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Previous shotgun metagenomic analyses of ruminal digesta identified some microbial

information that might be useful as biomarkers to select cattle that emit less methane

(CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI)

and to an extent the microbial community is heritable and therefore biomarkers can

offer a method of selecting cattle for low methane emitting phenotypes. In this study

a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to

determine microbial communities and genetic markers associated with high/low CH4

emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle

breeds, receiving two basal diets containing different proportions of concentrate and

also including feed additives (nitrate or lipid), that may influence methane emissions.

A combination of partial least square analysis and network analysis enabled the

identification of the most significant and robust biomarkers of CH4 emissions (VIP

> 0.8) across diets and breeds when comparing all potential biomarkers together.

Genes associated with the hydrogenotrophic methanogenesis pathway converting

carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and

methanogens were themicrobial populations most closely correlated with CH4 emissions

and identified by metagenomics. Moreover, these genes grouped together as confirmed

by network analysis for each independent experiment and when combined. Finally,

the genes involved in the methane synthesis pathway explained a higher proportion

of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters

or functional genes. These results confirmed the reproducibility of the analysis and

the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile

fatty acid concentrations and ratios were significantly correlated with CH4, but these

factors were not identified as robust enough for predictive purposes. Moreover, the

methanotrophic Methylomonas genus was found to be negatively correlated with CH4.

Finally, this study confirmed the importance of using robust and applicable biomarkers

from the microbiome as a proxy of CH4 emissions across diverse production systems

and environments.
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INTRODUCTION

Recent metagenomic analyses have highlighted the exciting
opportunity that rumen microbial biomarkers of methane (CH4)
emissions could enable the selection by breeding of cattle which
emit less CH4 and ultimately may lower agricultural greenhouse
gas (GHG) emissions. Ross et al. (2013) highlighted that this
approach may surpass current prediction accuracies that are
based on the host genome, especially for traits that are difficult to
measure and largely influenced by the gut microbiome. Methane
has a large impact on global warming, being 28-fold more potent
as a GHG than carbon dioxide (CO2) (IPCC, 2014). It is one of
the main anthropogenic sources (IPCC, 2014) and ruminants are
major producers of CH4, accounting for 37% of total GHG from
agriculture in the UK (Cottle et al., 2011). Methane results as an
end product of anaerobic microbial fermentation in the rumen
and it significant negative economic and environmental impacts
on animal production (Johnson and Johnson, 1995). A limited
number of archaeal taxa within Euryarchaeota are methane
producers and the genes involved in this process are well-
characterized (Thauer et al., 2008; Leahy et al., 2010; Borrel et al.,
2013). The hydrogenotrophic pathway catalyzing the conversion
of CO2 to methane is dominant in the rumen, and occurs in
Methanobrevibacter spp. (Hook et al., 2010; Danielsson et al.,
2017). However, methylotrophic methanogenesis also occurs in
the Methanomassilliicoccales group (Li et al., 2016), converting
methylamine or methanol derived from digestion of feed
constituents to methane (Poulsen et al., 2013; Vanwonterghem
et al., 2017). In addition, more work is needed to identify the
bacterial populations interacting with methanogens for H2 or
involved in different metabolic pathways associated with lactate
or volatile fatty acids (VFA) including propionate, butyrate, or
acetate which are known to impact differently methane emissions
(Moss et al., 2000; Janssen, 2010; Wanapat et al., 2015; Kamke
et al., 2016). For example, Megasphaera elsdenii is the major
rumen bacterium involved in the acrylate pathway converting
lactate to propionate and, in the absence of lactate, producing
acetate and butyrate but not propionate from glucose (Hino
et al., 1994; Russell and Wallace, 1997). Higher abundance
of bacteria populations involved in propionate metabolism is
associated with reduced methane emissions compared to acetate
metabolism because more H2 is utilized per mole VFA thus
reducing availability for methane production (Janssen, 2010;
Wanapat et al., 2015). Methanotrophic populations within both
archaea and bacteria are known to metabolize methane as a
carbon and energy source but the impact of such populations in
the rumen seems likely to be minor (Parmar et al., 2015; Wallace
et al., 2015).

Strategies to lower methane emissions in animal production
are becoming an important field of research with the aims
to enhance fermentation end-products that are useful to the
host and reduce GHG emissions (Immig et al., 1996; Knapp
et al., 2014). It is well-known that diet has an impact on the
microbial community composition and the genes carried by these
populations (Rooke et al., 2014; Henderson et al., 2015). Diets
with a higher content of concentrate (e.g., grain) compared to
a forage diet (e.g., grass and silages) tend to produce lower

methane emissions. For example, Giger-Reverdin and Sauvant
(2000) observed that maximum methane emissions occurred
between 30 and 40% of grain-based concentrate in the diet. Many
feed additives have been explored for their impact on methane
emissions. Addition of nitrate or polyunsaturated lipids (e.g.,
from rapeseed or linseed oil) to the diet showed promising results
(Veneman et al., 2015; Guyader et al., 2016). The percentage
of concentrate as constituent of the diet strongly affected this
inhibitory effect (Duthie et al., 2017). Mechanisms behind this
effect are partly explained by the possible inhibition of H2

producers in the presence of oil whilst nitrate is thought to
act as a competitor with methanogens for H2 and may also be
toxic to methanogens (Guyader et al., 2015). Besides the use of
different diets or additives, recent research has identified links
between the rumen microbiome and the host animal (Roehe
et al., 2016; Duthie et al., 2017; Malmuthuge and Guan, 2017)
and it has been established that host genetics influences methane
emissions (Pinares-Patiño et al., 2013; Herd et al., 2014). The
rumen microbiome may be the link between host genetics and
methane emissions. Therefore, the impact of basal diets, additives
and breeds on the microbiome may be considered and evaluated
for the identification of robust biomarkers of CH4 emissions.

Until now, proxies to predict methane emission phenotypes
based on rumen samples including phylogenetic, genomic, or
metabolomic markers have not been considered to be robust
and accurate, and are also expensive (Negussie et al., 2017).
This limitation has been partly attributed to the low number
of ruminants studied for the identification and validation
of biomarkers. There are inherent difficulties comparing the
results of direct quantitation of methanogens using qPCR
across different studies due to differences in sampling methods
or primer target (McCartney et al., 2013). Quantitative PCR
has produced conflicting results when correlating absolute
methanogen abundance with CH4 emissions (Mosoni et al.,
2011; Morgavi et al., 2012). However, a stronger correlation was
obtained calculating relative abundance between the Archaea
and Bacteria abundance (A:B ratio) in rumen digesta samples
(Wallace et al., 2014).

Reliable knowledge about the relationship between CH4

emissions and both the microbiome and the metabolites released
is very important for improving the identification of biomarkers
(McCartney et al., 2013; Ross et al., 2013).

Metagenomics permits the identification of all genes
comprising the microbiome and enables taxonomic
characterization of the microbial population. Metagenomics has
been confirmed to be a powerful method for studying the rumen
microbiome (Roehe et al., 2016; Wallace et al., 2017). Roehe et al.
(2016) identified 20 genes as biomarkers of methane emissions
using a combination of metagenomics and partial least square
analyses. Moreover, the same authors showed that these genes
clustered together within a genetic network providing a proof of
principle about the feasibility of breeding selection by targeting
these genes within the rumen microbiome. These preliminary
results were obtained on a limited number of beef cattle (n =

8) selected as extreme methane emitters (low or high) and fed
with two basal diets (forage or concentrate). Therefore, the
possibility to use a large scale method like metagenomics on a set
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of data from different breeds of beef cattle fed different diets and
coupled with VFA monitoring is a great opportunity to identify
and validate robust biomarkers of CH4 emissions.

