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Aggregating and forming biofilms on biotic or abiotic surfaces are ubiquitous bacterial
behaviors under various conditions. In clinical settings, persistent presence of biofilms
increases the risks of healthcare-associated infections and imposes huge healthcare
and economic burdens. Bacteria within biofilms are protected from external damage
and attacks from the host immune system and can exchange genomic information
including antibiotic-resistance genes. Dispersed bacterial cells from attached biofilms
on medical devices or host tissues may also serve as the origin of further infections.
Understanding how bacteria develop biofilms is pertinent to tackle biofilm-associated
infections and transmission. Biofilms have been suggested as a continuum of growth
modes for adapting to different environments, initiating from bacterial cells sensing their
attachment to a surface and then switching cellular physiological status for mature
biofilm development. It is crucial to understand bacterial gene regulatory networks
and decision-making processes for biofilm formation upon initial surface attachment.
Pseudomonas aeruginosa is one of the model microorganisms for studying bacterial
population behaviors. Several hypotheses and studies have suggested that extracellular
macromolecules and appendages play important roles in bacterial responses to the
surface attachment. Here, I review recent studies on potential molecular mechanisms
and signal transduction pathways for P. aeruginosa surface sensing.
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INTRODUCTION

Bacteria attach to surfaces, aggregate and then form organized and sometimes multi-species
communities called biofilms. Biofilm development involves a series of events: (i) free-floating
planktonic cells; (ii) initial reversible attachment followed by irreversible attachment of sessile cells;
(iii) further growth or aggregation of attached bacteria resulting in microcolony formation; (iv)
organized structures with a distinct architecture resulting from microcolony development; and (v)
dispersal of planktonic bacteria from mature biofilms. When compared to planktonic cells, bacteria
within a biofilm with various physiological phenotypes benefit from genetic adaptation, variation,
and stochastic gene switching, resulting in greater resistance to environmental challenges,
antibiotic infiltration, and the host immune system (Smith, 2005; Stewart and Franklin, 2008;
Monds and O’Toole, 2009). Biofilms have been recognized to pose an increasing risk of healthcare-
associated infections and microbial dissemination (Percival et al., 2015). Dispersed cells from
biofilms are highly virulent and physiologically different from both planktonic and biofilm cells
(Chua et al., 2014). A thorough understanding of biofilm biology is imperative to provide
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better healthcare management. Surface attachment is the first
step for biofilm development and requires a bacterial surface
apparatus and extracellular macromolecules for physical sensing.
I will review recent research advances in the mechanisms and
regulatory pathways of surface sensing, specifically in the model
microorganism, Pseudomonas aeruginosa.

P. aeruginosa: A MODEL
MICROORGANISM FOR STUDIES ON
BIOFILMS

P. aeruginosa, a ubiquitous Gram-negative bacterium, is
capable of adapting to versatile environments such as human
tissues, environmental surfaces in hospitals, and indwelling
medical devices; this situation makes it the leading cause of
acute nosocomial pneumonia or sepsis (Mesaros et al., 2007;
Winsor et al., 2011; Percival et al., 2015). P. aeruginosa is
naturally resistant to a wide range of antibiotics, making
antibiotic treatment ineffective. Biofilms attached to medical
equipment or indwelling catheters may be one of the major
reasons that P. aeruginosa infections are highly transmissible
among hospitalized patients (Hancock and Speert, 2000;
Breidenstein et al., 2011; Poole, 2011; Russotto et al., 2015).
The International Nosocomial Infection Control Consortium
reported that P. aeruginosa nosocomial infections have become
a worldwide healthcare issue (Rosenthal et al., 2016).

