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The genus Mycobacterium includes human pathogens (Mycobacterium tuberculosis
and Mycobacterium leprae) and environmental organisms known as non-tuberculous
mycobacteria (NTM) that, when associated with biomaterials and chronic disease, can
cause human infections. A common pathogenic factor of mycobacteria is the formation
of biofilms. Various molecules are involved in this process, including glycopeptidolipids,
shorter-chain mycolic acids, and GroEL1 chaperone. Nutrients, ions, and carbon
sources influence bacterial behavior and have a regulatory role in biofilm formation.
The ultrastructure of mycobacterial biofilms can be studied by confocal laser scanning
microscopy, a technique that reveals different phenotypic characteristics. Cording is
associated with NTM pathogenicity, and is also considered an important property of
M. tuberculosis strains. Mycobacterial biofilms are more resistant to environmental
aggressions and disinfectants than the planktonic form. Biofilm-forming mycobacteria
have been reported in many environmental studies, especially in water systems. NTM
cause respiratory disease in patients with underlying diseases, such as old tuberculosis
scars, bronchiectasis, and cystic fibrosis. Pathogens can be either slowly growing
mycobacteria, such as Mycobacterium avium complex, or rapidly growing species,
such as Mycobacterium abscessus. Another important biofilm-related group of infections
are those associated with biomaterials, and in this setting the most frequently isolated
organisms are rapidly growing mycobacteria. M. tuberculosis can develop a biofilm which
plays a role in the process of casseous necrosis and cavity formation in lung tissue.
M. tuberculosis also develops biofilms on clinical biomaterials. Biofilm development is an
important factor for antimicrobial resistance, as it affords protection against antibiotics
that are normally active against the same bacteria in the planktonic state. This antibiotic
resistance of biofilm-forming microorganisms may result in treatment failure, and biofilms
have to be physically eradicated to resolve the infection. New strategies with potential
antibiofilm molecules that improve treatment efficacy have been developed. A novel
antibiofilm approach focuses on Methylobacterium sp. An understanding of biofilm is
essential for the appropriate management of patients with many NTM diseases, while
the recent discovery of M. tuberculosis biofilms opens a new research field.

Keywords: Mycobacterium, biofilms, antimicrobial resistance, in vitro study, review, rapidly growing
mycobacteria, Mycobacterium tuberculosis, Mycobacterium avium complex

INTRODUCTION

The genus Mycobacterium currently includes more than 170 species (Tortoli, 2006, 2014). Most of
these species are environmental organisms that have never been implicated in human infection,
whereas others are among the oldest human pathogens ever described. Mycobacterium tuberculosis
and members of the M. tuberculosis complex are still among the most important causes of
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disease, and the epidemiological and social importance of
Mpycobacterium leprae is beyond doubt (Esteban and Muioz-
Egea, 2016). However, all other human pathogens are also
environmental organisms that can be found in many different
ecosystems without public health implications. These organisms,
known as non-tuberculosis mycobacteria (NTM), can cause
human infections in special circumstances, in many cases
involving the presence of biomaterials; in other cases, they cause
chronic infections in patients with underlying diseases or even
outbreaks associated with environmental sources (Esteban et al.,
2012). In this review, we will explore the importance of biofilms
in mycobacterial disease and in environmental sources, and the
implications of these structures in the diagnosis and treatment of
mycobacterial diseases.