The aim of this study was (i) to evaluate the effect of two
basal diets, and additives on the rumenmicrobiome of a selection
of four beef livestock breeds and to identify robust biomarkers
of CH4 emissions associated with the microbiome or microbial
activities, (ii) the identification of robust biomarkers of CH4

emissions associated with data from the microbial community
composition, the relative abundance of microbial populations,
the relative abundance of genes within the microbiome or
VFA concentrations, all data collected from three independent
experiments, and (iii) the comparison of these biomarkers to
identify those highly correlated with CH4 emissions across
diverse breeds and diets and the evaluation of the possibility
of implementing a breeding strategy using these microbial
biomarkers from the rumen microbiome.

MATERIALS AND METHODS

Ethics Statement
This study was conducted at the Beef and Sheep Research
Centre of Scotland’s Rural College (SRUC, Edinburgh, UK). The
experiment was approved by the Animal Experiment Committee
of SRUC and was conducted in accordance with the requirements
of the UK Animals (Scientific Procedures) Act 1986.

Animals, Experimental Design, and Diets
In our previous study (Wallace et al., 2015; Roehe et al., 2016),
data on feed efficiency and methane emissions (measured using
respiration chambers) were obtained from a 2 × 2 factorial
design experiment of breed types and diets using 72 steers from a
two-breed rotational cross between Aberdeen Angus (AA) and
Limousin (LIM) and completed in 2011. Similar experiments
were carried out using purebred Luing (LU) and crossbred
Charolais (CH) steers in 2013 and Aberdeen Angus (AA) and
Limousin (LIM) rotational crossbred steers in 2014. The data in
this study were obtained from samples from those experiments
whereby animals with extreme high and low methane emissions
(2011) or feed conversion efficiency (2013 and 2014) were
selected for whole genome sequencing. The breed type were
balanced within experiment comprising 4 AA and 4 LIM in
2011, 9 LU and 9 CH in 2013, and 12 AA and 12 LIM in
2014. Methane emissions were measured individually for 48 h
in respiration chambers (Rooke et al., 2014) and based on this
result, 25 animals were considered as low CH4 emitters whilst
the other 25 animals were classified as high CH4 emitters.
The average CH4 emissions (g/kg DMI) between Low and
High CH4 emitters were significantly different as shown in
Figure 1. The animals were offered two complete diets ad libitum
consisting (g/kg DM) of ∼500 forage to 500 concentrate or
80 forage to 920 concentrate which are subsequently referred
to as forage and concentrate diets, respectively. Nitrate, lipids,
or the combination of both were also added to the basal diet
and were compared with the control fed with the same diet
without additive. The detailed diet composition and proximate
analysis has been reported previously by Rooke et al. (2014) and

FIGURE 1 | Boxplots representing methane emissions under different

conditions. High, High methane emitters (n = 25); Low, Low methane emitters

(n = 25); FOR, Forage (n = 34); CONC, Concentrate (n = 16); CONT, all

controls (n = 20); NIT, all samples with nitrate (n = 12); RSC, all samples with

supplementary lipid (n = 12); Comb, all samples with nitrate and

supplementary lipid (n = 6); AAx, all samples from Aberdeen Angus (n = 13);

CHx, all samples from Charolais (n = 12); LIMx, all samples from Limousin (n =

13); Luing: all samples from Luing (n = 12). **P < 0.01.

Duthie et al. (2016, 2017). Animals were fed ad libitum during
the entire experiment including in the respiration chamber. A
single sample of rumen fluid for VFA analysis (expressed as
molar proportions) was taken by stomach tube (naso ruminal
sampling) within 1 h of cattle leaving the chambers in the 2011
experiment. VFA were determined in 2013 and 2014 using
samples collected directly at the abattoir. As recommended by
Terré et al. (2013), we compared the VFA profiles between
samples rather than total VFA concentrations because of the
different methods for rumen sampling applied. The acetate-to-
propionate ratio was calculated and considered as a proxy for H2

generation.
Samples were obtained from a total of 50 animals balanced for

breed type and diet and including the eight post mortem samples
previously studied in Roehe et al. (2016), (Table S1).

Genomic Analysis
The animals were fed ad libitum until they left the farm and
thereafter slaughtered within 2 h in a commercial abattoir where
two rumen fluid samples (∼50mL) were taken immediately
after the rumen was opened to be drained. The main advantage
to collect rumen contents after slaughter is to obtain samples
representative of both solid and liquid phases. DNAwas extracted
from the rumen digesta samples following the protocol described
in Rooke et al. (2014).
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Illumina TruSeq libraries were prepared from genomic DNA
and sequenced on an Illumina HiSeq 2500 instrument (2011
samples) and on an Illumina HiSeq 4000 instrument (2013
and 2014 samples) by Edinburgh Genomics (Edinburgh, UK).
Bioinformatics analyses using the two sets of data followed the
same procedure as previously described in Wallace et al. (2015).
Briefly, functional genes including the genes detailed in this study
were identified using KEGG genes database (http://www.kegg.
jp). Genes with a relative abundance greater than 0.001% were
carried forward for downstream analysis.

For 16S rRNA gene analysis, the genomic reads were aligned to
the Greengenes database (Desantis et al., 2006) using Novoalign
(www.novocraft.com) and also using the Kraken database (Wood
and Salzberg, 2014).

Parameters were adjusted such that all hits were reported
that were equal in quality to the best hit for each read, and
allowing up to a 10% mismatch across the fragment. Further
details are included in Wallace et al. (2015). These data can
be downloaded from the European Nucleotide Archive under
accession PRJEB10338 and PRJEB21624.

Statistical Analysis
Statistical analysis of the metagenomics samples was based on
the complete sample profiles as expressed by the pattern of
metagenomic reads classified within KEGG ortholog groups with
>90% similarity and belonging to a single KEGG ortholog (KO)
groups and the relative abundance (percentage) of individual KO
group in each profile. Principal coordinate analysis (PCoA) was
carried out using Gen-Stat 16th edition (VSN International Ltd,
UK) to identify the factors explaining differences observed in the
microbial community (phylum level) between samples. Relative
abundance of microbial populations and functional genes,
Archaea-to-Bacteria (A:B) ratio, Firmicutes-to-Bacteroidetes
(F:B) ratio as an indicator of degradation activities carried by
the two main phyla in rumen and acetate-to-propionate ratio
were compared using General Linear Models and P-values were
Bonferroni corrected for multiple testing (SPSS Statistics 22,
IBM, USA).

In a network analysis using BioLayout Express3D (Freeman
et al., 2007), we identified the distinct functional clusters of
microbial genes for each experiment. These networks consist of
nodes representing microbial genes and the connecting edges
determining the functional linkages between these genes.

