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Genes critical for the survival or reproduction of an organism in certain circumstances
are classified as essential genes. Essential genes play a significant role in deciphering
the survival mechanism of life. They may be greatly applied to pharmaceutics and
synthetic biology. The continuous progress of experimental method for essential gene
identification has accelerated the accumulation of gene essentiality data which facilitates
the study of essential genes in silico. In this article, we present some available
online resources related to gene essentiality, including bioinformatic software tools for
transposon sequencing (Tn-seq) analysis, essential gene databases and online services
to predict bacterial essential genes. We review several computational approaches that
have been used to predict essential genes, and summarize the features used for gene
essentiality prediction. In addition, we evaluate the available online bacterial essential
gene prediction servers based on the experimentally validated essential gene sets of
30 bacteria from DEG. This article is intended to be a quick reference guide for the
microbiologists interested in the essential genes.

Keywords: essential gene, minimal gene set, gene essentiality prediction, synthetic biology, Tn-seq analysis

INTRODUCTION

Essential genes are those that play a decisive role in the survival and development of an
organism under general conditions. Even though the genome sizes and gene compositions differ
dramatically, all so far sequenced genomes contain a set of essential genes that sustain key cellular
functions. However, the phrase “essential gene” is highly context-dependent. Only when the
environment in which organisms live is clearly defined can a gene be classified as essential gene
or not. Another closely linked concept is the minimal gene set. A minimal gene set is defined
as the minimal set of genes needed for a cell to carry out basic metabolism and reproduction
under the most favorable conditions, in which all essential nutrients are available and there is
no environmental stress (Koonin, 2000, 2003; Gil et al., 2004). Research on essential genes, with
important theoretical as well as practical values, is quite appealing. Identification of essential genes
can help a lot in deciphering the survival mechanisms of life. Moreover, because the deletion
or inactivation of essential genes confer lethal phenotypes to microorganisms, essential genes or
proteins encoded by essential genes form logical targets for new antibiotics in the pharmaceutical
industry (Galperin and Koonin, 1999; Juhas et al., 2011; Mobegi et al., 2014). In the emerging
scientific field of synthetic biology, devising a minimal genome is a desirable research direction
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(Pei et al., 2011; Juhas et al., 2012). For example, researchers
at the J. Craig Venter Institute (JCVI) produced the first self-
replicating synthetic cell Mycoplasma mycoides JCVI-syn1.0 in
2010 (Gibson et al., 2010). By the design-build-test (DBT)
cycle, they removed non-essential genes in JCVI-syn1.0 genome
and produced JCVI-syn3.0. Containing 531,560 base pairs and
only 473 genes, JCVI-syn3.0 has smaller genome than that of
any free-living organism found in nature (Hutchison et al.,
2016).

Since 1999, when the first global transposon mutagenesis
was performed on Mycoplasma genitalium to experimentally
confirm the minimal gene set for a living organism (Hutchison
et al., 1999), the attempt to search for essential genes has
been persistently carried out in a wide range of species.
The experimental approaches used to identify essential genes
include single-gene knockout (Kobayashi et al., 2003), transposon
mutagenesis (Hutchison et al., 1999), and antisense RNA
inhibition (Ji et al., 2001). In the past decade, the integration
of transposon mutagenesis and high-throughput sequencing
has facilitated many methods in the recognition of essential
genes. These development lead to a significant increase in the
number of species involved in gene essentiality screens. Apart
from bacteria, essential genes in archaea (Sarmiento et al.,
2013) and eukaryotes such as Saccharomyces cerevisiae (Giaever
et al., 2002), Schizosaccharomyces pombe (Kim et al., 2010),
Arabidopsis thaliana (Meinke et al., 2008), Mus musculus (Liao
and Zhang, 2007) and Homo sapiens (Blomen et al., 2015; Wang
et al., 2015) are all identified. Based on these abundant data,
researchers have constructed many essential gene databases. The
bioinformatic resources greatly promote the investigation of
essential genes (Lin et al., 2010; Gao and Zhang, 2011; Peng and
Gao, 2014; Luo et al., 2015; Zhang et al., 2015; Zheng et al.,
2015).

