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Understanding microbial communities in terms of taxon and function is essential to
decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input
streams are highly linked. However, the differences between microbial assemblages in
streams and lakes are still unclear. In this study, we conducted an intensive field sampling
of microbial communities from lake water and stream biofilms in the Qinghai Lake
watershed, the largest lake in China. We determined bacterial communities using high-
throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt
to determine the taxonomic and functional differences between microbial communities
in stream biofilms and lake water. The results showed that stream biofilms and lake water
harbored distinct microbial communities. The microbial communities were different
taxonomically and functionally between stream and lake. Moreover, streams biofilms
had a microbial network with higher connectivity and modularity than lake water.
Functional beta diversity was strongly correlated with taxonomic beta diversity in both
the stream and lake microbial communities. Lake microbial assemblages displayed
greater predicted metabolic potentials of many metabolism pathways while the microbial
assemblages in stream biofilms were more abundant in xenobiotic biodegradation
and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had
stronger predicted metabolic potentials in amino acid metabolism, carbon fixation,
and photosynthesis while stream microbial assemblages were higher in carbohydrate
metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to
our knowledge of stream-lake linkages from the functional and taxonomic composition
of microbial assemblages.

Keywords: co-occurrence, functional, microbial community, stream-lake linkage, taxonomic

INTRODUCTION

Microbial communities are fundamental components in aquatic environments and play a crucial
role in driving global energy fluxes and biogeochemical cycling (Falkowski et al., 2008). Bacteria,
for example, strongly influence carbon, nitrogen, phosphorus, and sulfur fluxes in marine,
lacustrine, and fluvial ecosystems (Battin et al., 2003; DeLong et al., 2006; Danger et al., 2007;

Frontiers in Microbiology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 2319

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02319
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02319
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02319&domain=pdf&date_stamp=2017-11-22
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02319/full
http://loop.frontiersin.org/people/468443/overview
http://loop.frontiersin.org/people/469312/overview
http://loop.frontiersin.org/people/198367/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02319 November 21, 2017 Time: 16:25 # 2

Ren et al. Microbial Communities in Lake and Input Streams

Fuhrman, 2009; Peter and Sommaruga, 2016). Microorganisms
encompass tremendous diversity (Lennon and Locey, 2016)
and have immense cumulative biomass and activities (Whitman
et al., 1998). Thus, understanding the taxonomic and functional
compositions of microbial communities is of great interest and
importance because it may shed light on ecosystem processes and
community assembly mechanisms (Van der Gucht et al., 2007;
Hanson et al., 2012).

In stream ecosystems, a majority of microorganisms occur
in benthic biofilms (Findlay, 2010), where they play a key
role in biogeochemical cycling and are responsible for organic
matter (OM) mineralization, nutrient uptake, the transfer of
nutrients to higher trophic levels, as well as immobilization and
transformation of contaminants (Schiller et al., 2007; Buchkowski
et al., 2015). In stream biofilm assemblages, various heterotrophic
and autotrophic taxa are tightly linked to each other via trophic
and competitive interactions (Fitter and Hillebrand, 2009). In
lake ecosystems, microbial communities have an extremely
high level of genetic diversity and also play a key role in
biogeochemical cycles (Newton et al., 2011; Hayden and Beman,
2016; Huang et al., 2016). Thus, taxonomic and functional
changes of microbial communities in stream biofilms and lake
water may contribute to changes in ecosystem processes (Ylla
et al., 2014; Wilhelm et al., 2015; Zwirglmaier et al., 2015; Peter
and Sommaruga, 2016).

In watersheds, lakes and their input streams are highly linked
in multiple ways (Cole et al., 2006; Marcarelli and Wurtsbaugh,
2009; Jones, 2010; Ylla et al., 2013). Streams are the primary
receiver of nutrients and OM inputs from terrestrial ecosystems
(Vannote et al., 1980; Figueiredo et al., 2010; Deegan et al.,
2011). Lakes have an intimate relationship with catchment
characteristics through material transport by surface runoff from
their input streams and rivers (Cole et al., 2006; Zhang, 2011;
Canham et al., 2012; Cronan, 2012; Sadro et al., 2012). It
has long been of great interest to explore the relationships
between stream properties and downstream aquatic ecosystems.
However, the relationships between microbial communities in
lakes and their input streams are not well-understood, limiting
our understanding of ecosystem structures and functions and
hindering effective management and protection of aquatic
ecosystems.