Partial least squares analysis (PLS, Version 9.1 for Windows,
SAS Institute Inc., Cary, NC, USA) was used to identify the
most correlated microbial populations (at the phylum or genus
level) or microbial genes associated with methane emissions.
This method was successfully applied for the identification of
microbial biomarkers in Wallace et al. (2015) and Roehe et al.
(2016). The PLS analysis accounted for multiple testing and the
correlation between microbial populations or genes as microbial
parameters. In addition to microbial parameters, the model
included the diet effect (abiotic effector) and additionally the
breed type effect (host genetics effect). The model selection
was based on the variable importance for projection (VIP)
criterion (Wold, 1995), whereby microbial parameters with a
VIP<0.8 contribute little to the prediction. Finally, a comparison

between different factors identified as highly correlated with
CH4 emissions and therefore considered as potential biomarkers
were tested by PLS analysis. In this study, biomarkers of
CH4 emissions will be considered as robust when a similar
result is observed across diverse diets and breeds and by
comparing all potential biomarker together. A robust biomarker
may strengthen the confidence of identifying low- vs. high-
emitting cattle. Those factors identified to be significant from
the microbial community composition, the relative abundance
of microbial populations or genes or VFA concentrations. All
samples without VFA measurements were removed (N1, N3, N7,
and RR41).

The residual methane emissions were calculated using a
General Linear Model including diet and breed into the model
and measured methane data as dependent variable. These
residual methane emissions are thus corrected for diet and
breed and were centered and standardized and only used when
biomarkers were compared together.

Spearman’s correlation analysis was also carried out to
determine which factors (the same factors tested by PLS)
are correlated with CH4 emissions using SPSS Statistics 22.
P-values ≤ 0.05 were considered significant and tendencies were
represented (P-values < 0.1).

RESULTS

Factors Influencing the Differences
Observed in Methane Emissions
Several grouping conditions were tested using methane emission
values from three independent trials (Figure 1). Average CH4

emissions were 20.89 ± 0.75 g/kg dry matter intake based on
measurements from 50 animals. CH4 emissions were 1.48-fold
higher in the high-CH4 group (P < 0.001). CH4 emissions were
also higher in animals fed the forage compared to concentrate
basal diet (P < 0.001).

CH4 emissions showed strong correlations with acetate (F =

0.582, P < 0.001), propionate (F = −0.574, P < 0.001), and
valerate (F = −0.571, P < 0.001) concentrations and to a lesser
extent isovalerate concentration (F = −0.347, P < 0.05) but not
with butyrate or isobutyrate concentrations (Table S1). Acetate-
to-propionate ratio was strongly positively correlated (P < 0.001)
with CH4 emissions (Figure S1A). When samples were divided
based on diet treatment, this significant correlation disappeared
in presence of concentrate (Figure S1B) and only a tendency was
found with the forage diet (P = 0.08; Figure S1C).

Change in Microbial Community
Composition between CH4 Emitters and
Diet Treatments
Using the Kraken database for the identification of the 16S
rRNA sequences (Phylum level) within the 50 metagenomics
datasets, the difference observed within themicrobial community
composition represented 36.9% over the first two principal
coordinate analysis axes (Figure S2) and 45.2% when the third
axis was included (data not shown).
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FIGURE 2 | Diversity of methanogen genera using (A) Kraken database or (B) Greengenes database. A, Acetoclastic methanogens; H, Hydrogenotrophic

methanogens; M, Methylotrophic methanogens. **P < 0.01, *P < 0.05 indicates different between low and high emitting groups.

The most abundant bacterial phyla (on average) identified
were Firmicutes (42.8%), Bacteroidetes (38.6%), Proteobacteria
(6.6%), Fibrobacteres (4.9%), and Actinobacteria (2.4%)
representing on average 95.3% of the total community (Figure
S3). Proteobacteria was the only dominant phylum significantly
different with a higher abundance in low-CH4 samples compared
to high-CH4 samples (P = 0.03). Lower abundant phyla such as
Deinococcus-Thermus (0.12%, P = 0.006), Chlorobi (0.07%, P
= 0.003), Kiritimatiellaeota (0.01%, P = 0.02), Verrucomicrobia
(0.12%, P = 0.04), and Calditrichaeota (0.003%, P = 0.01)
were also identified as significantly different and generally
with a higher abundance in high-CH4 samples except for
Calditrichaeota. Comparing the effect of forage or concentrate
diets, a limited number of bacterial phyla (n = 4/32) were
affected, which were based on their relative abundance in the
rumen minor populations (Table S2). In general, the relative
abundance of microbial populations impacted by additives
was higher in control treatment except Calditrichaeota and
Proteobacteria, the latter being 1.2-fold higher in presence of
nitrate compared to the control concentrate treatment (Table
S2). On average, the Firmicutes-to-Bacteroidetes ratio was at
1.22 and not significantly different between methane emitters or
diet treatments. Euryarchaeota were not impacted by nitrate or
RSC in either concentrate or forage diets.

The archaeal community represented 5.33 ± 0.37% of the
total microbial community based on 16S rRNA sequences
and higher Shannon diversity was characterized using the

Kraken database compared to Greengenes as shown in
Figure 2A, with the former identifying more methanogenic
groups capable of utilizing acetoclastic, hydrogenotrophic, and
methylotrophic pathways to produce methane (Figure S4). The
hydrogenotrophic pathway was highly represented in the rumen
content of both high- and low-methane emitting animals,
mostly in high emitters and represented on average 96.8%
of total methanogens (Figure S4A). The relative abundance
of total methanogens was double in high emitters compared
to low emitters. This result was explained by the significant
dominance of several populations including Methanobrevibacter
(on average 94% of the methanogens), Methanobacterium,
Methanococcus, and Methanoculleus species (Figure 2A). On
the other hand, the dominant methylotrophic methanogen
belonging to Methanomassiliicoccales order was identified as
Candidatus Methanomethylophilus, with a relative abundance
7-fold significantly higher in the rumen microbiome of low-
methane emitters compared to high-methane rumen samples
(Figure 2A). Finally, the dominant acetoclastic methanogen was
Methanosarcina species and represented on average 0.4% of
total methanogens (Figure 2A). Overall, Shannon diversity index
calculated for total microbial community did not show any
significant differences between groups of methane emitters or
diet. Focusing on methanogens, a higher diversity in low emitters
was confirmed with a Shannon diversity index of 0.55 compared
to 0.28 in high emitters (P < 0.001). Effect of the additives
on the relative abundance of methanogen populations was
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FIGURE 3 | Linear regression between Archaea:Bacteria ratio and CH4 emissions. Black circle: all samples. Equation for the linear regression was included in figure

when the difference was significant (P < 0.05).

not significant whilst methylotrophic methanogenic populations
were on average 2.27-fold more abundant in the concentrate diet
supplemented with nitrate compared to the control condition
and only on average 1.21-fold higher in forage diet supplemented
with nitrate compared to the control treatment.

Using the Greengenes annotation, both methanogen diversity
(Shannon index H) and composition were lower and only
represented by three dominant genera. However, the general
results on the dominant populations, methanogen diversity and
the importance of methylotrophic methanogens in low-methane
emitters were the same but it has to be considered that using this
database the minor populations (e.g., acetoclastic methanogens)
were not recovered (Figure 2B and Figure S4B).

Methanotrophic populations were also identified when using
the Kraken database, representing a limited part of the
microbial community and being about 70-fold less abundant
than methanogens (on average 0.1 ± 0.01%). This microbial
group was highly dominated by three methanotrophic bacteria
including the genus Methylobacterium and to a lesser extent
Methylomonas and Methylomicrobium genera. However, only
the Methylomonas genus was different between emitters (P =

0.005) or diet treatments (P = 0.005) with a relative abundance
1.7-fold higher in low- compared to high-methane emitters.
Finally, the diversity of methanotrophic organisms was greater
in high emitters (P = 0.02) compared to low emitters and
there was no effect of diet or additives on methanotrophic
populations.

