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Bacterial and viral co-infections of the respiratory tract are life-threatening and present
a global burden to the global community. Staphylococcus aureus, Streptococcus
pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper
respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A
virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn
can result in severe pneumonia. In this review, we summarize the current knowledge
about bacterial and viral co-infections of the respiratory tract and focus on potential
experimental models suitable for mimicking this disease. Transmission of IAV and
pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats,
guinea pigs, rabbits, and non-human primates are also available. The knowledge gained
from these studies led to important discoveries and advances in understanding these
infectious diseases. Nevertheless, mouse and other infection models have limitations,
especially in translation of the discoveries to humans. Here, we suggest the use of
human engineered lung tissue, human ex vivo lung tissue, and porcine models to study
respiratory co-infections, which might contribute to a greater translation of the results to
humans and improve both, animal and human health.

Keywords: pneumonia, co-infections, Influenza A virus, Gram-positive bacteria, Streptococcus pneumoniae,
Staphylococcus aureus, Streptococcus pyogenes, animal models

INTRODUCTION

In recent years the human microbiota is more and more recognized to play a crucial role in
pathogenesis of many diseases (Weinstock, 2012). The upper respiratory tract is a natural niche for
potentially pathogenic bacteria embedded in commensal communities forming the nasopharyngeal
microbiome. In particular, the microbial communities of the nasopharynx (Hilty et al., 2012) are
associated with respiratory diseases, i.e., severe pneumonia, which are responsible for substantial
mortality and morbidity in humans worldwide (Prina et al., 2016). The composition of the
nasopharyngeal microbiome is highly dynamic (Biesbroek et al., 2014a,b,c) and many factors,
including environmental and host factors, can affect microbial colonization (Koppen et al., 2015).
Recent studies on neonates have shown that the respiratory microbiota develops from initially
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maternally transmitted mixed flora with predominance of
Streptococcus viridans species to niche-specific bacterial profiles
containing mostly Staphylococcus aureus at around 1 week of age
(Bosch et al., 2016a). Between 2 weeks and 6 months after birth,
the staphylococcal predominance declines and colonization with
Streptococcus pneumoniae (pneumococci) as a predominant
pathobiont emerges (Miller et al., 2011; Bosch et al., 2016a,b).
The dynamic microbiome composition is guaranteed through the
interplay between bacterial species, other microbes, and changing
environmental conditions, as well as host–bacteria interactions
(Blaser and Falkow, 2009). Most of the time, the microbiome and
its interplay with the human host are believed to be beneficial
for both (Pettigrew et al., 2008; Murphy et al., 2009). However,
imbalances in microbial composition can lead to acquisition of
new viral or bacterial species and invasion of potential pathogens,
which in turn can become detrimental, especially in elderly
people and children with an exhausted or immature immune
system (Pettigrew et al., 2008; Blaser and Falkow, 2009; Murphy
et al., 2009).

One particular example showing imbalances introduced by
single dosage of antibiotics was demonstrated by Ichinohe and
colleagues (Ichinohe et al., 2011). While commensal respiratory
microbiota facilitated immune-support against Influenza A
virus infection (IAV), oral treatment with antibiotics resulted
not only in a shift of bacterial composition, but also in
impaired CD4 T-, CD8 T-, and B-cell immunity following
infection with IAV in mice (Ichinohe et al., 2011). Analyses of
human oropharyngeal microbiomes during the 2009 H1N1 IAV
pandemic revealed that at the phylum level, the abundance of
Fermicutes and Proteobacteria was augmented in pneumonia
patients as compared to healthy controls (Leung et al., 2013).
However, another study published in the same year contradicted
these results (Chaban et al., 2013). Chaban and colleagues
analyzed microbiomes of 65 patients from H1N1 IAV outbreak
in 2009. Although the phylogenetic composition of pneumonia
patients was dominated by Fermicutes, Proteobacteria, and
Actinobacteria, no significant differences between the patients
and healthy controls or any other variables tested, including age
and gender, were observed (Chaban et al., 2013).

In this review we discuss secondary bacterial infections of
the respiratory tract after primary infection by IAV with a
focus on mechanisms by which these interactions are potentially
mediated, and we will provide insight into the host contribution
and immunological consequences. We further focus on potential
animal models suitable for mimicking asymptomatic bacterial
colonization and disease progression and thus, enabling to study
adaptation strategies, viral-bacterial interactions, and immune
responses in these highly lethal co-infections.

INFLUENZA A VIRUSES AND
PANDEMICS

Influenza A viruses belong to the family of Orthomyxoviridae
and based on the antigenicity of their haemagglutinin (HA) and
neuraminidase (NA) they are classified into 16 classical HA and
9 classical NA subtypes (Neumann et al., 2009). The 8-segmented

genomes of influenza A viruses are characterized by a significant
plasticity. Due to point mutations and re-assortment events
new variants or strains with epidemic or pandemic potential
emerge (Neumann et al., 2009). In addition, influenza can be
transmitted between animals, including swine, birds, horses, and
humans, making it a zoonotic disease (van der Meer et al.,
2010). Seasonal influenza usually resolves without consequences
in healthy individuals. However, it is estimated that seasonal
influenza effects 5–10% of the world’s population resulting in
about 250,000 to 500,000 deaths annually (Tjon-Kon-Fat et al.,
2016). At greater risk to develop secondary bacterial pneumonia
are individuals with comorbidities, elderly people (age > 65),
pregnant women, and children under the age of one (Rothberg
et al., 2008).