HISTORY

The first report of the modern concept of biofilm dates from
1978, when Costerton et al. published their initial observations
(Costerton et al., 1978). Another decade later, articles began
to appear on environmental mycobacterial biofilms (Wallace,
1987; Schulze-Robbecke and Fischeder, 1989), even though the
phenomenon of mycobacterial cells forming “aggregates” or
“pellicles” was described in the early days of mycobacteriology
(Lowenstein, 1920; Calmette, 1936): in a pivotal article on the
etiology of tuberculosis, Robert Koch described the appearance of
“cells which are pressed together and arranged in bundles” (Koch,
1982). Subsequent studies described M. tuberculosis forming
“pellicles” in liquid media, with images (Calmette, 1936) quite
similar to what in modern times are described as biofilms (Ojha
et al., 2008). Similar descriptions for avian bacilli and others were
also reported (Lowenstein, 1920), so it was clearly demonstrated
that mycobacteria naturally grow in biofilm structures. Decades
more then passed before laboratory methods were developed
to achieve dispersed mycobacterial cell growth (Dubos and
Davis, 1946; Pierce et al.,, 1947). Despite all this knowledge,
however, it was not until the 1990s that the current concept of
biofilm emerged from the first findings of modern research on
mycobacterial biofilms.

CHARACTERISTICS OF MYCOBACTERIAL
BIOFILMS

Biofilms formed by mycobacteria can be defined in the same way
as any other biofilms. However, some mycobacteria can develop
these structures not only on surfaces, but also on the air-media
interface (Ojha et al., 2008). This phenomenon may be explained
by the different composition of the extracellular matrix of the
biofilm and the unique characteristics of mycobacterial cell wall,
especially the presence of high lipid levels. As with many other
organisms, biofilm development starts with bacterial adhesion
and then proceeds through the different stages of surface
attachment, sessile growth, matrix synthesis, and dispersal.
Intercellular communication occurs through a quorum-sensing
phenomenon (Richards and Ojha, 2014). Different molecules
from the bacterial cell wall called adhesins mediate the initial

attachment of bacteria to the surfaces. Once attached to the
surface, sessile bacteria initiate the synthesis of an extracellular
matrix, usually composed of glycopeptides, DNA, and other
molecules. However, mycobacteria lack surface fimbriae or pili,
although certain proteins have been described as potential factors
for the aggregation of mycobacteria and attachment to other cells
(Menozzi et al., 1996). Nor do mycobacteria produce the usual
exopolysaccharide components of extracellular matrix, but they
can attach to different surfaces (Zamora et al., 2007) and form
fully developed biofilms (Zambrano and Kolter, 2005; Ojha et al.,
2015).

Several studies confirm that NTM have the ability to adhere
to biomaterials. Vess et al. showed how several species of
mycobacteria can adhere to polyvinyl chloride (Vess et al., 1993);
Ridgway et al. analyzed the adherence of Mycobacterium sp.
to the cellulose diacetate (Ridgway et al, 1984); and Zamora
et al. studied the adherence of NTM to polypropylene (Zamora
et al, 2007). In this last study, differences in adherence were
verified, not only between species, but also between strains
of the same species. After adherence, mycobacterial biofilm is
formed. Another study of different species of rapidly growing
mycobacteria (RGM) showed that biofilm development by these
species follows a sigmoid growth kinetic (Esteban et al., 2008).
This study in laboratory strains was later confirmed in clinical
strains, and differences were noted depending on their clinical
significance (Martin-de-Hijas et al., 2009). Nutrients, ions (Ca?t,
Mg?*, and Zn?T), and carbon sources, such as glucose and
peptone, are known to influence bacterial behavior and have
a regulatory role in the formation of biofilm (Carter et al.,
2003). Esteban et al. (2008) showed that RGM can develop
biofilm using only tap water as the nutrient source, which
may explain the detection of mycobacteria from water sources.
Although Mycobacterium avium complex organisms were among
the first mycobacterial biofilms ever described (Carter et al,
2003), many NTM have been found in heterospecies biofilms
from environmental specimens (Falkinham, 2002, 2009).