Identification of Additional Phylogenetic
Biomarkers of Methane Emissions
The Archaea:Bacteria ratio was calculated for each sample and
a positive correlation (P < 0.001) was confirmed by linear
regression with methane emissions overall (Figure 3). This
correlation was weaker when samples were grouped based
on diet—being significant (P < 0.01) for the concentrate
but not the forage diet (Figure S5). Interestingly, a positive

correlation between CH4 emissions and the relative abundance
of Euryarchaeota was confirmed (F = 0.567, P = 0.003) but only
when studying high emitters.

Partial Least Square analysis including in the model diet
and breed effects showed that the relative abundances of
31 microbial genera were negatively correlated with methane
emissions (“Reducing effects on methane emissions” group in
Table 1). There were 56 genera positively correlated (including
16 highly positively correlated) with methane (“Increasing
effects on methane emissions” group in Table 1) and 40
genera considered as positively correlated with methane
emissions but showing a low regression coefficients (“Low
effect on methane emissions” in Table 1). Moreover, the result
generated by PLS and including the 56 genera, breed type
and diet effects, explained 50% of the variation in CH4

emissions. One main result is that bacterial populations showed
higher VIP value compared to methanogens including the
most abundant genus Methanobrevibacter and four other
hydrogenotrophic methanogens present at lower abundance
including Methanosphaera genus. Bacteria producing butyrate
(e.g., Butyrivibrio and Pseudobutyrivibrio spp.) or CO2 were
positively correlated with CH4 emissions, contrasting with
those associated with amino acid (e.g., Acidaminococcus and
Allisonella species) and lactate metabolism (e.g., Megasphaera
and Lactobacillus genera) or populations consuming hydrogen
(e.g., Dehalococcoides genus). Other bacterial populations with
significant VIP were known to be associated with nitrogen
(Nitrosococcus or Nitrobacter spp.) or sulfur cycles or those
classified in the average group were halotolerant populations or
potentially involved in organic matter breakdown, or syntrophic
activities (e.g., Syntrophobotulus genus).

Validation of Functional Genes as
Biomarkers of Methane Emissions
The main result from the network analysis is that most of the
same genes directly involved in methane emissions were found
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TABLE 1 | PLS results identifying the most important microbial genera affecting methane emissions.

Phylum Microbial Genus VIP Coef. Mean Low CH4 Mean High CH4 L/H CH4 ratio Function

REDUCING EFFECTS ON METHANE EMISSIONS

Chloroflexi Dehalococcoides 1.42 −0.039 0.044 0.020 2.15 H2 ox.

Bacteroidetes Odoribacter 1.39 −0.040 0.058 0.028 2.09 Commensal

Firmicutes Megasphaera 1.35 −0.037 0.218 0.047 4.68 Lactate

Firmicutes Acidaminococcus 1.34 −0.035 1.143 0.099 11.57 AA

Firmicutes Jeotgalicoccus 1.23 −0.035 0.003 0.002 1.17 Halotolerant

Firmicutes Allisonella 1.16 −0.026 0.057 0.005 11.17 AA

Firmicutes Salinicoccus 1.11 −0.028 0.004 0.003 1.57 Halotolerant

Thermotogae Kosmotoga 1.09 −0.028 0.003 0.002 1.31 Thermophile

Bacteroidetes Mitsuokella 1.08 −0.022 0.533 0.070 7.59 Phytate

Actinobacteria Olsenella 1.07 −0.029 2.151 0.983 2.19 Lactate

Bacteroidetes Bacteroides 1.02 −0.027 1.697 1.102 1.54 VFA

Firmicutes Dorea 0.98 −0.024 0.106 0.062 1.70 Acetogen

Proteobacteria Wenzhouxiangella 0.98 −0.001 0.016 0.005 3.28 Halotolerant

Firmicutes Roseburia 0.96 −0.022 0.172 0.079 2.18 Butyrate

Proteobacteria Edwardsiella 0.96 −0.003 0.032 0.019 1.71 N.I.

Firmicutes Aneurinibacillus 0.96 −0.026 0.005 0.003 1.66 Lignin degrader

Firmicutes Pelosinus 0.96 −0.023 0.017 0.011 1.48 Degrader

Proteobacteria Methylomonas 0.95 −0.002 0.018 0.011 1.73 Methanotrophy

Firmicutes Veillonella 0.94 −0.019 0.008 0.003 2.57 Lactate

Proteobacteria Halotalea 0.94 −0.003 0.009 0.005 1.83 Halotolerant

Proteobacteria Alkalilimnicola 0.92 −0.001 0.010 0.007 1.41 Halotolerant

Proteobacteria Sulfurovum 0.92 −0.017 0.007 0.004 1.46 H2 ox.

Proteobacteria Colwellia 0.92 −0.016 0.007 0.003 2.25 Alkane degrader

Proteobacteria Marinomonas 0.91 −0.016 0.004 0.003 1.39 Halotolerant

Proteobacteria Nitrobacter 0.90 0.000 0.009 0.006 1.42 NOB

Proteobacteria Thalassospira 0.90 −0.023 0.003 0.003 1.16 Halotolerant

Firmicutes Faecalitalea 0.87 −0.024 0.020 0.010 2.02 AA

Euryarchaeota Methanohalophilus 0.85 −0.022 0.002 0.001 1.50 Methanogen (M)

Firmicutes Lactobacillus 0.83 −0.019 0.338 0.199 1.70 Lactate

Bacteroidetes Zobellia 0.83 −0.021 0.003 0.002 1.27 Mesophile

Proteobacteria Nitrosococcus 0.83 −0.022 0.003 0.002 1.26 AOB

LOW EFFECT ON METHANE EMISSIONS

Actinobacteria Sanguibacter 1.11 0.012 0.011 0.006 1.72 In blood

Proteobacteria Aromatoleum 1.06 0.016 0.008 0.007 1.26 Degrader

Proteobacteria Thiocystis 1.04 0.009 0.014 0.010 1.46 Sulfur

Proteobacteria Microbulbifer 1.02 0.005 0.022 0.010 2.17 Halotolerant

Euryarchaeota Halosimplex 1.02 0.010 0.004 0.002 1.81 Halotolerant

Proteobacteria Cronobacter 1.00 0.002 0.042 0.020 2.08 Pathogen

Actinobacteria Modestobacter 0.99 0.004 0.010 0.005 2.19 Halotolerant

Proteobacteria Neorickettsia 0.99 0.011 0.002 0.001 1.35 Pathogen

Proteobacteria Halorhodospira 0.98 0.004 0.014 0.008 1.77 Halotolerant

Proteobacteria Serratia 0.98 0.008 0.061 0.048 1.27 N.I.

Spirochaete Salinispira 0.98 0.010 0.008 0.005 1.39 Halotolerant

Proteobacteria Asticcacaulis 0.98 0.007 0.008 0.005 1.59 N.I.

Proteobacteria Sideroxydans 0.98 0.003 0.012 0.005 2.29 Iron ox.

Proteobacteria Pantoea 0.97 0.001 0.043 0.023 1.83 N.I.