Except the development of experimental approaches,
researchers also tried in many ways to computationally recognize
the essential genes. In fact, computational approach to search
for the minimal gene set was performed as early as 1996.
Supposing that genes conserved between organisms are likely
to be essential, Mushegian and Koonin compared genomes
of Haemophilus influenzae and Mycoplasma genitalium to
determine the minimal gene set (Mushegian and Koonin,
1996). In the past few years, the accumulation of completely
sequenced bacterial genomes and the establishment of
essential gene database greatly facilitated the identification of
bacterial gene essentiality in silico. Computational methods
are becoming more important in essential gene study
because they can dramatically save time and efforts. This
article is a comprehensive overview of online resources to
identify and predict bacterial essential genes. We present
some available web resources related to gene essentiality,
including the bioinformatic tools and databases. We also
summarize several features used in essential gene prediction.
In the final part, the currently available online bacterial
essential gene prediction servers are listed and tried based
on the experimentally validated essential gene sets of 30
bacteria for evaluation. Figure 1 shows the outline of this
article.

EXPERIMENTAL APPROACHES AND
BIOINFORMATIC TOOLS TO IDENTIFY
ESSENTIAL GENES

Previous experimental approaches used to identify essential
genes include the systematic inactivation of each individual
gene present in a genome, the use of antisense RNA to
inhibit gene expression and massive transposon mutagenesis
(the most widely used approach) (Gil et al., 2004). Briefly,
the single-gene knockout strategy is designed to insert a non-
replicating plasmid into the target gene via a single crossover
recombination, which is able to disrupt the function of the
target gene and generate knockout mutations. The gene that
could not be inactivated by insertion is deemed essential
(Kobayashi et al., 2003). Antisense RNA inhibition method
decreases the expression level of a target gene through binding
by double-stranded RNA (dsRNA) (Ji et al., 2001). Another
method, transposon mutagenesis is used to identify essential
genes by constructing a random transposon-insertion library,
then determining the insertion sites by DNA hybridization
(Hensel et al., 1995) or microarray (Mazurkiewicz et al., 2006).
However, these experimental methods have limitations more or
less. The single-gene knockout strategy requires detailed genome
annotation. The use of antisense RNA is limited to the genes
for which an adequate expression of the inhibitory RNA can
be obtained in the organism under study. Shortcomings of
transposon mutagenesis method include missing low-abundance
transcripts, low resolution in locating insertion sites, and narrow
ranges in counting probe density. Therefore, these methods have
only been performed in a limited number of organisms and
identified their essential genes with low throughput (Gil et al.,
2004).

In recent years, technologies that use a random transposon
mutant library followed by next-generation sequencing such
as transposon-directed insertion site sequencing (TraDIS)
(Langridge et al., 2009), insertion sequencing (INSeq) (Goodman
et al., 2009), high-throughput insertion tracking by deep
sequencing (HITS) (Gawronski et al., 2009) and transposon
insertion site sequencing (Tn-seq) (van Opijnen et al., 2009;
van Opijnen and Camilli, 2013) are becoming powerful tools
to facilitate high-throughput identification of essential genes.
Currently, several bioinformatic software tools have been built
and maintained by different research groups, which help
researchers to analyze the data from transposon insertion
sequencing experiments. A list of Tn-seq data analysis software
tools related to essential genes is presented in Table 1. Most of
these tools are included in the manually curated meta-database
OMICtools (Henry et al., 2014).