Different biomes typically harbor distinct microbial
assemblages (Fierer et al., 2012; Hugerth et al., 2015; Louca
et al., 2016). However, it has been suggested that closely related
taxa may have very different functional attributes and distinct
taxa can share specific functional traits (Allison and Martiny,
2008; Philippot et al., 2010; Fierer et al., 2012; Dopheide et al.,
2015). Thus, elucidating taxonomic and functional differences of
microbial assemblages in streams and lakes is important to get
insights into their roles in the ecosystem processes they promote
(Freedman and Zak, 2015; Wang et al., 2016) and understand
biogeochemical cycles in lakes and streams as well as lake-stream
linkages (Louca et al., 2016). Moreover, aquatic ecosystems are
facing increasing pressures from various anthropogenic impacts
in their watersheds (Abell et al., 2011; Erol and Randhir, 2013;
Umbanhowar et al., 2015), influencing community composition,
biomass, as well as functions in both streams and lakes (Fanta

et al., 2010; Hill et al., 2011; Drake et al., 2012). Thus, revealing
the relationships between stream and lake microbial assemblages
is also important for understanding how the threats from
watershed are transferred to adjacent streams and to further
downstream aquatic ecosystems.

Taxonomic and functional differences of microbial
communities in lake water and stream biofilms still remains
unclear (Crump et al., 2007; Ylla et al., 2013; Zwirglmaier
et al., 2015). In this study, we used Qinghai Lake and its input
streams as an example. Qinghai Lake is the largest lake in China
located on Qinghai-Tibet Plateau maintaining ecological security
of northeast Qinghai-Tibet Plateau. Terrestrial and aquatic
ecosystems in the Qinghai Lake watershed are sensitive to global
climate change and other anthropogenic impacts (An et al.,
2006; Hao, 2008; Li et al., 2009). We conducted an intensive field
sampling of microbial communities from lake water and stream
biofilms in this area. We determined bacterial communities
using high-throughput 16S rRNA gene sequencing and predicted
functional profiles using PICRUSt (Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States) to
determine the taxonomic and functional differences between
microbial communities in stream biofilms and lake water. We
tried to address these basic questions: do stream biofilms harbor
microbial communities that are taxonomically distinct from
those found in lake water? What functional attributes distinguish
or connect microbial communities in stream biofilms and lake
water?

MATERIALS AND METHODS

Study Area
Qinghai Lake (QL, 36◦32′–37◦15′ N, 99◦36′–100◦47′ E) is a
remote endorheic saline lake located at 3194 m above sea level on
the Qinghai-Tibet Plateau (Figure 1). The lake lies at a junction
of three major climatic systems, the Westerlies, the East Asian,
and Indian summer monsoons (An et al., 2012; Chen et al.,
2015). It is the largest lake in China with a surface area of
4260 km2, a catchment area of 29,660 km2, and an average depth
of 21 m (Li et al., 2007). Mean annual precipitation in the basin is
389.1 mm and average annual evaporation is 895.4 mm. Annual
mean temperature is −0.3◦C with a linear warming rate of
0.28◦C/10a (Chen et al., 2011). There are more than 40 rivers and
streams flowing into Qinghai Lake but most of them are seasonal.
There are five main tributaries: Buha River, Shaliu River, Haergai
River, Quanji River, and Heima River (Figure 1). Together, these
tributaries contribute 83% of the total runoff (Li et al., 2007).