Forming biofilms has been proposed as a strategy for
bacteria to survive under unfavorable conditions (Davies, 2003;
Olsen, 2015; Moradali et al., 2017). Viable bacteria within
biofilms are shielded and supported by the hydrated polymeric
matrix known as extracellular polymeric substances (EPSs).
The composition and physicochemical properties of EPSs
are bacterial-species-dependent and shaped by environments
(Flemming and Wingender, 2010). The key components of
EPSs in P. aeruginosa are exopolysaccharides including Psl, Pel,
and alginate, extracellular DNA (eDNA), lipids, and proteins.
Extracellular type IV pili (T4P) and flagella also act as structural
elements within mature biofilms (van Schaik et al., 2005; Barken
et al., 2008). Cup fimbriae play an important role in cell-to-
cell interactions in the early stage of biofilm formation (Wei
and Ma, 2013). The composition and functions of EPSs in
the P. aeruginosa biofilm were highlighted in several reviews
(Flemming and Wingender, 2010; Moradali et al., 2017).

THE MOTILE–SESSILE LIFESTYLE
SWITCH

A comparative analysis including three microarray datasets
revealed only five upregulated and six downregulated transcripts
with more than twofold changes in P. aeruginosa in biofilms
compared to planktonic cultures (Patell et al., 2010). RNA
sequencing technology (RNA-Seq) has revealed a large amount
of RNA transcripts with differential expression between bacteria
from two different mature developmental biofilms (24 or 48 h
of development) compared to different planktonic growth

phases (4 or 12 h of culture), including 24 small-regulatory
RNAs (sRNAs). That study suggested that gene expression
levels at different biofilm maturation stages are dynamic
and sRNAs play potential roles in biofilm development.
Nonetheless, when compared to other four microarray datasets
in different experimental conditions, “only little consistence”
has been found across these datasets, suggesting that biofilm-
associated transcripts in P. aeruginosa are greatly influenced by
experimental conditions (Dötsch et al., 2012). A more recent
microarray study showed that there are a total of 2504 genes
with different expression levels in different spatial regions of
mature biofilms (Heacock-Kang et al., 2017). A proteomic
study that compared surface-attached P. aeruginosa to their
unattached counterparts revealed that a total of 616 proteins
(258 over-accumulated and 358 under-accumulated proteins)
show modified abundance including proteins in two-component
systems (TCSs), second messenger systems, outer membrane
components, and appendages (Crouzet et al., 2017). These studies
suggest that gene expression levels are continuously tuned in
bacteria grown in dynamic biofilms.

Cyclic-3′5′-diguanylic acid (c-di-GMP), a universal second
messenger in bacteria, is considered a crucial signal for the
motility–sessility switch in P. aeruginosa (Hengge, 2009; Romling
et al., 2013; Valentini and Filloux, 2016). The major determinant
of this substantial phenotypic change is the cellular level of
c-di-GMP, which increases threefold to fivefold in P. aeruginosa
grown on an agar surface compared with the liquid culture.
Elevated levels of c-di-GMP promote biofilm formation but to
inhibit bacterial motility (Kuchma et al., 2012). Two groups of
proteins respond to the cellular levels of c-di-GMP. The first
group is diguanylate cyclases (DGCs) containing the GGDEF
domain for c-di-GMP synthesis from two molecules of GTP. The
other is phosphodiesterases (PDEs) containing EAL or HD-GYP
domains for c-di-GMP degradation to pGpG or GMP. GGDEF
and EAL domains can both exist in the same protein but are
activated under different conditions (Valentini and Filloux, 2016).