For a long time it was considered that the H1N1 strain,
an avian-like H1N1 virus, directly caused most of the fatalities
during the 1918–1919 pandemic (Spanish Flu), often from
a hemorrhagic pneumonitis rapidly progressing to acute
respiratory distress syndrome and death (Osterholm, 2005;
Gerberding, 2006; Oxford et al., 2006). The pandemic killed
around 50 million people worldwide and remains unique
in its severity compared to other big outbreaks. However,
many of the findings have been reinterpreted in recent
years (Brundage and Shanks, 2007; Chien et al., 2009). It is
estimated that around 95% of all severe cases and deaths were
attributed to secondary infections with bacterial pathogens, most
predominantly by Streptococcus pneumoniae (Morens et al.,
2008). Individual studies limited to certain regions identified
also other pathogens commonly colonizing the respiratory tract,
including Staphylococcus aureus, group A streptococcus (GAS)
and Haemophilus influenzae (Brundage and Shanks, 2008).
During the next two pandemics (H2N2 Asian Flu 1957−1958
and H3N2 Hong Kong Flu 1968−1969) bacterial co-infections
were less likely the cause of death compared to the Spanish
Flu (Giles and Shuttleworth, 1957; Trotter et al., 1959). Still,
pneumonia accounted for about 44% of deaths during the Asian
Flu (Giles and Shuttleworth, 1957). Most fatalities resulting from
pneumonia occurred in individuals with chronic conditions,
i.e., chronic lung diseases, rheumatic carditis, and hypertension
(Giles and Shuttleworth, 1957). In 1957–1958, S. aureus was
predominantly isolated from fatal pneumonia cases (Hers et al.,
1957, 1958; Robertson et al., 1958; Martin et al., 1959),
whereas S. pneumoniae returned as predominant cause of severe
pneumonia during the Hong Kong Flu (Sharrar, 1969; Bisno
et al., 1971; Burk et al., 1971; Schwarzmann et al., 1971). Forty
years later in 2009, a novel H1N1 virus of swine origin emerged
and caused again a pandemic (Dawood et al., 2009, 2012). In
contrast to Asian and Hong Kong Flu, mortality rates were rather
low, but most deaths occurred in healthy young individuals with
no underlying conditions (Reichert et al., 2010; Monsalvo et al.,
2011; Dawood et al., 2012). About 25–50% of severe or fatal
cases were linked to complications due to bacterial pneumonia
(Dominguez-Cherit et al., 2009; Estenssoro et al., 2010; Mauad
et al., 2010; Shieh et al., 2010). Although regional variations
occurred, pneumococci and S. aureus were the most frequently
isolated bacterial species (Mauad et al., 2010; Shieh et al., 2010;
Rice et al., 2012). Group A streptococcus was absent in many
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local pneumonia outbreaks associated with viruses, but was
predominant in others (Brundage and Shanks, 2008; Ampofo
et al., 2010). When it does appear, it is typically third in incidence
(Chaussee et al., 2011). Overall, data on pandemic outbreaks
suggest that disease severity and mortality can be linked to
secondary bacterial pathogens with variations depending on
regions and state of immunity of the population (Brundage and
Shanks, 2008; Shanks et al., 2010, 2011; McCullers, 2013).

GRAM-POSITIVE BACTERIA
ASSOCIATED WITH RESPIRATORY
INFECTIONS

There is increasing evidence that the nasopharyngeal microbiota
plays an important role in the pathogenesis of acute viral
respiratory infections (Teo et al., 2015; de Steenhuijsen Piters
et al., 2016; Rosas-Salazar et al., 2016a,b). Respiratory viruses,
including IAV, have been shown to alter bacterial adherence and
colonization leading to an increased risk of secondary bacterial
infections (Tregoning and Schwarze, 2010). Pneumococci, S.
aureus, and GAS are important human Gram-positive pathogens.
All of them are frequent colonizers of the human nasopharynx
and they share many features including pathogenic mechanisms
and clinical aspects (Figure 1). However, they also have unique
properties.

Staphylococcus aureus colonizes persistently about 30% of the
human population and typical niches include nares, axillae, and
skin (Peacock et al., 2001; von Eiff et al., 2001; van Belkum et al.,
2009). They cause a variety of clinical manifestations ranging
from mild skin infections to fatal necrotizing pneumonia. In
the last decades, the pathogen became resistant to an increasing
number of antibiotics and methicillin-resistant S. aureus (MRSA)
is now a major cause of hospital acquired infections (Hartman
and Tomasz, 1984; Ubukata et al., 1989; Zetola et al., 2005).
Also the rise of community-acquired S. aureus strains is of
special concern, because certain clones are associated with very
severe infections (Rasigade et al., 2010). Recent prospective
studies demonstrated an increase in proportion of community-
acquired methicillin-sensitive S. aureus in severe pneumonia
cases (McCaskill et al., 2007; Sicot et al., 2013).

The pneumococcus is a typical colonizer of the human
nasopharynx. About 20–50% of healthy children and 8–30%
of healthy adults are asymptomatically colonized (McCullers,
2006). Pneumococci cause diseases ranging from mild, i.e.,
sinusitis, conjunctivitis, and otitis media, to more severe and
potentially life-threatening infections, including community-
acquired pneumonia, bacteraemia, and meningitis (Bogaert et al.,
2004; Valles et al., 2016). This bacterium is associated with
high morbidity and mortality rates in risk groups such as
immunocompromised individuals, children, and elderly (Black
et al., 2010; Valles et al., 2016).

Group A streptococci colonize the mouth and upper
respiratory tract in about 2–5% of world’s population (Okumura
and Nizet, 2014). The most common, non-invasive and mild
infections caused by GAS are tonsillitis and pharyngitis with
estimated 600 million cases per year (Carapetis et al., 2005).

Listed as number nine in the list of global killers with around
500,000 deaths annually (Carapetis et al., 2005), it is obvious
that this pathogen can cause severe invasive infections, including
pneumonia, sepsis, streptococcal toxic shock syndrome, and
necrotizing skin infections (Cunningham, 2000; Carapetis et al.,
2005).

Although all three pathogens are able to cause highly lethal
diseases, the most fatal remains the pneumococcus, estimated
to cause ca. 10% of all deaths in children below 5 years of age
(O’Brien et al., 2009), in the elderly (Marrie et al., 2017), and in
immuno-compromised individuals (Baxter et al., 2016).