Qinghai Lake area has terrestrial and aquatic ecosystems that
are sensitive to global climate change and other anthropogenic
impacts (An et al., 2006; Hao, 2008; Li et al., 2009). Grassland
is the main landcover type, accounting for 75% area of the
watershed. However, the grassland is seriously deteriorating due
to overgrazing and climate change, with degraded grassland
accounting for 37% area of the whole watershed (Luo et al., 2013).
Grassland degradation influences biogeochemical processes and
ecosystem stability in both terrestrial and aquatic habitats (Scott
et al., 2001; Chen et al., 2013).
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FIGURE 1 | Study area and sample sites. Qinghai Lake is the largest lake in China and located on Qinghai-Tibet Plateau. Water samples and microbial samples were
collected at 22 stream sites and 12 lake sites. The map was created in ArcGIS 14.0 (http://desktop.arcgis.com/en/arcmap/) using DEM image download from USGS
(https://earthexplorer.usgs.gov/).

Field Sampling
We collected samples from 22 stream sites (12 in Buha River,
5 in Shaliu River, and 5 in Heima River) and 12 lake sites
during June 23 and 29, 2016 (Figure 1). Water samples were
collected for chemical analyses in the laboratory. At each
stream sampling point, 6 to 9 submerged rocks were randomly
chosen along the river cross section. The benthic biofilm
was removed by rigorously brushing a 4.5-cm-diameter area
from the upper surface of each stone with a sterilized nylon
brush (changed between samples) and rinsing the slurry with
sterile water. Approximately, 10 mL of the mixed slurry was
filtered through 0.2-µm membrane filters that were immediately
frozen in liquid N in the field. At each lake sample site,
surface water samples for microbial analyses were collected
at a depth of 0.5 m. 600 ml water were filtered onto 0.2-
µm membrane filters that were immediately frozen in liquid
nitrogen in the field. When transported to the lab, the microbial
samples were stored at −80◦C until DNA extraction. Water
samples were acid fixed and transported to the laboratory
at 4◦C.

Physicochemical Parameters
At each sample site, water temperature (Temp), dissolved oxygen
(DO), pH, and conductivity (Cond) were measured in situ
using a YSI handheld meter (model 80; YSI, Yellow Springs,
OH, United States). Elevation was measured using a GPS unit
(Triton 500, Magellan, Santa Clara, CA, United States). Water
samples were collected for nutrients and dissolved organic carbon
(DOC) analyses. Total nitrogen (TN) was quantified by ion

chromatography after persulfate oxidation (EPA 300.0). Nitrate
(NO3

−) was determined by ion chromatography (EPA 300.0).
Ammonium (NH4

−) was determined using the indophenol
colorimetric method (EPA 350.1). Total phosphorus (TP) was
analyzed using the ascorbate acid colorimetric method after
oxidation (EPA 365.3). Soluble reactive phosphorus (SRP)
was quantified using the ascorbate acid colorimetric (EPA
365.3). DOC was analyzed using a Shimadzu TOC Analyzer
(TOC-VCPH, Shimadzu Scientific Instruments, Columbia, MD,
United States). The physicochemical parameters were shown in
Supplementary Table S1.

DNA Extraction, PCR, and Sequencing
Bacterial 16S rRNA genes were analyzed to determine the
benthic biofilm and pelagic community structure and diversity.
Genomic DNA was extracted using the PowerSoil DNA
Isolation Kit (MoBio, Carlsbad, CA, United States) following
manufacturer protocols. The V3–V4 regions of the 16S rRNA
gene were amplified using 338F-ACTCCTACGGGAGGCAGCA
and 806R-GGACTACHVGGGTWTCTAAT (Invitrogen, Vienna,
Austria). PCR was performed with a model 2720 thermal
cycler (ABI, United States) using the following program: 1-min
hot start at 80◦C, 94◦C for 5 min followed by 30 cycles
of denaturation at 94◦C for 30 s, followed by annealing
at 52◦C for 30 s, at 72◦C for 1 min 30 s, with a final
extension step at 72◦C for 10 min. Amplified DNA was
verified by electrophoresis of PCR mixtures in 1.0% agarose
in 1X TAE buffer and purified using the Gel Extraction Kit
(Qiagen, Hilden, Germany). Samples were sent for sequencing
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on a Miseq sequencing platform (Illumina, San Diego, CA,
United States).