The P. aeruginosa genome has been predicted to encode
18 GGDEF, 5 EAL, 16 GGDEF/EAL, and 3 HD-GYP domain
proteins (Galperin, 2005). Several DGCs (SadC, WspR, and
YfiN/TpbB) and PDEs (BifA and RocR) are involved in the
production of exopolysaccharides and biofilm formation
(Kuchma et al., 2007; Merritt et al., 2010; Bernier et al., 2011).
The mechanisms via which c-di-GMP mediates regulation
of downstream cellular functions include signal–receptor
interactions as effectors or transcriptional regulators (Valentini
and Filloux, 2016). For example, PelD is a c-di-GMP receptor,
and the signal–receptor complex is essential for Pel production
in P. aeruginosa (Lee et al., 2007). Alg44, a membrane-associated
protein, activates alginate polymerization by allosteric binding
of c-di-GMP to its PilZ domain (Merighi et al., 2007; Oglesby
et al., 2008; Fata Moradali et al., 2015). FleQ, a flagella master
transcriptional regulator, represses genes pel, psl, and cdr
encoding EPS components and an adhesin at low levels of
c-di-GMP but activates the expression of those genes when c-di-
GMP binds to FleQ ATP-binding site at high concentrations of
c-di-GMP (Hickman and Harwood, 2008; Baraquet et al., 2012;
Baraquet and Harwood, 2013; Su et al., 2015). Elevated levels of
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c-di-GMP also induce the expression of BrlR, a transcriptional
activator of two multi-drug efflux pump operons mexAB-oprM
and mexEF-oprN, resulting in antibiotic resistance in the initial
stage of biofilm formation (Gupta et al., 2013, 2014; Liao et al.,
2013). A c-di-GMP-binding protein, FimX, may perform a
key function in coupling T4P-mediated twitching motility and
adhesion to the levels of c-di-GMP by promoting T4P assembly
and retraction through binding to PilB ATPase (Jain et al., 2017).

The changes in levels of c-di-GMP are adjusted in response
to extracellular signals received by several sensing systems.
Wsp, a chemotaxis-like system consisting of a membrane-bound
receptor, WspA, and a regulator, WspR with a GGDEF domain,
plays an important role in surface sensing. Signals received
by WspA trigger phosphorylation of WspR by the histidine
kinase WspE. Phosphorylated WspR synthesizes c-di-GMP and
promotes aggregation of WspR to boost the activity of this
DGC and the levels of c-di-GMP (Hickman and Tifrea, 2005;
Güvener and Harwood, 2007; Huangyutitham et al., 2013).
WspR activity can be limited by c-di-GMP binding to an
inhibitory site of WspR as negative feedback (De et al., 2008).
The connection between c-di-GMP signaling and the Gac–Rsm
cascade has been well characterized (Figure 1). Free RsmA,
a translational repressor protein, promotes a planktonic and
more virulent lifestyle through the inhibition of SadC and
Psl but upregulation of the Type III secretion system (T3SS)
and virulence factors (Irie et al., 2010; Moscoso et al., 2014;
Vakulskas et al., 2015). After receiving input signals, the GacSA
TCS promotes the expression of two small regulatory RNAs –
RsmY and RsmZ – thereby sequestering RsmA (Lapouge et al.,
2008; Mikkelsen et al., 2011). Thus, the titration of RsmA by
RsmYZ induces the production of sessile determinants. Recently,
solution of the nuclear magnetic resonance (NMR) structure
of the detector domain of GacS revealed a putative functional
pocket for ligand binding and suggested that ligand-induced
conformational changes may occur in GacS (Ali-Ahmad et al.,
2017). That study provided new insights into the potential
mechanisms of surface sensing via GacSA TCS. Several additional
sensors and regulators modulate global gene expression levels
via the Gac/Rsm system, e.g., SagS/BfiRS, RetS, LadS, PA1161,
Hpt, and SuhB/GcbA (Figure 1; Mikkelsen et al., 2011; Moscoso
et al., 2011; Kong et al., 2013; Vakulskas et al., 2015; Bhagirath
et al., 2016; Chambonnier et al., 2016; Valentini and Filloux,
2016; Li et al., 2017). Roc TCS comprising sensor kinase
RocS1 and two response regulators, RocA1 and RocR, has been
identified because of its regulation in biofilm formation and
virulence including Cup fimbriae and T3SS (Kulasekara et al.,
2005; Rao et al., 2008). Quorum sensing (QS) is a bacterial
intercellular communication mechanism that acts through the
production and detection of diffusible signal molecules. In
P. aeruginosa, two N-acyl-homoserine lactone (AHL)-based QS
systems, las and rhl, and one alkylquinolone (AQ)-mediated QS
have been identified (Nadal Jimenez et al., 2012). The las system
upregulates the periplasmic TpbA tyrosine phosphatase, which
dephosphorylates YfiN/TpbB, a DGC. Repression of pel genes
is the result of a lack of c-di-GMP owing to dephosphorylation
of TpbB (Ueda and Wood, 2009). Of note, TpbA-dependent
c-di-GMP reduction also promotes eDNA release from cell lysis