IAV INDUCED LUNG TISSUE
INFLAMMATION AND DAMAGE
TRIGGER SUBSEQUENT BACTERIAL
INFECTION

Initial Steps of Bacterial and Viral
Co-infections
Influenza A virus binds via HA to either α2,3- or α2,6-linked
sialic acid at the surface of epithelial cells of the upper and lower
respiratory tract (Webster et al., 1992). Seasonal strains show
usually affinity to α2,6-linked sialic acids that are expressed in
the human trachea, whereas avian-like viruses preferentially bind
to α2,3-linked sialic acids of alveolar type II cells (Shinya et al.,
2006; van Riel et al., 2007, 2010). The release of viral genomic
RNA into the cytosol activates different immune response
pathways. Binding of viral RNA to retinoic acid inducible gene
1 induces the expression of type I and III interferons and
activates transcription factor NF-κB, which in turn activates
the release of pro-inflammatory cytokines (Durbin et al., 2013;
Iwasaki and Pillai, 2014). In addition, inflammasome activation
leads to the release of IL-1β and IL-18 (Pothlichet et al., 2013;
Iwasaki and Pillai, 2014). All these responses are supposed to
promote viral clearance. However, the presence of viral proteins
during infection induces also direct activation of the intrinsic
or indirectly the activation of the extrinsic apoptotic pathway
via production of inflammatory cytokines, resulting in apoptosis
or even necrosis of the epithelium (Korteweg and Gu, 2008).
Furthermore, aberrant coagulation induced by virus infection
causes a hyper-inflammatory response (Yang and Tang, 2016).
All these events contribute to lung tissue injury (Imai et al.,
2008; Davidson et al., 2014). The epithelial damage due to viral
replication provides a beneficial environment for initial bacterial
attachment (Plotkowski et al., 1993). On the other hand, already
colonized bacteria might enhance influenza virus virulence either
by directly secreting proteases that cleave and activate HA
(Figure 2) (Bottcher-Friebertshauser et al., 2013) or, indirectly,
by activating host proteases such as plasminogen, which increases
replication rates and infectivity of the virus (Scheiblauer et al.,
1992; Tse and Whittaker, 2015).

Potentially pathogenic bacteria, including the three species
mentioned above, express an arsenal of virulence factors
responsible for attachment to human host structures. Microbial
surface components recognizing adhesive matrix molecules
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FIGURE 1 | Potential models to study bacterial and viral co-infections of the respiratory tract. S. pneumoniae, S. aureus, S. pyogenes, and S. suis are frequent
colonizers of the upper respiratory tract. Seasonal IAV infection can lead to an increased risk of secondary bacterial infections, i.e., pneumonia. Several experimental
models can be used for studying these severe infections. Patient samples, including ex vivo lung tissue are materials of choice, but they are rare due to ethical
considerations. Tissue engineering approaches closely resemble the 3D architecture, cellular composition, and matrix complexity of the respective organ and were
proven as useful tool to study infectious diseases. In vivo bacterial and viral co-infections are mainly performed in mice, which does not necessarily resemble the
human physiology and immune system. Thus, we suggest using the porcine model, which nearly resembles over 80% of the human immune system.

(MSCRAMMs), such as PspC, PspA, and PsaA in pneumococci
(Hammerschmidt, 2006), SPA, FnbA, ClfA, and ClfB in S. aureus
(Bartlett and Hulten, 2010; Otto, 2010), and M-protein, PrtF1,
and PrtF2 in GAS (Cunningham, 2000), respectively, and so-
called moon-lightning proteins expressed by all three species,
e.g., GAPDH, enolase or PGK (Fulde et al., 2013), enable
the bacteria to attach to damaged cells or molecules of the
extracellular matrix, including fibronectin, fibrin, fibrinogen, and
collagens, or fibrinolytic proteins like plasminogen (McCullers
and Rehg, 2002; Bergmann and Hammerschmidt, 2007; Linke
et al., 2012; Siemens et al., 2012; Voss et al., 2012). Once the initial
attachment occurs, bacterial cytotoxins including pneumolysin
of pneumococci (Garcia-Suarez Mdel et al., 2007; Zahlten et al.,
2015), α-hemolysin and leukocidins of S. aureus (Mairpady
Shambat et al., 2015), and Streptolysins S and O and Streptococcal
pyrogenic exotoxin B of S. pyogenes (Tsai et al., 1998; Gurel
et al., 2013; Siemens et al., 2015, 2016), can synergize with viral
counterparts to further increase lung tissue pathology. Additional
potential mechanisms by which the initial colonization of the
lower respiratory tract and lung tissue damage might occur
include potentiation of the development of pneumonia by IAV
neuraminidase through enzymatic removal of sialic acid from the
lung, thus exposing host receptors for pneumococcal adherence
(McCullers and Bartmess, 2003). The host inflammatory state
in response to viral infection can alter presentation of receptors
on the surface, thus allowing bacterial invasion (Cundell and
Tuomanen, 1994). As the patient begins to recover from viral
infection, secondary bacterial infections might occur (Louria
et al., 1959) due to the incomplete wound healing and exposure
of host membrane components, including laminin, collagens type

I and IV to classical bacterial MSCRAMMs (Louria et al., 1959;
Puchelle et al., 2006).

Immune Modulation in Bacterial and Viral
Co-infections
Epithelial cells are the first responders to infections in the
lung, followed by the tissue resident alveolar macrophages.
They promote viral clearance via phagocytosis, efferocytosis,
and release of cytokines and chemokines to promote immune
responses (Hashimoto et al., 2007; Kumagai et al., 2007; Wang
et al., 2012; Hillaire et al., 2013). Respiratory viruses like IAV are
able to induce suppression and killing of the resident alveolar
macrophages (Figure 2) (Ghoneim et al., 2013). These cells are
usually replaced by differentiation of recruited blood derived
monocytes into macrophages of different polarization patterns.
This in turn creates a delay in pathogen clearance and opens a
window for host susceptibility to secondary bacterial infections,
colloquially named superinfections (Ghoneim et al., 2013). In
addition, induction of interferons as a response to viral infection
compromises the immune sensing of Gram-positive bacteria by
neutrophils and macrophages, which would normally clear the
bacteria from the lungs (Figure 2) (Sun and Metzger, 2008; Tian
et al., 2012). The exact mechanism underlying this phenomenon
is still not understood. Several studies suggested that viral RNA
activates Toll-like receptors (TLR) 2 and TLR4 and, consequently,
the production of type I interferons to promote an antiviral
state (Shahangian et al., 2009). The subsequent infection with
Gram-positive bacteria, e.g., pneumococci, enhances the type I
interferon expression, which in turn suppresses production of the
CCL2 chemokine and recruitment of macrophages (Nakamura
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FIGURE 2 | The interplay between IAV, bacteria, and the human host. The epithelial damage due to viral replication provides a beneficial environment for bacterial
(Bact.) attachment. IAV is able to induce suppression and killing of resident alveolar macrophages (AM), which in turn delays viral clearance. The release of viral RNA
activates different immune response pathways resulting in cytokine storm. Type I and III interferons compromise the immune recognition of Gram-positive bacteria by
neutrophils and macrophages. In addition, they might suppress natural killer cell function (NK), including release of TNF, which activates alveolar macrophages. After
initial inflammation, the situation might worsen due to cellular infiltration of the lungs by neutrophils (PMN), leading to an increased degranulation and tissue damage
by effector molecules, including heparin-binding protein (HBP).