Proteobacteria Agrobacterium 0.97 0.007 0.041 0.032 1.29 N.I.

Proteobacteria Raoultella 0.97 0.009 0.012 0.009 1.40 Pathogen

Proteobacteria Halomonas 0.96 0.002 0.043 0.027 1.59 Halotolerant

Armatimonadetes Chthonomonas 0.96 0.002 0.004 0.002 1.82 N.I.

Proteobacteria Ferrimonas 0.96 0.005 0.010 0.006 1.59 Iron

Proteobacteria Acidihalobacter 0.96 0.011 0.017 0.013 1.26 Halotolerant

Actinobacteria Dermabacter 0.95 0.003 0.007 0.004 1.95 N.I.

Proteobacteria Dokdonella 0.95 0.001 0.011 0.007 1.64 N.I.

Proteobacteria Enterobacter 0.95 0.004 0.061 0.046 1.32 Degrader

(Continued)
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TABLE 1 | Continued

Phylum Microbial Genus VIP Coef. Mean Low CH4 Mean High CH4 L/H CH4 ratio Function

Actinobacteria Tsukamurella 0.95 0.002 0.007 0.004 1.90 Degrader

Proteobacteria Immundisolibacter 0.95 0.001 0.016 0.009 1.89 Degrader

Proteobacteria Mesorhizobium 0.95 0.007 0.055 0.042 1.31 Degrader

Proteobacteria Lacimicrobium 0.94 0.005 0.004 0.003 1.51 halotolerant

Proteobacteria Castellaniella 0.94 0.008 0.014 0.010 1.33 N.I.

Proteobacteria Pseudomonas 0.94 0.001 0.482 0.342 1.41 Degrader

Proteobacteria Defluviimonas 0.94 0.003 0.008 0.005 1.49 Halotolerant

Dienococcus-Thermus Truepera 0.93 0.007 0.009 0.007 1.28 Degrader

Proteobacteria Methyloceanibacter 0.93 0.003 0.008 0.006 1.40 Methylotrophy

Proteobacteria Thioflavicoccus 0.93 0.004 0.015 0.011 1.40 Sulfur

Firmicutes Syntrophobotulus 0.92 0.003 0.008 0.005 1.49 Syntrophy

Proteobacteria Dyella 0.91 0.004 0.028 0.021 1.33 Degrader

Chlorobi Chlorobium 0.90 0.002 0.021 0.016 1.32 Sulfur

Cyanobacteria Microcoleus 0.90 0.004 0.002 0.002 1.33 Sulfur

Proteobacteria Chelativorans 0.89 0.006 0.010 0.007 1.29 Degrader

Proteobacteria Halioglobus 0.89 0.002 0.005 0.004 1.36 Halotolerant

Proteobacteria Pluralibacter 0.88 0.003 0.014 0.010 1.33 Pathogen

INCREASING EFFECTS ON METHANE EMISSIONS

Proteobacteria Sedimenticola 1.36 0.038 0.008 0.005 1.40 SOB

Firmicutes Sarcina 1.33 0.038 1.142 3.246 0.35 CO2 prod.

Firmicutes Butyrivibrio 1.31 0.037 2.107 3.017 0.70 Butyrate

Euryarchaeota Methanotorris 1.30 0.036 0.002 0.003 0.58 Methanogen (H)

Euryarchaeota Methanobrevibacter 1.23 0.034 4.166 7.146 0.58 Methanogen (H)

Planctomycetes Isosphaera 1.15 0.032 0.003 0.005 0.63 Degrader

Firmicutes Pseudobutyrivibrio 1.13 0.032 0.434 0.617 0.70 Butyrate

Euryarchaeota Methanobacterium 1.11 0.032 0.040 0.053 0.76 Methanogen (H)

Planctomycetes Singulisphaera 1.09 0.030 0.005 0.007 0.61 Degrader

Bacteroidetes Emticicia 1.06 0.029 0.003 0.005 0.69 Fucosidase

Verrucomicrobia Opitutus 1.06 0.029 0.012 0.019 0.66 H2 producer

Planctomycetes Rubinisphaera 0.99 0.027 0.004 0.006 0.74 CO2 prod.

Elusimicrobia Endomicrobium 0.91 0.024 0.005 0.008 0.63 VFA

Euryarchaeota Methanocaldococcus 0.90 0.023 0.004 0.006 0.67 Methanogen (H)

Euryarchaeota Methanococcus 0.86 0.023 0.011 0.015 0.74 Methanogen (H)

Euryarchaeota Methanosphaera 0.86 0.023 0.032 0.041 0.77 Methanogen (H)

VIP, Variable importance for projection; Coef, Coefficient; AA, Amino acids metabolim; AOB, Ammonia-oxidizing bacteria; NOB, Nitrite-oxidizing bacteria; SOB, Sulfur-oxidizing bacteria;

ox, Oxidizer; Methanogen (H), Hydrogenotrophic pathway; Methanogen (M), Methylotrophic methanogenic pathway; VFA, Volatile Fatty Acids; N.I., No information.

over three independent trials and in one or two closed clusters.
For example, these genes grouped within a single cluster (C1) for
the 2013 samples or two clusters for the 2011 samples (C3 and
C6) and 2014 samples (C3 and C5) (Figures 4A–C). Overall, 202
genes representing different microbial functions were identified
using KEGG in these clusters including those known to be
involved in methane emissions (n= 37). However, only 27 genes
associated with [high or low] methane emissions were detected
in the three experiments.

A PLS analysis using 202 genes (“general analysis”) was carried
out and the results are summarized in Table 2. As a result, 37
genes were identified as important to predict methane emissions
in cattle and as part of a model including breed type and diet
effects explained 62% of the variation in methane emissions.
The most abundant of these were either subunits of the methyl
coenzyme M reductase gene catalyzing the final step of CH4

synthesis pathway mcrABG (K00399, K00401 K00402) encoding
for or genes associated with hydrogenase activity, such as formate

dehydrogenase, tetrahydromethanopterin S-methyltransferase,
formylmethanofuran dehydrogenase (K00123, K00125, K00577,
K00580, K00581, and K00584) or energy synthesis (V-type
H+-transporting ATPase) (K02117 and K02118). The former
enzymes are associated with the hydrogenotrophic pathway
while the genes encoding for heterodisulfide reductase (K03389,
K03390) and associated with low emitters, part of the
methylotrophic methanogenic pathway. All these genes were
significantly higher in high-emitting rumen samples compared
to low-emitters (P < 0.02). Finally, the genes with a higher
VIP were not those encoding for the final reaction leading to
CH4 emissions but were associated with the transfer of the
methyl group (e.g., K06937) or hydrogen (e.g., K02117 and
K02118). In parallel, a similar PLS analysis was carried out but
only using the genes (n = 36) known to be directly involved
in the methane emissions pathway (Table S3). As a result, the
percentage of variation in methane emissions explained by these
genes increased (65%) compared to the general analysis (62%).
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FIGURE 4 | Functional clusters of microbial genes identified using network analysis for (A) the 2011 experiment (n = 1424 genes), (B) the 2013 experiment (n = 1178

genes), (C) the 2014 experiment (n = 1224 genes). Correlation analysis of microbial gene abundance was used to construct networks, where nodes represent

microbial genes and edges the correlation in their abundance.