Several studies have examined the role of different molecules
in the formation of these biofilms and in their composition. Recht
et al. showed that Mycobacterium smegmatis glycopeptidolipids
are essential for initial surface attachment during biofilm
formation (Recht and Kolter, 2001). These molecules also have
an essential role in sliding motility, a property of many strains
of mycobacteria that can be related with biofilm spreading to
contiguous surfaces (Recht et al., 2000; Recht and Kolter, 2001;
Maya-Hoyos et al.,, 2015). However, biofilm development and
sliding motility are not always associated, according to another
study in a large sample of RGM clinical strains (Martin-de-
Hijas et al., 2009). Ojha et al. demonstrated that in non-motile
mycobacteria, shorter-chain mycolic acids have important role
in the development of biofilm structure (Ojha et al., 2008).
They also proposed that these shorter mycolic acids may form
a hydrophobic extracellular matrix (Ojha et al., 2005). The high
resistance to antibiotics and disinfectants associated with these
organisms is attributed mainly to mycolic acids, which help
provide a permeability barrier (Zambrano and Kolter, 2005).
Many other molecules have also been studied (Ojha et al,
2015). Ojha et al. explored the role of GroELl chaperone in
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the development of M. smegmatis biofilms (Ojha et al., 2005;
Esteban et al., 2008), and the complexity of mycobacterial biofilm
structure and development is also being investigated.

The ultrastructure of mycobacterial biofilms has also been
studied with different methodologies. Confocal laser scanning
microscopy (CLSM) combined with two fluorescent dyes, Nile
Red® (Sigma-Aldrich Co., St. Louis, MO, USA) and LIVE/DEAD
BacLight® (Invitrogen, USA), has been used to analyze the
phenotypic characteristics of biofilms formed by some RGM
(growth rate, percentage of covered surface, percentage of
live/dead bacteria, and autofluorescence), showing differences
between species (Munoz-Egea et al., 2013). In this study, Munoz-
Egea et al. showed that maximum thickness for Mycobacterium
fortuitum and Mycobacterium chelonae biofilm was detected at
72 h, but other non-pigmented RGM reach maximum thickness
at 96h. M. chelonae covered a smaller surface area than
Mpycobacterium abscessus, but a greater area than M. fortuitum
and Mpycobacterium mageritense (Munoz-Egea et al, 2013).
Interestingly, autofluorescence, which has been found among
different mycobacterial species (Patino et al., 2008), can be
detected not only in sessile bacteria but also in the extracellular
matrix. Patino et al. speculate that coenzyme F420 could be
involved in this phenomenon. This molecule may be secreted by
the bacterial components of the biofilm, and is thus detectable in
extracellular matrix using CLSM (Patino et al., 2008; Joshi et al.,
2013; Muioz-Egea et al., 2013).

Growth characteristics also differ between Mycobacterium
species. M. chelonae forms a biofilm that grows vertically, while
M. fortuitum covers the entire surface with a thinner growth.
Extensive cording is observed in the cases of M. abscessus and
M. chelonae (Munoz-Egea et al., 2013). Cording is associated
with pathogenicity (Williams et al., 2009; Munoz-Egea et al,
2013), and the deletion of a dehydratase gene that affects cording
made M. abscessus strains avirulent (Halloum et al., 2016).
Cording has long been considered an important property of
M. tuberculosis strains, and contributes to the pathogenesis of
tuberculosis (Maya-Hoyos et al., 2015). The implications of
cording and biofilm development by M. tuberculosis are still
being investigated (Caceres et al., 2013).

MYCOBACTERIAL BIOFILMS IN THE
ENVIRONMENT

The ability of mycobacteria to live in biofilms confers these
organisms many advantages over the planktonic form of
growth, including, for example, resistance to environmental
aggressions, and mycobacteria that grow in biofilms appear
to be related to environmental sources (Schulze-Robbecke
and Fischeder, 1989; Schulze-Robbecke et al.,, 1992; Schulze-
Robbecke, 1993). Many reports of environmental studies have
demonstrated the presence of these mycobacteria, especially in
water systems (Falkinham, 2002, 2009). Other studies have shown
the role of these reservoirs in the development of outbreaks
caused by these organisms, including infections secondary to
cosmetic interventions, medical procedures, and others (Meyers
et al, 2002; Winthrop et al, 2002; Vijayaraghavan et al,