et al., 2011). Another study by Shahangian et al. (2009) revealed
that the antiviral state leads to impaired production of neutrophil
chemoattractants CXCL1 and CXCL2, which in turn promotes
less effective immune responses due to attenuated neutrophil
functions during the early phase of pneumococcal invasion.
Other studies found that IAV exposed lungs had impaired
natural killer (NK) cell responses in the airway to subsequent
S. aureus infection (Small et al., 2010). Reduced TNFα production
by NK cells was identified as a crucial upstream mechanism
of depressed antimicrobial activities by alveolar macrophages
(Figure 2) (Small et al., 2010). It seems likely that IAV NA is
also able to activate host cell receptors in a TGF-β dependent
manner, which in turn promotes GAS invasion and subsequent
lung pathology (Li et al., 2015). In vitro studies on the interplay
between IAV-pneumococci and human dendritic cells revealed
TLR3 as a crucial sensor of viral and bacterial RNA leading to
enhanced IL-12p70 production, which in turn might promote
an anti-viral state by upregulation of interferons (Yamamoto
et al., 2004; Spelmink et al., 2016). However, it should be noted
that depending on the bacterial species the disease manifestation
and underlying innate immune responses might vary (Sharma-
Chawla et al., 2016).

A lot of the experimental studies on disease mechanisms and
immune responses are based on a subsequent bacterial infection
within hours or a few days post IAV infection. However, bacterial

infiltrations of the lungs might occur much later, i.e., during
the onset of wound healing after partial clearance of IAV, which
has been reported in most studies performed in recent years
(Snelgrove et al., 2008; Hussell and Cavanagh, 2009). These
processes are characterized by a general anti-inflammatory state
and suppression of mechanisms involved in pathogen clearance
due to increased interleukin-10 production (van der Sluijs et al.,
2004; Metzger and Sun, 2013). The anti-inflammatory state
suppresses the expression of pattern recognition receptors (PRR)
on professional phagocytes leading to impaired phagocytosis
and killing of microbes. These events might allow bacterial
overgrowth in the lungs and tissue pathology (Sun and Metzger,
2008; Goulding et al., 2011).

Like other severe infectious diseases caused by single agents,
pneumonia is characterized by hyper-inflammatory conditions
of the lungs at the onset of infection followed by a hypo-
inflammatory state with immune paralysis (Morton et al., 2014).
In co-infections, after initial inflammation in response to viral
infection the situation might worsen due to bacterial invasion
and enhanced cellular infiltration of the lungs by neutrophils,
leading to an increased tissue damage and cytokine storm
(Figure 2) (Conenello et al., 2007; McAuley et al., 2007, 2010;
Porto and Stein, 2016). Furthermore, the coagulation system
becomes activated and contributes to the pathophysiological
response to infection (van der Poll and Herwald, 2014). Bacteria
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like pneumococci, S. aureus, and GAS can activate and modulate
the coagulation system, leading to extensive expression of tissue
factor and increasing the risk of severe coagulopathy (Nguyen
et al., 2012; Shannon et al., 2013; Walters et al., 2016).

Bacterial pathogens also express a variety of cytolytic toxins
that can contribute to inflammation and tissue pathology.
Pneumolysin, a pneumococcal pore-forming toxin with low
affinity to lung epithelial cells, can damage neutrophils by
utilizing P2X7 receptor (Domon et al., 2016). Staphylococcal
cytotoxins (α-toxin and leukocidins, including Panton-Valentine
leucocidin, PVL) are associated with severe tissue pathology,
strong upregulation of chemokines, and increased neutrophil
influx of the lungs (Mairpady Shambat et al., 2015). GAS
toxins, including SLO and SpeB, are capable of directly causing
tissue damage and promoting pro-inflammatory states through
neutrophil lysis (Snall et al., 2016; Uhlmann et al., 2016).
The cytolytic effects caused by bacterial toxins might synergize
with the outcome of IAV cytotoxic accessory protein, PB1-
F2, mediated tissue pathology leading to enhanced cytokine
production (Ramos and Fernandez-Sesma, 2012). Taken together,
most likely synergistic effects of the pathways that are involved
in bacterial and viral inflammation lead to enhanced immune
activation and higher morbidity and mortality (Joyce et al., 2009;
Koppe et al., 2012; Ramos and Fernandez-Sesma, 2012; Bucasas
et al., 2013; Kuri et al., 2013). Figure 2 summarizes the interplay
between virus, bacteria, and host.

SUITABLE IN VIVO MODELS FOR
MIMICKING RESPIRATORY INFECTIONS

Mouse Models
Experimental animal models are a useful tool to study
in vivo effects of different infectious agents and they represent
approximately 3% of all pneumonia research published in peer-
review journals (Hraiech et al., 2015). However, the constant
increase of animal studies in the last decades is in contrast
to their reproducibility in humans (Hackam and Redelmeier,
2006). Hackam and colleagues identified 2,000 articles published
between 1980 and 2006 in seven leading scientific journals
that regularly publish animal studies (Hackam and Redelmeier,
2006). Seventy-six out of 2,000 were highly cited with a median
citation count of 889. Out of these 76 studies 28 were replicated
in human randomized trials, 14 were contradicted, and 34
remained untested (Hackam and Redelmeier, 2006). Only 1.4%
of the animal studies published in high-impact journals were
translated in human randomized trials (Hackam and Redelmeier,
2006), whereas about 44% replication rate was reported for
highly cited human studies (Ioannidis, 2005). In pneumonia
models, mammalians are mostly used because of their anatomical
and physiological proximity to humans (Hraiech et al., 2015).
To monitor extensive physiological studies, larger mammalian
species, including ferrets, dogs, rabbits, pigs, and baboons are
the models of choice (Mizgerd and Skerrett, 2008). However,
rodents and in particular mice are used more frequently as a
pneumonia model organisms. Rapid reproductive rate, small
size, less complicated handling, the ability to reproduce and

