P. minimum at the single-cell level. (A) P. minimum cells in UV light. (B) 15N-urea uptake by P. minimum cells depicted as
12C15N−/12C14N− ratio. Scale bar is 5µm. Reproduced from Matantseva et al. (2016) with permission.

FIGURE 9 | Survival of persister cells under antibiotic treatment. Growth of a hipA7 mutant, which produces a larger fraction of persisters, in microfluidic channels.

Times are in hours:min. Bacteria are exposed to three phases, including growth medium (GM1), ampicillin (A) and then washing and again growth medium (GM2).

Persister cells are marked with a red arrow. Reproduced from Balaban et al. (2004) with permission.
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strategy to protect the population from being wiped out by some
factor (washout, grazing), but it may also be a case of division
of labor, as the migration to the sediment bed allows the cells
to accumulate nutrients (Hellweger et al., 2008). Bet-hedging
strategies do not have to involve an all-or-nothing differentiation,
but can be gradual. For example, populations of the budding yeast
have a gradual (and age-correlated) distribution of the stress-
protectant trehalose (Levy et al., 2012). Finally, bet hedging is
not restricted to stress resistance, but it may involve nutrient
acquisition. For example, diversifying chemotactic behaviors in
clonal populations could be an adaptation to foraging in variable
environments (Frankel et al., 2014).

Aging
Aging is a strategy for eliminating damage from a population by
concentrating it in a few cells that will eventually be discarded
(i.e., die of old age). The alternative is to repair or eliminate
the damage in some way. The evidence for aging to provide
a significant ecological benefit in microbes is elusive, probably
because the extent of damage segregation varies between species
and environmental conditions. For example, for E. coli, one study
showed asymmetric partitioning of damaged protein aggregates
and decreased growth rates of older cells (Lindner et al., 2008),
but in another study growth rates were not observed to decrease
over many generations (Wang et al., 2010). Thus, there is an
ongoing debate about the ecological benefits of aging in bacteria
(Clegg et al., 2014; Koleva and Hellweger, 2015). Several recent
studies suggest that aging does not increase fitness or does not
occur under benign conditions but instead is a stress response
at the population level (Coelho et al., 2013; Clegg et al., 2014;
Iyer-Biswas et al., 2014; Vedel et al., 2016).

Sub-Optimality
In the absence of conditions that make heterogeneity
advantageous (division of labor, bet hedging or aging), it is
disadvantageous or sub-optimal. For any given set of (constant)
conditions, there is only one optimal behavior that maximizes
fitness (for one species). This has been explored in the context of
nutrient assimilation and the effect on growth. Nutrient quotas
of phytoplankton can be quite heterogeneous. This heterogeneity
leads to a reduction in growth rate, compared to a hypothetical
population with uniform quotas, due to the non-linearity of
the underlying process (Bucci et al., 2012; Fredrick et al., 2013).
When the cell’s environment (and thus the heterogeneity) is
controlled using microfluidic culturing technology, the growth
rate increases compared to flask cultures (Dusny et al., 2012).
Another case of sub-optimality stems from a mismatch between
cell and environmental cycles. When a population of cells in

different phases of their cell cycle grows in a cyclically varying
environment (i.e., diel cycle in light or temperature), the
cells have different alignments between these two cycles. It is
reasonable to expect that some of those alignments may be more
optimal than others, leading to sub-optimality.

Consideration of Individuality in Models
From the above review, it is clear that individual heterogeneity
can have important effects on the ecology of microbes and
the ecosystems harboring them. Any model that is to capture
these effects, whether for advancing understanding or making
predictions, has to be able to simulate the production and
amplification of this heterogeneity. Therefore, when selecting
a modeling strategy it is important to understand upfront the
role of heterogeneity in the system, and how it is produced
and amplified. Then, a modeling approach can be selected.
For example, the ecology of infectious bacteria is in many
ways controlled by bet hedging, which builds on individual
heterogeneity. In some cases, such as persisters that can survive
antimicrobial or other stresses, there are only two phenotypes.
This type of heterogeneity has been modeled with the metabolic
flux approach (Zhuang et al., 2012). Other cases involve a
more gradual differentiation, like age-correlated stress resistance.
Resolving this type of heterogeneity has been modeled using the
agent-based approach (Hellweger et al., 2014).
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