2006; van Ingen et al, 2009; Kennedy et al., 2012; El Helou
et al., 2013b; Walker et al, 2017). Recently, Mycobacterium
chimaera has emerged as an important nosocomial pathogen
associated with contamination of heater-cooler units for cardiac
surgery throughout the world (Kohler et al., 2015), and special
decontamination measures have been necessary to remove
mycobacterial biofilms from these devices (Garvey et al., 2016,
2017). In this respect, it is important to take into account that
sessile mycobacteria show greater resistance to disinfectants than
planktonic species. One report even described NTM detected
in the bottom of a glutaraldehyde solution tray (Vijayaraghavan
et al., 2006).

It has recently postulated that rising numbers of NTM isolated
from clinical samples could be related to changes in disinfectants
used in plumbing systems, in particular, the switch from chlorine
to chloramine in water systems in the USA (Falkinham, 2016).
Unexplained changes in the numbers of isolates have also been
described (Esteban et al.,, 2007), so it seems likely that many
questions regarding the ecology of these organisms remain to be
clarified.

An interesting issue is the relationship between NTM and free-
living amoebae (Vaerewijck et al., 2005). It is well-known that
mycobacteria can be intracellular parasites, which may explain
the potential relationship between NTM and amoeba in water
and biofilm samples (Marciano-Cabral et al.,, 2010; Ovrutsky
etal., 2013). These mixed eukaryotic-prokaryotic biofilms can be
a source of human infections and a growing factor in resistance
against disinfectants.

MYCOBACTERIAL BIOFILMS IN
MEDICINE: CLINICAL IMPLICATIONS

Since the concept emerged, biofilms have been recognized as
an especially important pathogenic factor in human infections
(Hall-Stoodley and Stoodley, 2005). Although acute infections
are mainly caused by planktonic organisms, the pathogenesis of
chronic diseases seems to be strongly associated with biofilm
formation. Moreover, the growing importance of biomaterials,
such as catheters or prostheses, in modern medicine has
contributed to the significance of biofilms and their management
in human disease (Patino et al., 2008; Qvist et al., 2014, 2015).

The clinical relevance of mycobacterial biofilms can be
analyzed in two groups: biofilms in NTM disease and biofilms
in tuberculosis. These two groups will be analyzed below.

Non-tuberculous Mycobacterial Disease
The spectrum of diseases caused by NTM is wide, but almost all
of them share a common characteristic: they are usually chronic.
One of the most common syndromes caused by NTM
is respiratory disease (Wallace et al, 1983; Griffith et al,
2007; Esteban et al, 2012), caused either by slowly growing
mycobacteria, such as M. avium complex, or rapidly growing
species, such as M. abscessus. Respiratory disease usually affects
patients with predisposing conditions, such as old tuberculosis
scars, silicosis, bullae, and other lung cavities where NTM can
develop a biofilm that first colonizes the host, and later causes
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invasive disease. This syndrome was first recognized several
decades ago (Wolinsky, 1979, 1992), and has always been difficult
to manage. In recent times, new populations of patients especially
susceptible to these pathogens have been identified. These
include patients with chronic bronchiectasis and cystic fibrosis,
conditions which have been recently reported as predisposing
factors for NTM infections (Benwill and Wallace, 2014; Qvist
et al., 2014; Floto et al., 2016; Hoiby et al., 2017). The association
between these infections and biofilm has been documented (Qvist
etal,, 2015). Mycobacterial biofilms have recently been identified
in histological samples from lung cavitary disease (Fennelly et al.,
2016). Experimental data also show the importance of biofilm
development in the ability of M. avium to invade bronchial
epithelial cells (Yamazaki et al., 2006).