compare results with already published bacterial and viral
mono-infections, detailed knowledge of genetics and immune
responses, and a plethora of available reagents to study infections
in mice are reasons for the use of these animals. To avoid
variations in responses due to genetic diversity inbred mice
strains are useful tools for studies aiming to elucidate molecular
mechanisms of diseases. In addition, genetic engineering allowed
to generate a wide variety of mouse variants with gain-
of-function, loss-of-function or reporter genes (Mizgerd and
Skerrett, 2008).

As outlined above, many in vivo mice studies on bacterial
and viral co-infections provided useful insights into severe
pneumonia, including (i) the fact that viral infection primes
the host for bacterial susceptibility leading to severe secondary
infection (Hashimoto et al., 2007; Shahangian et al., 2009;
Chaussee et al., 2011; Nakamura et al., 2011), (ii) pathogen
synergism (Tsai et al., 1998; McCullers and Rehg, 2002; Garcia-
Suarez Mdel et al., 2007; Gurel et al., 2013; Mairpady Shambat
et al., 2015; Zahlten et al., 2015), (iii) enhanced inflammatory
response at the onset of infection (Korteweg and Gu, 2008;
Durbin et al., 2013; Pothlichet et al., 2013; Iwasaki and Pillai,
2014) leading to increased alveolar damage followed by immune
paralysis with defective clearance of microorganisms (Shinya
et al., 2006; van Riel et al., 2007, 2010), and (iv) host receptor
availability for sustained bacterial infection (Louria et al., 1959;
Plotkowski et al., 1993; Cundell and Tuomanen, 1994; Puchelle
et al., 2006; Korteweg and Gu, 2008). However, mouse models for
bacterial and/or viral infections have several limitations. Most of
the bacterial and viral species under study are human pathogens.
In recent years it was also shown that host genetic variations
and sex differences have an impact on predisposition, severity,
and outcome of infection (Chella Krishnan et al., 2015, 2016)
While C57BL/6 and BALB/c mice are characterized by a higher
resistance, DBA/2 strains are more susceptible and permissive to
bacterial and viral strains (Alymova et al., 2011; Chella Krishnan
et al., 2015, 2016). In addition, transmission of IAV and bacteria
is inefficient in adult mice, thus requiring alternative animal
models, including neonatal mice or ferrets (Diavatopoulos et al.,
2010; McCullers et al., 2010). IAV was shown to be essential for
pneumococcal transmission from colonized mice to their naive
littermates and the transmission occurred only when all mice
were infected with IAV (Diavatopoulos et al., 2010).

Ferret Models
The facilitated transmission of pneumococci after IAV infection
was confirmed by Mc Cullers et al. in ferrets (Mustela putorius
furo) (McCullers et al., 2010). The pneumococcal disease
manifestation and transmission between animals was enhanced
if animals had previously been infected with IAV (McCullers
et al., 2010). Ferrets are naturally susceptible to IAV isolated
from different species, including humans, birds, and swine
(Thangavel and Bouvier, 2014). The infection of ferrets with
human seasonal IAV isolates results in an upper respiratory
tract infection similar to human influenza infection (Tripp and
Tompkins, 2009). In contrast to mice, non-adapted human
IAV can be used for the infection. Unfortunately, there are
only few reports on bacterial and IAV co-infections in this
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model organism. A report by Sanford and Ramsay showed
enhanced staphylococcal colonization of the upper respiratory
tract in IAV infected animals as compared to non-infected,
while no difference between both groups was observed in
group B streptococcal infection (Sanford and Ramsay, 1987). In
contrast, Smith and Mc Cullers reported lack of establishment
of staphylococcal infection even when ferrets were pre-infected
with IAV (Smith and McCullers, 2014). The biggest advantages
of using ferrets as a model include (i) their susceptibility to non-
adapted human pathogens, (ii) efficiency in transmitting IAV and
bacteria from one individual to another, and (iii) presentation
of the clinical signs of disease manifestation akin to human
influenza infection. Unfortunately, their limited availability,
complex husbandry, and limited accessibility to ferret-specific
reagents makes this research difficult to perform (Bouvier and
Lowen, 2010).

Guinea Pig Models
In recent years, the guinea pig (Cavia porcellus) was also used
in pneumonia research. The physiology and anatomy of the
guinea pig lung resembles to a certain extent the human lung
and this model organism is often used in non-infectious lung
diseases, including asthma and chronic obstructive pulmonary
disease (Canning and Chou, 2008). In addition, its commercial
availability, ease of husbandry, the ability to work with non-
adapted pathogens and the efficiency of transmission are reasons
for using this in vivo model (Bouvier and Lowen, 2010). Guinea
pigs are susceptible to human, avian, and swine influenza viruses.
Although viral replication can be readily detected upon intranasal
inoculation in the upper respiratory tract and the lungs, guinea
pigs exhibit only minor clinical symptoms (Lowen et al., 2006;
Gabbard et al., 2014). However, the lung pathology of human IAV
infected guinea pigs correlates with the clinical severity of human
infection (Gabbard et al., 2014). Transmission of pneumococci
in guinea pigs is promoted by co-infection with Sendai virus
(Saito et al., 1988). Guinea pigs infected with pneumococci alone
and cage-mated with non-treated contact animals transmitted
the bacteria only in 7% of cases, while Sendai-virus infected,
co-housed guinea pigs acquired pneumococcal infection in
83% of contacts (Saito et al., 1988). Another study evaluated
antibiotic efficacy in invasive pulmonary infection caused by
penicillin resistant pneumococcus (Ponte et al., 1996). Intra-
tracheal instillation of 3 × 109 CFU of S. pneumoniae induced
a fatal pneumonia and bacteremia in 85% of untreated animals
within 46 h (Ponte et al., 1996). As with ferrets, there is a paucity
of data describing immune responses to pulmonary infectious
agents. This is in parts due to the lack of species specific reagents,
which is a disadvantage in using this model organism.