Sequence Analysis and Functional Gene
Prediction
Raw sequence data (available at National Center for
Biotechnology Information, SRP 115613) were processed using
the software package QIIME 1.9.0 (Caporaso et al., 2010). The
forward and reverse reads were merged and assigned to samples
based on barcode and truncated by cutting off the barcode and
primer sequence. Quality filtering on merged sequences was
performed and sequences which did not meet the following
criteria were discarded: sequence length < 200 bp, no ambiguous
bases, and mean quality score ≥ 20. Then the sequences were
compared with the reference database (RDP Gold database)
using UCHIME algorithm (Edgar et al., 2011) to detect chimeric
sequence, and then the chimeric sequences were removed. The
effective sequences were grouped into operational taxonomic
units (OTUs) using the clustering program VSEARCH 1.9.6
(Edgar, 2010) against the Silva 123 database pre-clustered at 97%
sequence identity level. The Ribosomal Database Program (RDP)
classifier was used to assign the taxonomic category to all OTUs
at a confidence threshold of 0.8. The RDP classifier uses the Silva
123 database which has taxonomic categories predicted to the
species level.

Functional potential of bacteria communities in the stream
biofilm and lake water samples were predicted using PICRUSt
1.1.0 (Langille et al., 2013). PICRUSt is a bioinformatics tool
that predicts the functional composition of a metagenome
using 16S rRNA sequences and a reference genome database.
Using an extended ancestral-state reconstruction algorithm,
PICRUSt predicts which gene families are present and
then combines gene families to estimate the composite
metagenome (Langille et al., 2013). Sequences used for PICRUSt
prediction were clustered into OTUs (97% similarity) against
the Greengenes 13.5 database using QIIME 1.9.0. Then the
rarefied OTU table was used for predicted 16S rRNA gene
copy number normalization. The normalized-OUT table
was used to predict the functional genes, and the accuracy
of the metagenome prediction was assessed by the nearest
sequenced taxon index. Finally, the metagenome prediction
was further classified into Kyoto Encyclopedia of Genes and
Genomes (KEGG) Orthologs (KOs) at different pathway levels
(levels 1–3).

Analysis
We compared taxonomic and functional profiling of the
bacteria communities to elucidate the differences and linkages
between microbial assemblages in stream biofilm and lake
water. To determine whether physicochemical factors, relative
abundances of phyla, taxonomic and functional alpha diversities,
and relative abundances of functional gene categories were
significantly different between stream samples and lake samples,
we conducted a bootstrap t-test using SPSS 20.0 (IBM, Armonk,
NY, United States). Analysis of similarities (ANOSIM) was
used to test whether sample categories harbored significantly

different microbial communities or metagenomes (using PAST
3.0). Mantel tests were run to assess correlations between
functional and taxonomic community dissimilarity matrices
based on Bray–Curtis distance. Heatmaps were generated using
Heatplus package (version 2.20.0) and Gplots package (version
3.0.1) in R (version 3.3.2) to reveal taxonomic and functional
differences between communities based on Bray–Curtis distance.
The non-metric multidimensional scaling (NMDS) was applied
to reveal differences in community composition between lake and
stream microbial assemblages (using R 3.3.2 and Vegan package
2.4-1).