Table 1 shows that several software tools, especially
ESSENTIALS (Zomer et al., 2012), have been successfully
applied to the genome-wide essential genes screens in
many microorganisms. ESSENTIALS uses the Negative
Binomial distribution statistical model to quantify the
statistical significance of essential regions. It adopts many
data preprocessing steps such as data filtering and normalization
as well as post-processing steps to optimize the gene essentiality
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FIGURE 1 | Summary of computational methods used in the identification and prediction of bacterial essential genes. (A) Experimental approaches and
bioinformatic tools to identify essential genes. (B) Essential gene databases. (C) Features used for gene essentiality prediction. (D) Computational approaches to
predict essential genes and online services.

prediction. ESSENTIALS provides both source code and web-
interface, so that researchers with no previous computational
experience can analyze the Tn-seq data (Chao et al., 2016). Tn-
seq Explorer utilizes a sliding window approach which counts

insertions in overlapping windows of a specific size. Regions
that are significantly underrepresented in read counts compared
with the rest of the genome are identified as essential genes or
possibly other essential genomic segments (Solaimanpour et al.,
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2015). This approach can identify essential genes with a high-
resolution. However, when the window size decreases and the
number of windows increases, the operational quantity will be
magnified (Chao et al., 2016). Algorithms in other software
include models using the Poisson distribution (Liu et al., 2016),
Bayesian analysis method (DeJesus et al., 2013) and Hidden
Markov Models (DeJesus and Ioerger, 2013; Pritchard et al.,
2014). TRANSIT, a pipeline for analyzing Himar1 Tn-seq data
was developed in 2015. This tool provides two different statistical
methods (Bayesian/Gumbel Method and Hidden Markov Model)
to identify essential genes in individual datasets and a resampling
method to identify conditionally essential genes between different
growth conditions (DeJesus et al., 2015). The various statistical
methods and the graphical interface make TRANSIT an effective
and convenient Tn-seq data analysis tool. However, TRANSIT
only offers automatic observation on libraries generated by using
the Himar1 transposon. When analyzing other TnSeq libraries,
a pre-processor is needed to modify the format of data files.
TnseqDiff is a parametric method which uses insertion-level data
to identify conditionally essential genes. This method is able to
deal with data with multiple experimental conditions (Zhao et al.,
2017). Bio-Tradis is a novel software tool for analyzing the output
of TraDIS analyses. The provided service is similar to that in
Tn-seq Explorer and TRANSIT. Better yet, this is a command-
line driven approach which allows the simultaneous processing
of many sequencing libraries (Barquist et al., 2016).

More recently, the CRISPR-Cas9 technology has also been
used to identify essential genes (Wang et al., 2015; Morgens
et al., 2016). Clustered regularly interspaced short palindromic
repeats (CRISPRs), together with CRISPR-associated (Cas)
proteins, provide bacteria with adaptive immunity to viruses and
plasmids (Barrangou and Doudna, 2016). In the CRISPR-Cas9
system, single guide RNAs (sgRNAs), which retain a sequence
complementary to the targeted region, direct Cas9 endonucleases
to induce a site-specific double-strand break in the DNA. Then
the double-strand break is repaired by non-homologous end-
joining (NHEJ). Thus, the CRISPR system is able to knockout
genes at DNA level (Doudna and Charpentier, 2014). Compared
with other methods, CRISPR-based methods have features of
low noise, minimal off-target effects and consistent activity
across reagents (Evers et al., 2016). Currently, this method is
mainly adapted to mammalian cell lines. Therefore, we have not
discussed its details in this article.

BIOINFORMATIC DATABASES ABOUT
ESSENTIAL GENES

By utilizing the experimental approaches and bioinformatic
tools, researchers are able to quickly and accurately identify
essential genes in a wide range of microorganisms under different
experimental conditions. Experimentally screened essential gene
data are constantly accumulating. These dramatically increasing
data form the foundation of the development of secondary
databases about essential genes. In the following part, we list some
available web resources and servers related to essential genes and
discuss them in detail.

DEG (a database of essential genes) is a comprehensive
platform for essential genes. This database was constructed in
2004 and has been updated constantly. The newly released DEG
10 contains a considerable number of essential and non-essential
genes in archaeal, bacterial and eukaryotic organisms determined
under different environments. Non-essential genes can also be
determined in many genome-wide essentiality screens. For the
genes whose essentialities are undefined due to the limitation
of the experiments, they can neither be classified as essential
genes nor as non-essential genes. So non-essential genes are
not always the complementary set of essential genes and vice
versa. Other essential genomic elements such as essential non-
coding RNAs, regulatory sequences, essential promoters and
even replication origins are also included. In addition, users
are allowed to perform homology searches with the embedded
BLAST tool provided in the database. Single genes, multiple
genes, annotated genomes and even unannotated genomes can be
submitted to DEG for BLAST searches (Zhang et al., 2004; Zhang
and Lin, 2009; Luo et al., 2014). The timely updated information
and practical tool in DEG make it the most widely used database
about essential genes.