Rat Models
Recently, the cotton rat (Sigmodon hispidus) was reported to be
susceptible to IAV. Nasal and pulmonary infection in adult inbred
cotton rats did not require viral adaptation (Ottolini et al., 2005).
The infection led to increased breathing rates accompanied by
weight loss and decreased body temperature. Replication of
IAV was more extensive in nasal tissues than the lung, and
persisted for six consecutive days. Tissue pathology included

damage of bronchiolar epithelium and the animals developed
pneumonia which persisted for nearly 3 weeks (Ottolini et al.,
2005). In bacteriological studies rats are more frequently used.
There are numerous rat models investigating the impact of
diabetes (Oliveira et al., 2016), metabolic syndromes (Feng et al.,
2015), cirrhosis (Preheim et al., 1991), pharmaco-kinetics and
dynamics (Antonopoulou et al., 2015; Hoover et al., 2015),
intoxication (Davis et al., 1991), immunization (Iinuma and
Okinaga, 1989), and general bacterial virulence factors (Shanley
et al., 1996) on development of pneumococcal, streptococcal, and
staphylococcal pneumonia and lung pathology. Unfortunately,
there are only few studies on bacterial and viral co-infections in
rats. The first was performed by Harford et al., 1946 (Harford
et al., 1946). The authors concluded that the secondary bacterial
pneumonia does not convert the sub-lethal viral infection to a
lethal outcome (Harford et al., 1946). Another study on human
respiratory syncytial virus and S. pneumoniae revealed that rats
were easily colonized with pneumococci, but viral replication
after subsequent infection was strain dependent. In addition,
neither pneumococci nor the virus spread from the upper to the
lower respiratory tract, and neither pathogen was transmitted to
naive cage mates (Nguyen et al., 2015). Although rats share a lot of
immune features with humans, including nitric oxide production
by macrophages (Carsillo et al., 2009), the biggest disadvantages
are low animal availability, aggressiveness of the species, and the
lack of specific reagents.

Rabbit Models
Rabbits (Oryctolagus cuniculus) are well known for their use
in studying cardiovascular diseases, antibody production, and
eye research. Rabbits were also employed to study pneumonia,
although only a few models are available. Typical read-out
parameters include survival, leukocyte infiltration of the lungs,
lung pathology, and assessment of drug concentration in serum.
One of the first studies on pneumococcal pneumonia in rabbits
was performed in Kline and Winternitz (1913). This study
revealed that rabbits possess an active immunity if they have
recovered from one attack of experimental pneumonia and
they may subsequently resist repeated intra-tracheal dosages of
pneumococci (Kline and Winternitz, 1913). In 1926 an infection
by inhalation of Type I pneumococci was established in rabbits
(Stillman and Branch, 1926). The bacteria infiltrated easily the
lower respiratory tract and pneumococci which reached the lungs
usually disappeared within hours and fatal septicemia appeared
in some of the animals (Stillman and Branch, 1926). Most recent
rabbit models of pneumococcal and staphylococcal pneumonia
are based on intra-bronchial or intra-pulmonary infections which
make them useful for pathogenesis (Diep et al., 2010, 2017),
as well as drug efficiency and efficacy studies (Cabellos et al.,
1992; Croisier-Bertin et al., 2011). However, this infection route
requires surgery and species-specific reagents are scarce. In IAV
research rabbits are frequently used for antibody production and
for studies on antibody kinetics following single or multiple IAV
administrations (Loza-Tulimowska et al., 1977). Also, rabbits are
used for safety investigations of vaccines (e.g., CoVaccine HT
or Aflunov) (Heldens et al., 2010; Gasparini et al., 2012). In
recent years the shedding of avian IAV by cottontails (Sylvilagus
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spp.) was investigated revealing that nasally and orally inoculated
cottontails shed relatively large quantities of viral RNA (Root
et al., 2014). Notably, low viral titers were found to be sufficient
to initiate viral replication in cottontails (Root et al., 2017).
However, despite their susceptibility to IAV infection, rabbits are
only rarely used as model for IAV pathogenesis since they offer
no improvement over other established infection models.

Non-human Primate Models
Macaques represent the major non-human primate for studying
infectious diseases. They are omnivorous and adaptable. The
species most commonly used are rhesus macaques (Macaca
mulatta) and cynomolgus macaques (Macaca fasciluraris).
Although it was shown early that macaques were susceptible
to IAV (Saslaw et al., 1946), the animal models of choice
remained ferrets and mice. Recently, macaques have been
used to compare the pathogenesis of highly virulent 1918
pandemic IAV and the pathogenic bird flu strain (H5N1)
with a conventional H1N1 strain (Rimmelzwaan et al., 2001).
Cynomolgus macaques infected with highly pathogenic H5N1
developed acute respiratory distress syndrome, fever, and
necrotizing pneumonia (Rimmelzwaan et al., 2001). The 1918
IAV strain induced dysregulation of the antiviral response leading
to insufficient protection of the host, which in turn resulted in
acute respiratory distress and a fatal outcome (Kobasa et al.,
2007). The 2009 pandemic H1N1 US isolate caused severe
pathological lesions in the lungs of the macaques (Itoh et al.,
2009). The three studies mentioned above used combined intra-
tracheal delivery of high doses of virus. A recent study by Marriott
et al. analyzed the outcome of challenge routes, including inhaled
aerosol and intra-nasal instillation with low to moderate doses
of H1N1 in cynomolgus macaques (Marriott et al., 2016). Virus
replication was detected in all challenge groups, although the
disease remained sub-clinical.