Understanding microbial interactions is essential to reveal
community assembly rules (Gotelli and McCabe, 2002; Fuhrman,
2009). For example, co-occurrence patterns can show how
particular organisms in a system occur together and vary in a
changing world (Fuhrman, 2009), and the direct and indirect
interactions may help to ascertain the functional roles or
ecological niches occupied by microorganisms (Fuhrman and
Steele, 2008; Chaffron et al., 2010). The relative abundances
of the OTUs in each sample were used to construct matrices
for visualizing interactions between OTUs in networks (stream
microbial network and lake microbial network). A Spearman
correlation coefficient R score and a P-value were calculated
pairwise between OTUs (for OTUs with relative abundance
higher than 0.01%) using the Hmisc package (version 4.0-
1) in R (version 3.3.2). Only strong (Spearman’s correlation
coefficient R > 0.70 or R < −0.70) and significant (P < 0.01)
correlations were considered. These correlations were visualized
using Cytoscape (version 3.4.0). Each node represents an OTU,
and each edge represents a strong and significant correlation.
To describe the network topology, a set of node/edge metrics
(Supplementary Table S3) were analyzed using the Network
Analyzer plugin within Cytoscape (Assenov et al., 2008). The
modular structure analysis of each network was conducted
using the ClusterMaker app in Cytoscape. The modularity was
calculated (Su et al., 2010), and the modularity value > 0.4
suggests that the network is modular (Newman, 2006). Since only
a single data point was available for each network topological
parameter of each real network (stream microbial network
and lake microbial network), standard statistical analysis could
not be performed to assess their statistical significance (Zhou
et al., 2010). Thus, referring to the method proposed by Zhou
et al. (2010), the random network construction and network
comparison were conducted. For each real network (stream
microbial network and lake microbial network), a total of 100
random networks with the same size as the real network were
generated using the Network Randomizer app (version 1.1.2)
and all of the network topological parameters were calculated
individually (Zhou et al., 2010; Kuang et al., 2017). Then, the
statistical Z-test was employed to test the differences between
the topological parameters of the real network and its random
networks, using the average and standard deviation for each
parameter of all of the random networks. Meanwhile, the
Student’s t-test was used to compare the two real networks
(stream microbial network and lake microbial network) using
the standard deviations derived from corresponding random
networks (Zhou et al., 2010; Kuang et al., 2017).
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RESULTS AND DISCUSSION

General Comparison of Community
Composition
After quality filtering, a total of 343,350 reads were obtained
from the 34 samples (12 lake samples and 22 stream samples).
In both stream and lake microbial communities, the dominant
phyla were Proteobacteria, Bacteroidetes, and Cyanobacteria.
At phylum level, there were significant differences between
lake and stream in the relative abundance of Acidobacteria
(P < 0.05), Bacteroidetes (P < 0.01), and Thermi (P < 0.05)
(Figure 2). Lake water had a higher relative abundance of
Bacteroidetes but a lower relative abundance of Acidobacteria
and Thermi than stream biofilms. Previous research about the
microbial communities in Qinghai Lake mainly focused on
lake itself, including the microbial communities in lake water
column (Huang et al., 2014), water-sediment interface (Dong
et al., 2006), and sediment (Jiang et al., 2009). It was revealed
that autotrophic Cyanobacteria and heterotrophic Proteobacteria
dominated the DNA and RNA samples, respectively (Huang
et al., 2014), and the proportion of the Proteobacteria decrease
from the bottom of the lake to the sediment (Dong et al.,
2006). However, our research was the first to compare
the microbial communities in Qinghai Lake and its input
streams.

Functional alpha diversity, the alpha diversity of protein-
coding gene categories identified within a metagenome, can
provide important information for the diversity and distributions
of functional traits or functional genes across communities
(Petchey and Gaston, 2002; Green et al., 2008; Gilbert et al.,
2010; Fierer et al., 2012). In our study, both the taxonomic
alpha diversity (the alpha diversity of taxa contained within an
individual community) and the functional alpha diversity were
significantly higher (t-test, P < 0.05) in stream than in lake
samples (Supplementary Table S2), suggesting that streams have
more niche range that can harbor more diverse microorganisms
than the water column of the lake.

Community Differences – Taxonomic and
Functional
Taxonomic differences between the microbial communities
in stream biofilms and lake water were evident (Figure 3).
Heatmap (Figure 3) showed that the communities in lake water
were clustered apart from the stream biofilm communities.
ANOSIM analysis also showed the distinction (r = 0.99,
P < 0.001). Moreover, the communities in lake were more
taxonomically similar to each other (low Bray–Curtis distance,
Figure 3) than were stream communities to each other (high
Bray–Curtis distance, Figure 3). Based on PICRUSt predicted
KEGG orthologies (KOs), the heatmap (Figure 4) showed
that the communities in lake were more functionally similar
to each other than were the stream communities. However,
the functional differences between microbial communities
in stream biofilms and lake water were not significant
(ANOSIM r = 0.13, P < 0.05) compared to taxonomic
differences.