Lin and Zhang (2011) developed an essential gene prediction
algorithm by integrating the information of biased distribution
of essential genes in leading and lagging strands, homologous
search and codon adaptation index (CAI) values. The algorithm
takes 310 and 379 essential genes in Mycoplasma pulmonis UAB
CTIP and Mycoplasma genitalium G37 contained in DEG as
training set. The prediction accuracy in self-consistence and
cross-validation tests are 80.8 and 78.9% respectively. 5880
essential genes were predicted by this prediction algorithm in 16
Mycoplasma genomes. The predicted genes were then stored in
a database of predicted Essential Genes (pDEG). Many detailed
information of the predicted essential genes are provided in the
database, and the records can be freely accessed and downloaded
(Lin and Zhang, 2011).

OGEE is an Online GEne Essentiality database. Both essential
and non-essential genes obtained from large-scale experiments
are openly accessible in this database. The developers also
complement their data with text-mining results. For each gene,
a list of associated gene properties, such as gene duplication
status, evolutionary origins of the gene, expression profiles and
conservation across species, is also collected. It has been proved
in a series of studies that these gene properties can affect gene
essentiality. The database offers an integrated online tool. Genes
can be divided into different groups according to gene properties
including whether a gene is a duplicate or singleton and whether a
gene is involved in development. Then the proportion of essential
genes in each group can be visualized by this tool. In 2016, a
new version of OGEE was developed, and new species as well
as new datasets were added. Moreover, as DEG the developers
reorganized 16 essential gene datasets from 9 human cancers.
Users can know whether a gene is shared within different cancer
types or is essential in one particular cancer type with OGEE.
OGEE is a useful tool for researchers to study the essentiality of
genes (Chen et al., 2012a, 2017).

EGGS (Essential Genes on Genome Scale) is a database
that holds microbial gene essentiality data which are acquired
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from genome-wide essential gene selections. Microbial genes
are classified into three categories: essential (E) genes, non-
essential (N) genes and ’undefined’ (U) for all other genes.
Essentiality data of each gene can be browsed in a gene/protein
page. In the EGGS database, users can also visualize and analyze
essentiality data in the context of a Subsystem spreadsheet or on
a Subsystem diagram. The collection of annotated Subsystems
makes the comparative analysis of these data possible, which
greatly facilitates the interpretation and application of essentiality
data (Overbeek et al., 2005; Gerdes et al., 2006).

CEG is a database of essential gene clusters. This database is
available at http://cefg.cn/ceg/. The developers obtained the data
of essential genes from DEG. The difference is that essential genes
with the same functions are stored in one orthologous cluster.
The size of an essential gene cluster can show whether the gene is
shared among many species or is species-specific. These cluster
properties are of great help in evolutionary research and drug
target discovery. The CEG database also provides a prediction
tool CEG_Match to predict essential genes based on standard
gene names, which is discussed in detail later (Ye et al., 2013).

Table 2 shows the basic information about the above four
databases that store essential genes in the form of single
genes. DEG and OGEE contain more species and are updated
periodically. It is advised to use these resources as primary ones.