In bacteriological studies non-human primates are rarely used.
For group A streptococcal infection longitudinal transcriptome
analyses were performed in experimental pharyngitis (Virtaneva
et al., 2005) and lower respiratory tract infection in cynomolgus
macaques (Olsen et al., 2010a). The lower respiratory tract
disease observed in macaques after GAS infection mimicked the
clinical and pathological features of severe bronchopneumonia
in humans (Olsen et al., 2010a). Another study by Olsen and
colleagues analyzed the contribution of PVL of a highly virulent
USA300 S. aureus strain in respiratory infection (Olsen et al.,
2010b). Although the lower respiratory tract disease observed
in monkey mimicked the clinical and pathological features of
early mild to moderate pneumonia in humans, no involvement
of PVL in lung pathology or immune cell influx of the lungs
could be detected (Olsen et al., 2010b). The same research group
has developed a non-lethal IAV (H3N2)-S. aureus co-infection
model in cynomolgus macaques (Kobayashi et al., 2013).
Pneumonia progression was monitored by clinical parameters
assessment, blood chemistry, nasal swabs, and pathology of the
lungs. Seasonal IAV infection in healthy cynomolgus macaques
caused mild pneumonia, but did not predispose the animals to
subsequent severe infection with the USA300 clone (Kobayashi
et al., 2013).

Although macaques are frequently used for evaluation of
pneumococcal vaccine efficacy, including testing the impact
of 13-valent pneumococcal conjugate vaccine and 23-valent
pneumococcal polysaccharide vaccine on antigen-specific
memory B cell repertoires (Jia et al., 2017), only two studies
on pneumococcal carriage and pneumonia were conducted in
the last decade. In 2013, Philipp and colleagues analyzed the
carriage rate of pneumococcus in 158 colony animals. None
of the surveyed rhesus macaques carried S. pneumoniae in the
nasopharynx (Philipp et al., 2012). The authors concluded
that rhesus macaque is probably not a natural host of
pneumococci. But, when infants were colonized with 19F
strain via nasopharyngeal instillation, the colonization was
induced in eight of eight infants, lasted for 2 weeks in all animals
and for 7 weeks in more than 60% (Philipp et al., 2012). The same
group tested detoxified pneumolysin (dPly) and pneumococcal
histidine triad protein D (PhtD) as potential vaccine candidates
to prevent pneumonia (Denoel et al., 2011). After immunization
the rhesus macaques were challenged with a 19F pneumococcal
strain. AS02-adjuvanted PhtD-dPly vaccine protected the
animals against S. pneumoniae-induced pneumonia, which was
linked to the capacity (i) to greatly reduce bacterial load within
the first week post-challenge and (ii) the levels of PhtD- and
Ply-specific antibodies (Denoel et al., 2011). Although only a few
macaque studies on pneumonia exist, due to the close proximity
to humans in terms of physiology and immunity, these animals
can be a good model in the context of translational studies
evaluating therapeutics and prophylaxis.

Porcine Models
Despite the wide use of different animal models, the optimal
in vivo model for human pneumonia remains to be identified.
Small mammals including rodents are well known from a
biological, genetic, and immunological point of view and are
easy to maintain. The choice of these particular animals for
infectious disease studies is often a result of a compromise
between technical and financial options. However, they are
also far from humans’ anatomy, physiology, immunology, and
susceptibility to exclusively human pathogens. The experimental
animal model should be chosen based on responses comparable
to humans. Primates are usually legally reserved to specific topics.
In this case, pigs could be an appropriate model system for
studying infectious diseases including pneumonia (Figure 1).
The composition and size of the porcine genome is comparable
to that of humans (Hart et al., 2007). In addition, human
and porcine organs have many common features and functions
(Swindle et al., 2012). The upper respiratory tract of humans
and pigs, including the lymphoid tissue in the nasopharynx,
is anatomically similar. Furthermore, like humans, pigs possess
tonsils, which are absent in mice (Horter et al., 2003). A major
advantage of studying infectious diseases by utilizing pigs as a
host organism is that pigs have a full set of innate and adaptive
immune effectors. According to whole genome sequencing
results the porcine immune system resembles over 80% of the
human immune system, whereas mice share less than 10%
with humans (Dawson et al., 2016). Most of the immune cell
compartments identified in humans are also present in pigs
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(Piriou-Guzylack and Salmon, 2008; Fairbairn et al., 2011). In
contrast to mice and similar to humans, pigs have 50–70%
of circulating polymorph nuclear cells (Fairbairn et al., 2011).
In addition, all functional cytokines or orthologs involved in
Th1, Th2, Th17, and Treg paradigm and corresponding immune
cells have been described in pigs (Murtaugh et al., 2009; Kaser
et al., 2011; Kiros et al., 2011). Especially the very prominent
human pro-inflammatory chemo-attractant, CXCL8, is present
as an ortholog in pigs, whereas there is no homologue in mice
(Fairbairn et al., 2011). In contrast to human monocytes, which
can be divided in three subclasses (classical CD14+CD16−, non-
classical CD14+CD16+, and intermediate CD14++CD16+),
porcine monocytes consist of four subclasses (Chamorro et al.,
2005; Fairbairn et al., 2013). Like human monocytes they
express adhesion molecules, such as VLA-4 and LFA-1 and co-
stimulatory molecules, including CD80 and CD86 (Chamorro
et al., 2005).

The pig has previously been used to mimic a number of
human infectious diseases. Examples for S. aureus infections
with this model organism are wound infections (Sanden et al.,
1989; Svedman et al., 1989), osteomyelitis (Jensen et al., 2010),
and sepsis (Nielsen et al., 2009). Intravenous inoculation of
piglets with pneumococci led to bacteremia during a 5 days
period and was associated with fever and septic arthritis.
Intranasal inoculation of piglets led to colonization for at least
six consecutive days without causing clinical signs (De Greeff
et al., 2016). In addition, research on respiratory infections of
pigs by human pathogens including S. aureus (Luna et al., 2009),
Mycobacterium tuberculosis (Gil et al., 2010), Bordetella pertussis
(Elahi et al., 2007), Pseudomonas aeruginosa (Luna et al., 2009),
and IAV (Khatri et al., 2010), was performed in recent years. The
fact that pigs and humans are infected with identical subtypes of
IAV (H1N1, H3N2), and show similar clinical presentation and
pathogenesis, makes pigs an ideal model organism for studies on
respiratory co-infections (Van Reeth et al., 1998). Especially IAV
infections are already well established in swine (Van Reeth et al.,
1998, 2002a,b; Jung et al., 2007; Khatri et al., 2010; Barbe et al.,
2011).