Bacteria Co-occurrence
Co- occurrence patterns of organisms have been evaluated to
reveal community assembly rules and interaction networks in
highly complex systems (Gotelli and McCabe, 2002; Fuhrman,
2009). In order to compare the co-occurrence networks
between microbial communities in stream and lake samples,
a stream microbial network (Figure 5A) and a lake microbial
network (Figure 5B) were built. Several topological parameters
were calculated to describe the interactions between OTUs
(Supplementary Table S3). These structural properties permit
exploration of how habitat traits are associated with the assembly
of microbial communities (Barberan et al., 2012; Freedman and
Zak, 2015). Overall, the stream microbial network contained
808 nodes (i.e., OTUs) with 10,542 edges (i.e., significant
interactions). The lake microbial network was much less complex,
containing 302 nodes with 895 edges. All the correlations
were positive in the stream microbial network, while in lake
microbial network, 8.3% of the correlations were negative
(Figure 5), indicating that lake microorganisms have more
competing relationships than stream microorganisms because
of the homogeneous habitat and limited resources in the lake
compared to the streams.

Both networks had a strongly clustered topology. Compared
to the topology of randomly generated networks with the same
size (Supplementary Table S3), the real networks exhibited
a higher network centralization and clustering coefficient.
Moreover, the stream microbial assemblages had a more
correlated and complex bacterial network topology than the
lake assemblages. Comparing the topological parameters of
these two networks (Supplementary Table S3), the stream
microbial network exhibited a greater number of nodes,
network centralization, network density, network heterogeneity,
characteristic path length, average number of neighbors, and
clustering centralization (Supplementary Table S3). This is of
interest because network topology (the nodes distribution and
interaction) can affect the stability of the system (Barberan
et al., 2012; Freedman and Zak, 2015). In previous macroecology
studies, communities with tightly connected species were shown
to be more susceptible to disturbance (Montoya et al., 2006;
Saavedra et al., 2011). The highly heterogenous nature of streams
vs. the highly homogeneous nature of lake pelagic zones might
have resulted in the different topological structures of the
two networks we document here. Highly connected microbial
networks in streams suggest that stream microbial communities
are more vulnerable and sensitive to various disturbances.

The bacterial assemblages in both stream and lake habitats
exhibited a modular structure (Supplementary Table S3,
modularity values > 0.4 suggest that the network is modular,
Newman, 2006). Modularity is a characteristic of large complex
systems (Barabasi and Oltvai, 2004; Newman, 2006; Olesen et al.,
2007). In a biotic network, highly interconnected species are
grouped into a module, within which species interactions are
more frequent and intensive than with the rest of the community
(Newman, 2006; Freedman and Zak, 2015). It has been proposed
that higher modularity might reflect more pronounced niche
differentiation (Freedman and Zak, 2015). In our study, the
modularity of the stream microbial network was notably higher
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FIGURE 2 | Relative abundance of microorganisms at phylum level in stream biofilms and lake water. Only the phyla that had a relative abundance > 1% either in
stream or lake were shown. “Others” represent the unsigned OTUs and the phyla with a relative abundance < 1%. ∗P < 0.05, ∗∗P < 0.01.

FIGURE 3 | Heatmap showing the taxonomic differences of microbial communities between streams and Qinghai Lake based on Bray–Curtis distance. Bray–Curtis
distances were calculated using relative abundances of OTUs.
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FIGURE 4 | Heatmap showing the functional differences of microbial communities between streams and Qinghai Lake based on Bray–Curtis distance. Bray–Curtis
distances were calculated using relative abundances of PICRUSt predicted KEGG orthologies (KOs).

than lake microbial network (Supplementary Table S3), which
is consistent with the possibility that streams have more niche
range (as suggested by the clustering topologies) and thus can
offer more niches for organism.

Functional Properties
It has already been demonstrated that functional beta diversity
was strongly correlated with taxonomic and phylogenetic
beta diversity across soil microbial communities (Fierer et al.,
2012). To evaluate whether taxonomic differences between
microbial communities are associated with their functional
potential, we tested the relationships between functional and
taxonomic composition at the community level. The Bray–Curtis
dissimilarities between microbial communities were calculated
from taxon abundances and functional gene abundances of
microbial communities in stream biofilms and lake water,
respectively. Mantel correlation tests revealed significant positive
correlations between functional dissimilarities and taxonomic
dissimilarities in stream biofilms (Figure 6A, r = 0.682,

P < 0.001) and lake water (Figure 6B, r = 0.859, P < 0.001).
Moreover, the relationship slope was smaller in stream than in
lake. On the other hand, there were no significant correlations
between physicochemical environment dissimilarities and
functional dissimilarities (Mantel test, P > 0.05). These results
suggest that, in stream biofilms and lake water, the overall
functional differences between the microbial communities
were significantly correlated with the differences of community
composition. Moreover, different strains of a species may have
distinct functions in lake water while there might be more
different taxa which have the same functional traits in stream
biofilms.