COMPUTATIONAL METHODS FOR THE
PREDICTION OF ESSENTIAL GENES

Homology Search and Evolutionary
Analysis-Based Methods
Primal efforts to computationally identify essential genes adopted
comparative genomic analysis based on sequence homology.
Researchers tried to predict the minimal gene set by comparing
the first sequenced genomes of Haemophilus influenzae and
Mycoplasma genitalium, and identified 256 candidate essential
genes (Mushegian and Koonin, 1996). The ideology for homology
mapping methods is simple, i.e., genes shared by distantly related
organisms are likely to be essential (Koonin, 2003). With the
completion of more bacterial genomes’ sequencing, researchers
tried to analyze bacterial genome data in different strains of
a single species. Comparative genomic analysis including core
genes identification (Zafar et al., 2002) has been successfully
implemented to infer the essential genes from the pan-genome
of bacterial species such as Mycoplasma (Liu et al., 2012),
Liberibacter (Fagen et al., 2014), Plasmodium falciparum (Rout
et al., 2015) and Brucella spp. (Yang et al., 2016). The evolutionary
rate of essential genes is slower than that of non-essential genes.
So essential genes are more evolutionarily conserved in bacteria
(Jordan et al., 2002; Luo et al., 2015). Other homology properties
such as gene-duplication data and phyletic gene age have also
been used in the prediction of essential genes. Duplicated genes
are also called paralogs. Function and expression of these paralogs
often overlap with each other. Duplicated genes are less likely to
be essential than singletons because deleting one of the duplicates
is not lethal to an organism (Jordan et al., 2002; Chen and TA
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Xu, 2005). Genes with more recent phyletic origins (younger
genes) are less likely to be essential than that with earlier phyletic
origin (older genes). For genes of the same age, singletons are
more likely to be essential than duplicates (Chen et al., 2012b).
Homology mapping can be used to predict essential genes based
solely on genomic sequences. However, this method is limited
to conserved orthologs between different species, which often
make up only a small percentage of the genomes (Bruccoleri
et al., 1998). Moreover, although essential genes tend to be highly
conserved, the conserved genes across species are not always
essential.

Machine Learning-Based Methods
Machine learning-based method is another widely used approach
to predict essential genes. This method identifies essential genes
by constructing and training a classifier according to the features
of known essential and non-essential genes. Then the classifiers
are applied to the same or other genomes (Zhang et al., 2016). For
example, Chen and Xu found the significant correlation between
the gene essentiality and its evolutionary rate, gene-duplication
rate, its connectivity in protein-protein interaction network and
gene-expression cooperativity. By methods of neural network
and support vector machine, they predicted gene essentiality of
high-throughput data in yeast Saccharomyces cerevisiae (Chen
and Xu, 2005). Machine-learning algorithms used to train the
classifier include support vector machine (SVM), neural network,
decision tree, Naïve Bayes model, feature-based weighted Naïve
Bayes model (FWM) (Cheng et al., 2013; Ning et al., 2014),
and so on. With the advancement in research, a variety of
genomic and protein features have been analyzed and used in
gene essentiality prediction studies. Generally, the features can
be broadly classified into two groups: sequence derived features
and context-dependent features (Wang et al., 2013; Mobegi et al.,
2016).

Sequence Derived Features of Essential Genes
(1) GC content. DNA with high GC content is believed to be

more robust and stable (Seringhaus et al., 2006).
(2) Codon usage. The codon usage of essential genes suffers

from more evolutionary constraints than non-essential
genes (Jordan et al., 2002).

(3) Strand bias. Essential genes tend to be encoded on the
leading strand of the chromosome (Lin et al., 2010; Rocha
and Danchin, 2003).

(4) Protein length. Although protein length tends to become
longer through evolution, essential genes, compared to
non-essential genes, have a significantly higher proportion
of large and small proteins relative to medium-sized
proteins (Lipman et al., 2002; Gong et al., 2008).

(5) Z-curve parameter. The Z-curve theory is a bioinformatic
algorithm to display base composition distributions along
DNA sequences (Zhang and Zhang, 1994; Zhang, 1997;
Gao and Zhang, 2004). All the information that a given
DNA sequence carries is included in the corresponding
Z-curve. So Z-curve features can be used as sequence
derived features for essential gene prediction (Song et al.,
2014; Lin et al., 2017). Based on the Z-curve theory,

Guo et al. (2017) created a λ-interval Z-curve, which
considered the interval range association. They then built
a support vector machine-based model to predict human
gene essentiality with the λ-interval Z-curve, and obtained
excellent performance (Guo et al., 2017).