Another important biofilm-related group of infections, and
the most typical, are those associated with biomaterial. NTM
have been reported as the cause of different syndromes, the
most frequently isolated organisms being RGM. These organisms
behave as opportunistic pathogens and have been described
in many different device-related infections. Among these,
catheter-related bacteremia has been reported in many different
populations, including cancer patients (EI Helou et al., 2013b).
Diagnosis is difficult, but in some cases these organisms can
grow in conventional blood culture bottles. Catheter removal is
mandatory for the management of these infections in all cases
(El Helou et al., 2013a,b). Another catheter-related disease is
peritonitis in continuous ambulatory peritoneal dialysis (CAPD)
patients. This syndrome has been described since the early days
of CAPD use, and also requires catheter removal if cure is to be
achieved (Hakim et al., 1993).

Other devices that can be infected with NTM are prosthetic
joints. The most common causative agents are RGM (Eid et al.,
2007), but slowly growing mycobacteria have also been isolated
(Gupta and Clauss, 2009), albeit rarely (Benito et al., 2016).
Although RGM can grow in common bacteriology media, slowly
growing organisms usually require specific mycobacterial culture
methods, so a high degree of suspicion is necessary before such
diagnostic procedures are undertaken. Other biomaterial-related
diseases include abdominal mesh infection (Celdran et al., 2007),
pacemaker infection (Al-Ghamdi et al., 2016), prosthetic valve
endocarditis (Bouchiat et al., 2015), mammoplasty infection,
transplant-related keratitis, and others (Brown-Elliott and
Wallace, 2002). Almost all of these syndromes require implant
removal, since antibiotic therapy alone is incapable of eliminating
the sessile organisms.

Mycobacterium Tuberculosis Disease

Arguably one of the most interesting findings in recent years
in the field of mycobacterial biofilm research is the discovery
that M. tuberculosis can develop a biofilm. The first reports
came from cases of tuberculosis infection associated with clinical
biomaterial, prosthetic joints in particular (Tokumoto et al., 1995;
Spinner et al., 1996; Berbari et al., 1998; Ha et al., 2005). Clinical
observations led to the conclusion that biomaterial removal was
essential to manage these infections, even if the M. tuberculosis
strain was susceptible in vitro to the antibiotics used. The
difficulty in treating these infections could be due to the fact that

biofilm is a well-established mechanism of antibiotic resistance.
Further studies have indeed demonstrated that M. tuberculosis
can develop a biofilm in vitro, opening a new line of research
in the pathogenesis of this disease (Ojha et al., 2008). Since
then, several studies have determined the importance of different
molecules, such as mycolic acids or DNA, in the development of
M. tuberculosis biofilms, and the different regulatory mechanisms
involved in this process have been revealed (Nayak, 2015; Ojha
et al., 2015). However, the role of biofilms in the pathogenesis
of tuberculosis remains unclear. This pathogenic process is
complex, and involves, most importantly, intracellular survival
and host defense evasion mechanisms. It has been suggested
that the importance of biofilms in this disease is due to their
participation in the process of casseous necrosis and cavitation
formation in lung tissue, a site in which M. tuberculosis could
form a biofilm (Kulka et al., 2012; Basaraba and Ojha, 2017).
Further experiments have shown a decrease in the activity
of antituberculous drugs against tuberculosis biofilms (Ojha
et al, 2008; Islam et al., 2012). These discoveries prompted
interest in biofilm-forming mechanisms as a potential target
for new therapies against tuberculosis. Nevertheless, the clinical
implications of these in vitro discoveries remain unresolved,
and future research will probably furnish us with a new view
of tuberculosis as a biofilm-related disease, to add to its other
pathogenic factors.