Functional differences between lake and stream microbial
communities were also evident from a comparison of the relative
abundance of the PICRUSt predicted Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthologies (KOs) classified at
level-1 (Supplementary Figure S1), level-2 (Figure 7), and
level-3 (the lowest level of resolution, Figure 8). In microbial
communities of both stream biofilms and lake water, the
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FIGURE 5 | The co-occurrence network of bacterial communities in (A) stream biofilms and (B) lake water. Edges represent correlation relationships. Gray solid lines
indicate positive associations (co-occurrence interactions) and red dashed lines indicate negative associations (co-exclusion interactions). Only strong and significant
relationships (spearman R > 0.7 or R < –0.7, P < 0.01) are shown. Nodes are sized by the OTU betweenness and colored by phylum. Circle nodes represent OTUs
with a relative abundance higher than 0.01% only in the stream samples. Triangle nodes represent the OTUs with a relative abundance higher than 0.01% only in the
lake samples. Diamond nodes represent the OTUs with a relative abundance greater than 0.01% in both lake and stream samples.
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FIGURE 6 | Bray–Curtis dissimilarities of functional genes versus Bray–Curtis dissimilarities of OTUs in (A) stream biofilms and (B) Qinghai Lake water. One point
represents one sample pair. The Pearson correlation coefficient (r) and statistical significance (P) of linear regression are shown. Dotted lines indicate 95% confidence
intervals.

FIGURE 7 | The relative abundance of various predicted functions of microbial communities in lake water and stream biofilms using PICRUSt grouped into level-2
functional categories. ∗ and ∗∗ indicate gene categories that are different between lake and stream at the P < 0.05 level and P < 0.01 significant level, respectively.
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FIGURE 8 | Relative abundance of various predicted functions of microbial communities in lake water and stream biofilms using PICRUSt grouped into level-3
functional categories. ∗ and ∗∗ indicate gene categories that are different between lake and stream at the P < 0.05 and P < 0.01 significant level, respectively.

majority of KOs at level-1 involved metabolism pathways,
followed by genetic information processing, unclassified,
environmental information processing, cellular processes,
and organismal systems (Supplementary Figure S1). These
major gene categories were significantly different in abundance
between stream and lake microbial communities (t-test,
P < 0.0.5, Supplementary Figure S1). In general, microbial
assemblages in lake water had higher relative abundance
of genes associated with metabolism pathways and genetic

information processing. The microbial assemblages in stream
biofilms, however, had higher relative abundance of genes
associated with environmental information processing and
cellular processes.

In order to gain more insight into the functional differences,
we compared the relative abundance of KOs at level-2. Microbial
assemblages in lake water had higher relative abundance in
many metabolism pathways, while the microbial assemblages
in stream biofilms were characterized by genes associated
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with xenobiotic biodegradation and metabolism and lipid
metabolism (t-test, P < 0.0.5, Figure 7). This is notable, as
lipids is one of the major components of OM occurring in
stream ecosystems (Thurman, 2012), and bacteria in benthic
biofilms are the main decomposers of OM (Amon and
Benner, 1996; Ylla et al., 2011). Moreover, streams are also
the primary recipient of pollutants and xenobiotics inputs
from the watershed (Tello et al., 2010; Lee et al., 2014).
Consequently, most aquatic organisms, as well as bacteria,
are exposed to these xenobiotics, which can be taken up,
bioaccumulated, and degraded (van Leeuwen and Vermeire,
2007).