(6) Hurst exponent. The Hurst exponent is a characteristic
parameter which describes the degree of self-similarity of
a data set. For genes of similar length, the average Hurst
exponent of essential genes is smaller than that of non-
essential genes (Zhou and Yu, 2014).

Context-Dependent Features of Essential Proteins
(1) Domain properties. Protein essentiality is not likely to be

conserved through the conservation of overall proteins
but through the function of protein domains or domain
combinations (Deng et al., 2011).

(2) Protein-protein interaction (PPI) network. Genes or their
protein products are connected rather than isolated.
Compared with non-essential genes, essential genes tend to
be more highly connected in protein interaction networks.
Network topology features, such as degree centrality (DC),
betweenness centrality (BC), closeness centrality (CC),
eigenvector centrality (EC), subgraph centrality (SC) have
been used for detecting essential proteins (Estrada, 2006;
Acencio and Lemke, 2009; Hwang et al., 2009; Wang et al.,
2013; Xiao et al., 2015).

(3) Protein localization. Essential proteins exist in cytoplasm
with a higher proportion, while locate in cell envelope
such as cytoplasm membrane, periplasm, cell wall and
extracellular with a much lower proportion compared with
non-essential proteins (Seringhaus et al., 2006; Peng and
Gao, 2014).

(4) Gene expression. Genes whose expression levels are higher
and stabler under given conditions are more likely to be
essential (Jansen et al., 2002).

(5) Gene Ontology. The Gene Ontology (GO) project provides
a set of hierarchical controlled vocabularies for describing
the biological process, molecular function, and cellular
component of gene products (Ashburner et al., 2000).
GO terms related to cellular localization and biological
process are shown to be reliable predictors of essential genes
(Acencio and Lemke, 2009).

Compared with homology mapping, the supervised machine
learning-based methods use more genomic and protein features
to construct the predicting model. The prediction performance
can be improved by selecting appropriate features (Deng et al.,
2011; Lu et al., 2014). However, multiple available gene features
lead to complexity as well. Different combinations of features may
influence the prediction performance. The prediction results in
different organisms with the same feature combinations could
also be different. How to select suitable features for the organism
under study to accurately predict essential genes is still a question
(Mobegi et al., 2016). Another limitation of machine learning-
based methods is that they may not be suitable for conditionally
essential genes prediction.
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Constraint-Based Approaches
Genome-scale metabolic networks, which help to understand
the systems biology of metabolic pathways within an organism,
have been reconstructed based on the genomic sequencing
and annotations (Thiele and Palsson, 2010). The structure and
function of these networks can be studied by constraint-based
modeling methods. Constraint-based modeling uses a series
of constraints to describe a biological system and characterize
its possible behavior under specific environmental conditions
(Edwards et al., 2002; Price et al., 2003; Orth et al., 2010).
Constraint-based models have been reconstructed in organisms
across all three domains of life. These models have promoted
the investigation of gene essentiality (Joyce and Palsson,
2008).

Flux balance analysis (FBA) is the most widely used
constraint-based approach to analyze the properties of metabolic
networks. This approach allows the prediction the metabolite
fluxes at steady state by applying mass balance constraints
to a stoichiometric model (Kauffman et al., 2003; Raman
and Chandra, 2009; Orth et al., 2010). The basic idea of
applying FBA to predict essential genes is to simulate the
knockout of a gene, and then evaluate the associated lethality
on the system (Basler, 2015). Usually, the building and analysis
procedure of FBA model can be divided into three steps.
First, reconstruct the metabolic network and compile the
stoichiometric matrix. Second, identify and apply appropriate
constraints to the network. Finally, find the optimal flux
distribution by linear programming and assess the essentiality
of a gene through analysis of the optimal flux distribution
in the network (Joyce and Palsson, 2008; Lu et al., 2014;
Basler, 2015). FBA is less computationally expensive because
it does not require kinetic parameters. FBA can be used to
perform the simulation of large numbers of perturbations to
the network. This approach is suitable for conditionally essential
gene studies. However, it cannot be used to predict metabolite
concentrations or transient dynamic states because it does not
use kinetic parameters. Furthermore, the predictions sometimes
disagree with experimental data, because FBA does not account
for regulatory effects such as regulation of gene expression
(Orth et al., 2010; Basler, 2015). Nevertheless, FBA has obvious
limitations because it could only predict the essentiality of a
metabolic gene.