Moreover, the genes with a higher VIP were not those encoding
for methyl-coenzyme M reductase (Table S3) as observed in the
general analysis.

Comparison between the Different
Biomarkers Tested and Correlation with
CH4 Emissions
Potential biomarkers were compared together by PLS analysis
to evaluate the factors highly correlated with CH4 emissions
(Table S4). Residual CH4 emissions data were estimated to
remove the effect of diets and breeds and to allow the
comparison of the potential biomarkers identified by PLS as
significantly correlated with CH4 emissions. The PLS results
identified 37 factors with a VIP value > 0.80 and explaining
42% of the variation in residual CH4 (Table 3). Within
the 37 factors, 22 individual genes mostly involved in the
hydrogenotrophic methanogen pathway were identified. The
other parameters identified included methanogen populations
(e.g.,Methanobrevibacter, Methanotorris, andMethanohalophilus
genera), the Shannon diversity indices for the methanogen
community, PCoA scores or six bacterial populations as well as
the Archaea-to-Bacteria ratio. Finally, all the other parameters
previously tested and including the Acetate-to-Propionate ratio,

or the data on the methanotrophs (relative abundance) were not
identified as final biomarkers. A different result was obtained
when a Spearman correlation test was applied on the same set
of data using non-corrected methane values and therefore still
considering the effects of diet and breed (Table S5). For example,
Acetate:Propionate ratio showed the highest correlation with
CH4 emissions.

DISCUSSION

Treatment Effects on Methane Emissions
In the present study, the results of three independent trials were
compared and combined, and the current analysis confirmed that
the constituent of the basal diet was strongly and significantly
associated with CH4 emissions. The proportion of dietary forage
to concentrate content in the diet as previously identified by
Roehe et al. (2016) and Rooke et al. (2014). The dietary additives
used in this study as a strategy to lower CH4 emissions did
not show significant results contrasting with previous works
identifying nitrate and supplementary lipid as some of the most
promising methane mitigation additives in ruminants (Wallace
et al., 2014; Olijhoek et al., 2015; Guyader et al., 2016) while
variations in response were detected (Yang et al., 2016). Factors
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TABLE 2 | PLS results identifying the most important functional genes affecting methane emissions.

KEGG ID Function VIP Coef. Mean Low CH4 Mean High CH4 L/H CH4 ratio

INCREASING EFFECTS ON METHANE EMISSIONS

K06937 7,8-dihydro-6-hydroxymethylpterin dimethyltransferase 1.26 0.096 0.007 0.018 0.36

K00046 Gluconate 5-dehydrogenase 1.13 0.089 0.067 0.098 0.68

K02117 V-type H+-transporting ATPase subunit A 1.07 0.067 0.135 0.216 0.62

K02118* V-type H+-transporting ATPase subunit B 1.02 0.057 0.120 0.189 0.63

K00584*a Tetrahydromethanopterin S-methyltransferase subunit H 1.00 0.053 0.049 0.103 0.48

K00203 a Formylmethanofuran dehydrogenase subunit D 0.99 0.046 0.017 0.032 0.53

K00200* a Formylmethanofuran dehydrogenase subunit A 0.99 0.042 0.066 0.125 0.53

K00150 Glyceraldehyde-3-phosphate dehydrogenase (NAD(P)) 0.98 0.042 0.026 0.056 0.47

K01499 a Methenyltetrahydromethanopterin cyclohydrolase 0.97 0.037 0.040 0.079 0.50

K00169*a Pyruvate ferredoxin oxidoreductase, alpha subunit 0.97 0.034 0.032 0.062 0.52

K00580* a Tetrahydromethanopterin S-methyltransferase subunit D 0.95 0.031 0.021 0.045 0.47

K00400*a Methyl coenzyme M reductase system, component A2 0.95 0.027 0.022 0.047 0.48

K00170*a Pyruvate ferredoxin oxidoreductase, beta subunit 0.94 0.032 0.023 0.044 0.52

K13812* a Bifunctional enzyme Fae/Hps 0.94 0.029 0.031 0.062 0.50

K14128* a F420-non-reducing hydrogenase subunit G 0.93 0.032 0.046 0.078 0.59

K02303 Uroporphyrin-III C-methyltransferase 0.93 0.060 0.004 0.010 0.44

K14120* Energy-converting hydrogenase B subunit K 0.92 0.064 0.005 0.010 0.46

K00123* a Formate dehydrogenase, alpha subunit 0.92 0.007 0.126 0.206 0.61

K00201* a Formylmethanofuran dehydrogenase subunit B 0.91 0.028 0.091 0.155 0.58

K01959 Pyruvate carboxylase subunit A 0.91 0.014 0.027 0.051 0.53

K00581*a Tetrahydromethanopterin S-methyltransferase subunit E 0.90 0.001 0.055 0.094 0.58

K00672 a Formylmethanofuran–tetrahydromethanopterin N-formyltransferase 0.89 0.003 0.024 0.056 0.43

K00399* a Methyl-coenzyme M reductase alpha subunit 0.89 0.003 0.137 0.223 0.61

K01673 Carbonic anhydrase 0.89 0.059 0.007 0.014 0.46

K00205 a Formylmethanofuran dehydrogenase subunit F 0.86 0.040 0.012 0.025 0.47

LOW EFFECTS ON METHANE EMISSIONS

K03389 Heterodisulfide reductase subunit B 1.13 −0.061 0.047 0.069 0.68

K00440* Coenzyme F420 hydrogenase alpha subunit 1.10 −0.059 0.039 0.059 0.66

K00320 Coenzyme F420-dependent N5,N10-methenyltetrahydromethanopterin reductase 1.03 −0.054 0.076 0.109 0.70

K14123*a Energy-converting hydrogenase B subunit N 1 1.02 −0.039 0.011 0.021 0.51

K00202* Formylmethanofuran dehydrogenase subunit C 1 1.01 −0.028 0.043 0.066 0.65

K14101 Energy-converting hydrogenase A subunit J 1 1.00 −0.051 0.007 0.012 0.55

K00125* a Formate dehydrogenase, beta subunit 1 1.00 −0.027 0.051 0.082 0.62

K00401 Methyl-coenzyme M reductase beta subunit 1 1.00 −0.030 0.089 0.135 0.66

K07388 Hydrogenase expression/formation protein 0.95 −0.024 0.019 0.031 0.60

K00577*a Tetrahydromethanopterin S-methyltransferase subunit A 1 0.94 −0.005 0.029 0.057 0.51

K03390 Heterodisulfide reductase subunit C 0.93 −0.002 0.023 0.041 0.56

K00402 Methyl-coenzyme M reductase gamma subunit 1 0.86 −0.004 0.051 0.076 0.67

1Potential reasons for unexpected negative coefficients will be addressed in the discussion.

*Genes also identified in the network analysis.
aGenes previously identified in Roehe et al. (2016) as biomarkers of methane emissions. VIP, Variable Importance in Projection; Coef, Coefficient.

that could explain these differences included the use of a reduced
number of rumen samples from animals initially selected for low-
and high-feed conversion and also the variability in the basal diet
composition.