Several studies have reported that nutrient sources are
potential drivers of microbial community structure and function
in streams (Peter et al., 2011; Wilhelm et al., 2015) and in
lakes (Judd et al., 2006). However, there were no significant
differences between stream and lake microbial assemblages,
in the relative abundance of three core resources metabolism
pathways, carbohydrate metabolism, energy metabolism, and
amino acid metabolism (Figure 7). So, we also compared the
functions belonging to these three core metabolism pathways
at level-3 (Figure 8). Lake microbial assemblages had higher
abundance of KOs belonging to amino acid metabolism while
stream microbial assemblages had higher abundance of KOs
affiliated with carbohydrate metabolism. In stream ecosystems,
OM is a heterogeneous mixture containing carbohydrates,
proteins, lipids, lignins, and other compounds (Thurman, 2012).
Soil and plant litter inputs as well as autochthonous material
from instream primary producers contribute to OM (Webster
and Meyer, 1997), which can accumulate in benthic biofilms
(Ylla et al., 2011). Various heterotrophic bacteria make benthic
biofilms the metabolic hotspots of OM degradation in stream
ecosystems (Battin et al., 2003; McClain et al., 2003; Peter
et al., 2011). In stream biofilms, carbon cycling genes were
most common, followed by genes associated with other nutrient
cycles (Dopheide et al., 2015). As a major form of organic
nitrogen, amino acids are among the most labile fractions
of bulk OM in lakes (Cowie and Hedges, 1992; Hedges
et al., 1994). Their degradation not only support microbial
production but enrich the biologically available pools of inorganic
N forms, NO3, NO2, and NH4 (Stepanauskas et al., 1999).
Furthermore, amino-acid-based solutes are also commonly used
by bacteria for osmoregulation (Harris, 1981), which may be
more important in a high salinity environment like Qinghai
Lake.

For energy metabolism pathway genes, stream microbial
assemblages had higher abundance of genes involved in
oxidative phosphorylation and nitrogen metabolism, however,
lake microbial assemblages had higher abundance of genes
involved in carbon fixation and photosynthesis (Figure 8). In a
watershed, streams play a crucial role in nitrogen metabolism,
microbial nitrogen fixation, denitrification, and ammonification
exert control over nitrogen exports to downstream aquatic
ecosystems (Peterson et al., 2001; Valett et al., 2008). It has
also been suggested that the uptake of nitrate is related to
ecosystem photosynthesis, which is more intensive in lake;
while denitrification is related to ecosystem respiration, which

is more intensive in stream biofilms (Mulholland et al., 2008).
This was in line with the physicochemical environments that
lake had higher NH4, while stream had higher TN and NO3
(Supplementary Table S1). Moreover, high photosynthesis in
lake microbial communities indicates more autotrophic carbon
fixation in lake. However, stream biofilms have higher oxidative
phosphorylation which is the most abundant and active energetic
pathway (Huang et al., 2014), indicating more heterotrophic
remineralization of organic carbon. This was in line with the
high DOC in lake and low DOC in stream (Supplementary
Table S1).

CONCLUSION

In a watershed, lake and its input streams are highly connected
with complex relationships. Streams receive nutrient and OM
inputs from terrestrial ecosystems, subject them to internal
processing, and pass them to lakes. In our study, we documented
the taxonomic and functional differences between microbial
communities in Qinghai Lake and its input streams. Stream
biofilms and lake water harbored distinct microbial communities.
The microbial communities were different taxonomically and
functionally between stream and lake. Moreover, different
strains of a species may have distinct functions in lake water
while there might be more different taxa which have the
same functional traits in stream biofilms. Stream biofilms
also had a microbial network with higher connectivity and
modularity than lake water. In terms of potential functions, lake
microbial assemblages displayed a greater representation of many
metabolism pathways while the microbial assemblages in stream
biofilms were more abundant in xenobiotic biodegradation
and metabolism and lipid metabolism. Furthermore, amino
acid metabolism, carbon fixation, and photosynthesis were had
strong representation in lake microbial assemblages while stream
microbial assemblages were higher in carbohydrate metabolism,
oxidative phosphorylation, and nitrogen metabolism. These
results provided an understanding of stream-lake linkages
from the perspective of microbial structures and functional
potentials.
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