EVALUATION OF ONLINE ESSENTIAL
GENE PREDICTION SERVERS

The CEG_Match is developed based on the CEG database. It is
a gene essentiality prediction tool based on their functions. The
CEG_Match predicts essential genes by matching the standard
gene names and the cluster names stored in the CEG database.
Compared with direct blast search against CEG database, this
methodology is more accurate because there are no obvious
similarities between two genes with different functions, while
two genes without obvious similarities may have the same
function. Users should input gene names in a one name per
line format or gene sequences in fasta format. They are also

required to adjust the minimum matching number before
executing the tool. Generally, it’s more likely for the gene
to be essential if the matching number is larger. However,
the CEG_Match tool has its limitations. It works only when
the gene name is known (Guo et al., 2010, 2015; Ye et al.,
2013).

Geptop is a gene essentiality prediction tool for sequenced
bacterial genomes based on orthology and phylogeny. A gene
is more likely to be essential if it is conserved during the
long-term evolution, especially in similar species. The reciprocal
best hit (RBH) method was used for estimating orthology. The
distance of phylogeny between species was computed with the
Composition Vector (CV) method. An open source standalone
package version is also offered on the website. Any bacterial
species with sequenced genome can get essential gene searched
by Geptop. Moreover, the website stored essential genes in 968
bacterial genomes predicted by Geptop. Users can browse and
download the data for further research (Wei et al., 2013).

ZCURVE (Guo et al., 2003) is a program that predicts genes
in bacterial or archaeal genomes. It is developed based on the
Z-curve theory. Its latest version ZCURVE 3.0 has an embedded
Geptop program, which has an extended function of searching
for essential genes in bacterial or archaeal genomes. However,
different from the previous Geptop, predicted genes are used here
as the input rather than annotated genes. Once the essential genes
output option is selected, users can get an output file showing
whether each predicted gene is essential or not (Hua et al., 2015).

EGP (Essential Gene Prediction) is an online tool for
essential gene prediction of bacteria genomes. It is a support
vector machine (SVM)-based method which only uses sequence
compositional features. Five groups of features, including amino
acid usage, codon usage, nucleotide usage of 3 codon positions,
di-nucleotide usage, and CodonW features are independently and
jointly input into the SVM to construct the predicting model. The
training dataset consists essential genes in 16 bacterial genomes.
For large-scale genome sequences, the accuracy of EGP can reach
75%. Users only need to provide nucleotide sequences of genes
to make a prediction. The predicted result will be presented on
the jumping window or be sent to users by e-mail (Ning et al.,
2014).

The basic information of the online essential gene prediction
servers including CEG_Match, Geptop, ZCURVE 3.0, EGP and
BLAST tool in DEG are presented in Table 3. The differences
in the use of each tool are also listed. Researchers can choose
the suitable servers according to actual conditions. We test the
prediction performance of BLAST tool, Geptop, CEG_Match and
EGP by 30 bacteria, whose experimentally validated essential
gene sets are collected in DEG. Protein sequences of both essential
and non-essential genes in the 30 genomes are independently
uploaded to DEG for homologous searching. At the selecting
organism step, all the organisms are selected except the one
the query proteins belong to, which enable it to be a cross-
organism test. Geptop has the same issue. We abandon the
web server and use the standalone version to perform the
test. When the tested genome is included in the reference
species, the other 18 proteomes are used as the training set.
A limitation with CEG_Match is that we can only perform the
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TABLE 3 | Summary of the online essential gene prediction servers.