Identification of Functional Genes as
Biomarkers of Methane Emissions
In this combined analysis, most of the genes previously identified
by Wallace et al. (2015) and Roehe et al. (2016) were in
general also identified in this study (n = 19/20) by PLS analysis
over the three independent experiments and confirmed as
strong biomarkers of CH4 emissions. Most of these genes were

involved in the hydrogenotrophic methane synthesis pathway
and grouped in one cluster or two attached clusters over the
three independent experiments as previously highlighted by
Roehe et al. (2016). This study is one of the first confirming the
importance of genes encoding for heterodisulfide reductase in the
rumen over the genes associated with methylamine compounds
or methanol conversion to accomplish the first step of
methylotrophic methanogenic pathway (Buan andMetcalf, 2010;
Borrel et al., 2013). Although genes encoding for heterodisulfide
reductase were confirmed to be significantly correlated with
methane in the rumen of low emitters, the result of the biomarker
comparison did not identify those genes as robust biomarkers
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TABLE 3 | PLS analysis comparing potential biomarkers correlated with CH4 emissions.

Factor VIP Coefficient Information

PHYLOGENETIC FACTORa

Methanotorris 1.69 0.14 Hydrogenotrophic methanogen

Methanobrevibacter 1.37 0.12 Hydrogenotrophic methanogen

Methanocaldococcus 1.25 0.11 Hydrogenotrophic methanogen

Methanohalophilus 1.09 −0.09 Methylotrophic methanogen

Faecalitalea 0.99 −0.09 AA

Dorea 0.90 −0.08 Acetogen

Colwellia 0.88 0.04 Alkane degrader

Opitutus 0.88 −0.03 H2 producer

Singulisphaera 0.88 −0.02 Degrader

Isosphaera 0.85 −0.03 Degrader

MICROBIAL COMMUNITY FACTOR

PCoA-2b 1.55 −0.13

Met Shannon Evenb 1.33 −0.12 Methanogen evenness

Met Shannon Divb 1.32 −0.12 Methanogen diversity

A:B 0.88 −0.01 Archaea:Bacteria ratio

PCoA-1b 0.86 −0.05

METAGENOMICS FACTORc

K00672 1.32 −0.05 Formylmethanofuran-tetrahydromethanopterin N-formyltransferase

K00581 1.08 −0.02 Tetrahydromethanopterin S-methyltransferase subunit E

K00150 1.06 −0.02 Glyceraldehyde-3-phosphate dehydrogenase (NAD(P))

K01959 1.02 −0.02 Pyruvate carboxylase subunit A

K00580 1.00 −0.01 Tetrahydromethanopterin S-methyltransferase subunit D

K01499 0.95 0.00 Methenyltetrahydromethanopterin cyclohydrolase

K00584 0.94 0.00 Tetrahydromethanopterin S-methyltransferase subunit H

K01673 0.93 −0.03 Carbonic anhydrase

K13812 0.93 0.00 Bifunctional enzyme Fae/Hps

K00123 0.92 0.01 Formate dehydrogenase, alpha subunit

K00400 0.89 0.01 Methyl coenzyme M reductase system, component A2

K00402 0.89 −0.07 Methyl-coenzyme M reductase gamma subunit

K00399 0.89 0.00 Methyl-coenzyme M reductase alpha subunit

K02118 0.87 0.01 V-type H+-transporting ATPase subunit B

K00200 0.87 0.02 Formylmethanofuran dehydrogenase subunit A

K00201 0.86 0.01 Formylmethanofuran dehydrogenase subunit B

K14128 0.85 0.03 F420-non-reducing hydrogenase subunit G

K00169 0.84 0.03 Pyruvate ferredoxin oxidoreductase, alpha subunit

K00170 0.84 0.02 Pyruvate ferredoxin oxidoreductase, beta subunit

K02117 0.84 0.02 V-type H+-transporting ATPase subunit A

K00203 0.82 0.04 Formylmethanofuran dehydrogenase subunit D

K06937 0.80 0.03 7,8-dihydro-6-hydroxymethylpterin dimethyltransferase

aValue based on the relative abundance of the microbial genera identified as significantly correlated by PLS, bData obtained by calculating the Shannon diversity indices or doing a

PCoA on the relative abundance of the microbial phyla, cValue based on the relative abundance of the genes identified as significantly correlated by PLS.

of CH4 emissions. This result confirmed the dominance of
hydrogenotrophy over methylotrophy in the rumen (Hook
et al., 2010; Danielsson et al., 2017) but also highlighted that
both pathways are important in explaining methane emissions
(Poulsen et al., 2013). Interestingly, these genes associated with
high VIP value were in the upper part of the pathway and
encode for methyltransferase, hydrogenase, or dehydrogenase
activities but not directly the genes (e.g., mcrA) encoding for
the methyl coenzyme M reductase system the final step in

methane production. This result tends to confirm the importance
of hydrogen concentration and thermodynamics affecting the
microbial communities and therefore VFA production and
methane emissions (Wolin et al., 1997; Rooke et al., 2014).
Contrasting with Shi et al. (2014), this study confirmed a
significant increase in the relative abundance of most of the genes
involved in CH4 emissions by metagenomics, but in agreement
with the same authors, not onlymcrA, but all genes are important
in explaining higher CH4 emissions. These results could explain
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weak correlations previously observed with CH4 emissions when
targeting directly 16S rRNA gene or mcrA (Morgavi et al.,
2012; Tapio et al., 2017). There have been estimated unexpected
negative associations of microbial gene abundances and methane
emissions (Table 2). Several reasons including bioinformatics
limitation (e.g., gene annotation error in database), the presence
of artifacts in the generated prediction model and a lack of
biological knowledge for the genes correlated with methane
emissions results into the difficulty to associate estimates obtain
here with a mechanistic function. For example, it is known that
different methanogen species found in rumen samples carrymost
of the genes identified in this study. However, some specific
methanogenic species will lack a specific gene or a subunit within
an operon as described in Kaster et al. (2011). Therefore, some
species have a different impact on the relative abundance of a
specific subunit gene compare to others within the same operon
and, in consequence, on the coefficient value obtained by PLS
analysis.

Although it would be of further interest to identify to which
organisms these genes belong to, this is beyond the scope of this
paper and has to be addressed in substantial more detail using
different methodologies to provide accurate results. In addition,
phylogenetic association with the functional genes studied here
is still challenging and was not carried out to avoid wrong
conclusions. This decision was made based on the fact that new
methanogens are still discovered (see Vanwonterghem et al.,
2017) and not necessarily carrying all the genes involved in
the methane synthesis pathway. Furthermore, different clades
have been identified and were even within the same genus (e.g.,
Methanobrevibacter SGMT or RO clade) differently correlated
with methane emissions in the same samples (Tapio et al.,
2017). Specifically,Methanobrevibacter clade SGMT but not RO,
was found more abundant in low emitters while genera within
methylotrophic methanogens were enriched in high emitting
cattle.

Most Important Phylogenetic Parameters
Impacting on Methane Emissions
Within the taxonomic parameters tested, factors directly
associated with methanogens were confirmed to be
robust biomarkers, especially the relative abundance of
Methanobrevibacter genus. This genus is known to be the most
dominant and active in the rumen (Hook et al., 2010; Henderson
et al., 2015; Tapio et al., 2017; Wang et al., 2017) and is also
associated with higher CH4 emissions as confirmed here. Using
the Kraken database, a wider diversity of methanogens in the
rumen was found compared to the results obtained using the
Greengenes database. This confirms preliminary observations
by Poulsen et al. (2013) and Henderson et al. (2015), and also
highlights the importance of the reference database used to
characterize metagenomics data (Siegwald et al., 2017).