In addition to the limited number of publications on pigs
and human pathogens, a lot can be translated and learned
from studies on the porcine zoonotic pathogen Streptococcus
suis. S. suis usually inhabits mucosal surfaces of tonsils, nares,
genital and alimentary tract of piglets. Once the microbial balance
is disturbed, the bacteria can cause meningitis, septicemia,
arthritis, and pneumonia in pigs (Staats et al., 1997). Some
S. suis strains are considered to be hyper-virulent and others
hypo- or avirulent. In general, serotype 2 is most frequently
isolated from diseased pigs (Staats et al., 1997). S. suis can
also cause severe diseases in humans including septicemia,
meningitis, arthritis, and streptococcal toxic shock syndrome
(Tang et al., 2006; Yu et al., 2006; Gottschalk et al., 2007).
Although many in vivo studies on S. suis have been performed
by utilizing mice as a model organism (Seitz et al., 2012; Auger
et al., 2016), several other studies have shown the advantage
of using swine as a natural host for S. suis (Bi et al., 2014;
Ferrando et al., 2015). A recent publication by Lin and colleagues
on H1N1 and S. suis co-infected piglets demonstrated the

synergistic effects of both pathogens (Lin et al., 2015). Co-infected
piglets had more severe clinical presentation and pathological
changes in the lung, as compared to animals infected with
single pathogens (Lin et al., 2015). In addition, genes associated
with immune responses, inflammatory cytokine production,
and apoptotic pathways were highly overexpressed in the co-
infected group (Lin et al., 2015). Although the porcine model
seems to be ideal to mimic human infectious diseases, there are
also disadvantages, including, e.g., requirement for specialized
experimental animal facilities, time consuming management,
high maintenance costs, and limited availability of transgenic
animals.

EX VIVO AND IN VITRO COMPLEX
MODELS OF PNEUMONIA

Although the use of animals contributes greatly to our
understanding of infectious diseases, human 3D-organotypic
tissue models and ex vivo organ tissues should be considered,
as they are most valuable tools to study host–pathogen
interactions in a more complex setting (Figure 1). Tissue
engineering approaches were originally focused on regenerative
medicine (Langer and Vacanti, 1993). In contrast to standard
monolayer cell cultures, tissue models much more closely
resemble the 3D architecture, cellular composition, and matrix
complexity of the respective organ. In recent years tissue
engineering was also successfully employed in a number of
studies in infectious diseases, including Zika virus infections of
cerebral organoids (Lancaster et al., 2013; Dang et al., 2016),
Helicobacter pylori infections of gastric epithelial organoids
(McCracken et al., 2014; Schlaermann et al., 2016), Escherichia
coli and Rotavirus infections of gastrointestinal and small
intestinal enteroids (Saxena et al., 2015; VanDussen et al.,
2015), Entamoeba histolytica or Hepatitis B virus infections
of hepatic sinusoid tissue (Petropolis et al., 2014, 2016),
group A and G streptococcal or staphylococcal infections
of skin tissue models (Siemens et al., 2015, 2016; Mairpady
Shambat et al., 2016), and staphylococcal and Andes hantavirus
infections of human lung tissue (Mairpady Shambat et al.,
2015; Sundstrom et al., 2016). The adaptability of these
tissue-engineered models to multiple pathogens suggests a
great potential for studies of infectious diseases. For instance,
the lung tissue model relevant for pneumonia consists of
lung fibroblasts embedded in a collagen matrix with a
stratified epithelial layer on top (Nguyen Hoang et al.,
2012). The engineered tissue is suitable for implanting and
studying immune cells, including dendritic cells, monocytes,
macrophages, and even peripheral blood mononuclear cells
(Nguyen Hoang et al., 2012; Mairpady Shambat et al., 2015).
A recent publication demonstrated a two-hit-event of lung
pathology in staphylococcal necrotizing pneumonia (Mairpady
Shambat et al., 2015). While the α-toxin had direct damaging
effect on the lung epithelium, PVL induced lung pathology
indirectly through the lysis of neutrophils (Mairpady Shambat
et al., 2015). All the studies mentioned above highlight a
significant progress in the field of infectious diseases not only
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from a scientific point of view but also by contributing to the three
R principle of animal experimentation (Russell, 1995).

On these terms, the use of cultured ex vivo human organ
biopsies, which are rare due to ethical considerations, is an
additional option to study host–pathogen interactions. This
ex vivo system may overcome even the limitations of the
engineered tissue. In recent years human ex vivo lung tissue
infections with various microorganisms, including pneumococci
(Szymanski et al., 2012; Fatykhova et al., 2015), Bacillus anthracis
(Chakrabarty et al., 2007), Haemophilus influenzae (Zhang et al.,
2016), and IAV (Nicholls et al., 2007; Chan et al., 2009), were
performed. In the human setting, most of the work focused on
tropism, severity of infections, release of inflammatory mediators,
and replication rates of the microorganisms. In addition, recently
also experiments on swine influenza virus (SIV) and S. suis
co-infections of the porcine ex vivo lung slices were reported.
Meng and colleagues showed that SIV promotes subsequent
bacterial infections in a two-step process of which the first
initial step was dependent on capsule expression, whereas the
second step of bacterial invasion into deeper layers was capsule-
independent and required virus-mediated damage (Meng et al.,
2015). However, this is just a beginning and more investigations
are needed to unravel the complexity underlying these highly
invasive infections.

In summary, bacterial and viral co-infections of the
respiratory tract are highly lethal and present a dramatic burden
for the global health system. The synergy between bacterial and
viral infectious agents is related to a variety of factors, including

epithelial barrier damage, exaggerated innate immune response,
and cytokine storm. Despite many advances in recent years,
more knowledge on mechanisms and immunology of disease
progression is needed. The synergistic mechanisms between
viruses and bacteria leading to enhanced morbidity and mortality
are poorly understood. In vivo characterizations of these severe
infections are mainly performed in mice which poorly resemble
the human physiology and immune system. Several efforts have
been made to establish other models, including ferrets, guinea
pigs, rabbits, rats, and non-human primates. However, all have
limitations. Here, we suggest using the porcine model, which
provides obvious advantages in studies of human infectious
diseases and should be considered much more frequent for future
studies on severe infectious diseases, including pneumonia.
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