MYCOBACTERIAL BIOFILMS IN
MEDICINE: THERAPEUTIC IMPLICATIONS

Biofilm development is an important factor in antimicrobial
resistance. It affords many bacterial species protection against
antibiotics normally active against the same bacteria in the
planktonic state (Hoyle and Costerton, 1991; Fux et al., 2005;
Ciofu et al., 2017). Different mechanisms have been implicated
in this resistance (permeability, metabolic states, activation
of resistance genes, persister cells) (Anderson and O’Toole,
2008; Lewis, 2008; Kester and Fortune, 2014). Resistance to
antibiotics, disinfectants, and germicides by biofilm-forming
microorganisms may lead to treatment failure, and clinical
experience has demonstrated that biofilms have to be physically
eradicated to resolve the infection (Hall-Stoodley et al., 2012).
Several studies have found mycobacterial biofilms resistant
in vitro to disinfectants or antibiotics, including amikacin and
clarithromycin. For example, even when minimal inhibitory
concentrations (MIC) indicated that an M. abscessus isolate was
susceptible to amikacin and clarithromycin, these drugs were
only minimally active in biofilms at the highest concentrations
tested (Greendyke and Byrd, 2008; Ortiz-Perez et al, 2011).
Muifioz-Egea et al. found differences between the MIC and
minimum biofilm eradication concentration (MBEC) in 4
species of RGM, ranging between <100-fold in the case of
Mycobacterium mucogenicum exposed to ciprofloxacin, and
>100,000-fold in the case of M. abscessus and Mycobacterium
peregrinum exposed to clarithromycin (Mufoz-Egea et al,
2015); ciprofloxacin was the most active antibiotic against these
biofilms, compared with clarithromycin or amikacin. Further
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studies have shown the effect of antibiotic therapy in different
stages of biofilm development (Mufioz-Egea et al., 2015, 2016b).
In these studies, treatment of the biofilm was more effective when
antibiotics are added in the early stage of biofilm development,
probably because the phenotype of the cells is not fully adapted
to biofilm growth.

In an attempt to evaluate mechanisms for these resistance
patterns, Ortiz-Pérez et al. examined the permeability of
mycobacterial biofilm to different antimicrobials. These authors
studied several clinical and laboratory strains and found that
antimicrobial permeability features were not species-dependent
or related to drug resistance of the biofilm (Ortiz-Perez et al.,
2011). Greendyke and Byrd demonstrated that in M. abscessus
the metabolic state is essential for the development of resistance
(Greendyke and Byrd, 2008). Other mechanisms, including
activation of resistance genes [such as inducible methylases,
found in many species of mycobacteria (Esteban et al., 2009)]
have been hypothesized, but remain unproven.

The implications of biofilm development in the resistance of
M. tuberculosis to antimicrobials have been demonstrated (Ojha
etal., 2008), although it is not clear how these findings will apply
to the treatment of tuberculosis.

New strategies to improve treatment efficacy and outcomes
in patients with infections caused by these organisms have
been studied. Differences in biofilm development and structure
between species may require different approaches, depending
on the mycobacteria involved. Mufoz-Egea et al. studied the
effect of N-acetylcysteine (NAC) and Tween 80 (two potential
antibiofilm molecules), alone and combined with antibiotics,
against non-pigmented RGM (NPRGM) biofilms. Tween 80
alters the structural integrity of the membrane, lipids, and
proteins (Teixeira et al, 2007), while NAC acts on the
polysaccharide matrix of the biofilm, breaking disulfide bridges
that link the polysaccharide fibers (Olofsson et al., 2003). Due
to the high lipid content of the mycobacterial cell wall and
the significant presence of lipids in the extracellular matrix,
Tween 80 is more active against mycobacterial biofilm than NAC
(Mufioz-Egea et al., 2016b). An increase in antibacterial activity
was observed when NAC and Tween 80 were combined with
ciprofloxacin, clarithromycin, and amikacin. The ultrastructure
of biofilms in M. fortuitum, M. chelonae, M. abscessus, and
M. smegmatis is also affected by ciprofloxacin, clarithromycin,
and amikacin combined with antibiofilm agents. In fact, the
percentage of dead bacteria is higher with a combination of
antibiotics and antibiofilm agents than with antibiotics only
(Munioz-Egea et al., 2016b). This synergistic effect is potentially
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