Sun et al. (2012) confirmed that not all methanogens are active
continuously in a methanogenic environment and suggested that
the availability of substrates was an important cue for population
growth. For example, Methanocaldococcus spp., Methanotorris
spp. and the methylotrophic methanogen Methanohalophilus

spp. were three low abundance genera that were highly correlated
with CH4 emissions and identified as robust biomarkers
across different diets and breeds which contrasted with the
result for the main methylotrophic methanogen Candidatus
Methanomethylophilus. Moreover, the possibility to use these
biomarkers offers an efficient and cheaper alternative to
metatranscriptomics considered as more accurate tool to predict
methane emissions compared to metagenomics (Shi et al., 2014;
Wallace et al., 2017). Finally, the identification of low abundance
methanogen populations but not all the most abundant as robust
biomarkers may also explain weaker correlations found between
total methanogens and CH4 emissions when 16S rRNA or mcrA
genes were targeted by qPCR (Mosoni et al., 2011; Morgavi et al.,
2012). On the other hand, this weak correlation can also be the
result of methane oxidation by methanotrophs. This study is one
of the first confirming a greater abundance of methanotrophic
populations, especiallyMethylomonas genus in rumen and being
significantly negatively correlated with CH4 emissions. Genes
associated with methanotrophy were not identified in this study
and previously in the set of eight animals (2011 experiment)
as highlighted by Wallace et al. (2015) and could be explained
by not enough depth of sequencing for genes carried by very
low abundant populations (0.1%). The genus Methylomonas is
identified in Greengenes and Kraken databases but the last one
contains a broader diversity of recently discovered microbial
populations that could improve the detection of low abundance
genus in rumen sample.

In terms of data directly associated with the microbial
community composition, the Archaea:Bacteria ratio was
confirmed as a strong biomarker of CH4 emissions while a lower
R-value (R= 0.272) was found in this study compared toWallace
et al. paper (2014) which calculated this ratio on a reduced
number of cattle (R = 0.49). This difference can be explained
by the initial set of eight samples representing extreme methane
emitters while the other 42 samples were not specifically selected
for this trait. However, as also reported by the same authors, this
significant correlation was diet dependent, and was significant
for concentrate fed rumen samples but not forage samples.
As previously shown in sheep by Kittelmann et al. (2014), the
microbial community composition (PCoA-2 in this study) even
at the phylum level was confirmed as robust biomarkers of CH4

emissions. This could be explained by an increase in the relative
abundance of several bacterial populations within Firmicutes,
Bacteroidetes, and Proteobacteria, mostly in low emitters as
shown by the L/H ratio inTable 1. However, our study confirmed
the necessity to calculate the methanogen diversity as robust
biomarker instead of total microbial diversity, not significantly
different between methane emitter groups in this study. These
results differed from the idea developed by Shabat et al. (2016)
that cattle with higher CH4 emissions will have higher total
microbiome diversity.

Link between Microbial Communities and
Metabolites Released
In term of identifying links between the bacterial community
containing most of the organic matter degraders and the
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metabolites released in rumen, it seems that the degradation
activities carried out by the two most abundant bacterial phyla,
Firmicutes and Bacteroidetes as evaluated using the F:B ratio
(Chen et al., 2016) were not important to explain CH4 emissions.
More interestingly, this study confirmed the importance of other
bacterial populations associated with production of different
metabolites which directly impacted on CH4 emissions and
also showing a higher VIP value compared to methanogens
(Table 2). For example, Butyrivibrio spp. and Pseudobutyrivibrio
spp. both butyrate-producing bacteria were highly correlated
with high CH4 emissions while the presence of bacteria
metabolizing lactate (e.g., Megasphaera), degrading amino acids
(e.g., Acidaminococcus) or competing for H2 were negatively
correlated with CH4 emissions (Park et al., 2014; Kamke et al.,
2016; Sa et al., 2016). This result is explained by the different
catabolic pathways carried by these populations and directly
impacting on H2 partial pressure and subsequently on CH4

emissions (Janssen, 2010; Kelly et al., 2010; Kamke et al., 2016;
Sa et al., 2016; Tapio et al., 2017). The presence of lactate-
utilizing Megasphaera genus within the robust phylogenetic
biomarkers and negatively correlated with CH4 emissions,
highlighted the importance of lactate metabolism controlling
rumen fermentation (Counotte and Prins, 1981), production
of H2 and specific VFAs and ultimately CH4 (Van Lingen
et al., 2016). The impact that VFAs have on CH4 emissions is
established (Janssen, 2010; Wanapat et al., 2015) and the positive
correlation between different VFA or acetate-to-propionate ratio
and CH4 emissions as previously stated by Shabat et al. (2016).
However, none of the VFA factors were identified as strong
biomarkers (Table 3) confirming some contrasting results found
between VFA and CH4 emissions and reviewed in Negussie et al.
(2017). It could be explained by necessity to study the relative
inter-relationships among VFA measurements and also between
VFA and CH4 yield as suggested by Palarea-Albaladejo et al.
(2017). Therefore, the impact that VFA have on CH4 emissions
may be less important compared to lactate metabolism and new
strategies for methane mitigation could be developed based on
this finding (Jeyanathan et al., 2014).

Genera within Succinovibrionaceae known to be dominant
in the digestive tract of the Tammar wallaby, which emit one
quarter of the methane emissions of the cattle (Pope et al.,
2011) were not identified within low emitters as previously
shown by Wallace et al. (2015). At the family level, the relative
abundance of Succinovibrionaceae was 1.6-fold higher in low
CH4 emitters (on average 1.3 ± 0.2) compared to high emitters
(on average 0.8 ± 0.1) but associated with a weak significance
level (P = 0.049). Surprisingly, these bacterial populations
were not identified as robust biomarkers, probably because of
the functional redundancy associated with the production or
degradation of each metabolite. On the other hand, the Opitutus
genus was characterized as a robust biomarker and is known to
be involved in H2 production during the fermentation of organic
matter (Chin et al., 2001). Very little information exists that
explains the role of the Dorea, Isosphaera, Faecalitalea, Colwellia,
and Singulisphaera on CH4 emissions but some were associated
with degradation capacities in methane emitting environment
(Kleindienst et al., 2016).

Finally, we agree that other potential biomarkers of CH4

emissions like archaeol could be tested (McCartney et al., 2013)
and compared with the robust biomarkers identified in this study.
The same authors showed the benefit of using archaeol over
qPCR method as a proxy for CH4 emissions.

To the best of our knowledge, this is the first report
identifying and comparing potential CH4 biomarkers across
a range of dietary conditions and several experiments. This
study confirms the possible value of targeting functional genes
using metagenomics as most of the robust biomarkers identified
were genes directly involved in the hydrogenotrophic methane
synthesis pathway while methylotrophic methanogens were also
important in explaining CH4 emissions. In addition, most of
the genes directly involved in the methane synthesis pathway
grouped in the same cluster within a functional genes network
and this result was reproduced over three independent trials.
Finally, this study confirm the significance of using robust and
applicable biomarkers from the microbiome as a proxy of CH4

emissions across diverse beef cattle breeds fed with different
diets as an alternative for a trait that is difficult-to-measure
on a large number of animals. Moreover, the use of these
biomarkers for the development of molecular tools will help for
the implementation of breeding strategies targeting low-methane
emitter animals.
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