Name Methodology Input Standalone
version

Annotation URL

CEG_Match Based on gene
function

Standard gene name × The limitation of CEG_Match is that it is only applicable to
name known genes. This will be an appropriate tool when
you only know the genes’ names and the complete
genome is not at hand.

http://cefg.cn/ceg/
predict.php

Geptop Based on orthology
and phylogeny

Amino acid sequence
√

Geptop tool could be applicable only when the investigated
genomes have been completely sequenced.

http://cefg.uestc.
edu.cn/geptop/

ZCURVE 3.0 Based on orthology
and phylogeny

Amino acid sequence
of predicted genes

√
ZCURVE 3.0 is a program to find genes in bacterial or
archaeal genomes. It has an embedded Geptop program,
which has an extended function of searching for essential
genes.

http://cefg.uestc.
edu.cn/zcurve/ or
http://tubic.tju.edu.
cn/zcurveb/

EGP Machine
learning-based
method

Nucleotide sequence × The accuracy of EGP is lower than other tools. Before using
this tool, it is advised to check the reference species, which
have been used in the training set of EGP. Be cautious to
use it when your input gene belongs to the host that does
not be included in the same family with any of the reference
species.

http://cefg.uestc.
edu.cn:9999/egp

BLAST Homology
search-based
method

Nucleotide sequence
Amino acid sequence

√
DEG has a set of customizable BLAST tools to perform
homologous searches against essential gene sets in DEG.
Single genes, multiple genes, annotated genomes and
unannotated genomes can be submitted for BLAST
searches.

http://tubic.tju.edu.
cn/deg/

FIGURE 2 | Prediction performance of BLAST tool, cross-organism Geptop, CEG_Match and EGP in the 30 genomes. (A) AUC scores of the gene essentiality
prediction by BLAST tool, cross-organism Geptop, CEG_Match and EGP incorporating the phylogenetic information of the 30 genomes. (B) Box plot of AUC scores
from the prediction of the four tools for the 30 genomes. (C) Correlation analysis of AUC scores from the prediction of the four tools.
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prediction to the genes with known name. We use the AUC
[area under the receiver operating characteristic (ROC) curve]
score as the standard method to assess the accuracy of the four
predictive tools. The AUC scores are shown in Figures 2A,B. The
phylogenetic tree was constructed to elucidate the evolutionary
relationship among the organisms. The black lines in Figure 2A
are the phylogenetic tree of the 30 organisms used in the
prediction. The tree was constructed by the MEGA6 program
(Tamura et al., 2013) with the sequences of 16S ribosomal RNA of
the 30 organisms, which are downloaded from the NCBI website.
In Figures 2A,B, we can see that the prediction accuracy of
EGP is lower than the other three tools. Figure 2C shows that
the prediction accuracy of BLAST tool, Geptop and CEG_Match
show positive correlation. For these three tools, if the input
species belongs to the same phylogenetic lineage with any of
the reference species, the prediction accuracy of this organism
is higher. From this we can infer that the accumulation of the
experimental data can improve the tools to get better predictions.

CONCLUSION AND PERSPECTIVES

Studies on essential genes are gradually becoming popular and
can promote our understanding of biology. They may also be
applied to pharmaceutical as well as synthetic biology. Predicting
essential genes in silico will become more important because
computational methods are helpful in reducing the research space
for essential gene identification. The computational approaches
can be performed only when enough experimental essential
genes data are available. The development of many bioinformatic
software tools has facilitated the identification of essential genes.
The gene essentiality databases have collected such data and
contributed a lot in the characterization of essential genes.
Multiple computational approaches have been established based
on the features proven to be related to gene essentiality, and have
made significant advancement in essential gene prediction. In this

review, with an emphasis on the online resources, we summarized
several computational methods of predicting bacterial essential
genes. However, challenges still remain. For example, diverse
gene features have been proven to be related to gene essentiality,
but finding out true essentiality related features for a given
genome is quite complicated. When the prediction methods are
applied to a few model organisms, we may usually get favorable
results, but when involving more organisms, the results are not so
satisfactory. Besides, it is difficult to predict essential genes under
different living conditions. For such scenarios, more and better
experimental data can trigger the development of enhanced
prediction tools.
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