in facilitating biofilm development (Ueda and Wood, 2010).
An RNA-Seq study showed that low levels of c-di-GMP induce
QS systems and QS-regulated virulence factors via PqsR, the
transcriptional regulator of AQ-QS (Lin Chua et al., 2017).
Together with c-di-GMP, QS coordinates individual cells at
population levels of behavior in response to bacterial population
density.

EXTRACELLULAR APPENDAGES

The transition from motile to attached cells requires the arrest
of flagella-based motility and production of macromolecules
for surface attachment. Extracellular appendages act as surface
sensors and mediate the first contact with surfaces. Flagella, the
major apparatus on the bacterial surface, are not only needed for
bacterial motility but also involved in several biological functions.
When planktonic bacteria are close to the surface or the viscosity
increases, the signal transduction for attachment is triggered as
a result of decreased rotation of flagella. This model has been
proposed in an earlier study suggesting that the polar flagellum
in Vibrio parahaemolyticus is the dynamometer of swarming
motility and lateral flagella (McCarter et al., 1988). This model
in P. aeruginosa is partly supported by the inverse regulation
between the flagella-mediated swarming and biofilm formation.
Flagellar reversal rates are modulated by the chemotaxis cluster
IV (CheIV cluster) in response to SadC-BifA adjusted levels of
c-di-GMP (Caiazza et al., 2007; Merritt et al., 2007). Nevertheless,
it is unclear whether SadC responds to cues of attachment or to
the feedback from flagella with reduced rotation.

The T4P is another type of extracellular appendages involved
in cell–cell aggregation, biofilm formation, and virulence
(Leighton et al., 2015). PilY1, an essential non-pilin protein,
along with other pilin subunits, forms a helical pilus fiber
(Alm et al., 1996). Two calcium-binding sites in PilY have
been revealed, which may be required for controlling pili
retraction (Orans et al., 2010) and for binding to integrin
of host epithelial cells (Heiniger et al., 2010; Johnson et al.,
2011). These findings suggest that the binding of PilY1 to
integrins of the target cell enables P. aeruginosa to sense
attachment and therefore pull itself toward the host. Moreover,
surface attachment-induced virulence requires both PilY1 and
las-mediated QS. PilY1 therefore has been proposed as a
mechanosensor for P. aeruginosa attachment-induced virulence
(Siryaporn et al., 2014). T4P biosynthesis including PilY1 and
T4P-mediated twitching motility in P. aeruginosa is regulated
by cyclic adenosine monophosphate (cAMP) and a chemotactic
cluster, PilGHIJK-ChpABC, which is similar to a well-studied
Che system in E. coli flagella regulation (Baker et al., 2005). The
Chp system senses environmental cues and activates the major
adenylate cyclase of P. aeruginosa, CyaB, for cAMP production,
leading to activation of pilus genes via the cAMP-binding
protein, a virulence factor regulator (Vfr) (Fulcher et al., 2010).
Increased piliation and the expression of PilY1 result in further
surface contact and elevation of cAMP levels. Conversely, the
expression of flagellar structural components is repressed by high
concentrations of cAMP (Wolfgang et al., 2003). Elevated cAMP
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FIGURE 1 | Schematic illustration of the regulatory network of surface sensing in Pseudomonas aeruginosa. Upon bacterial attachment to the surface, chemical
cues (blue arrows) such as quorum sensing (QS) signals and unknown chemical signals are received by various systems including QS, chemotaxis, and
two-component systems (TCSs). Physical contacts (yellow arrows) causing bacterial cell wall stress and retraction of type IV pili (T4P) trigger responding pathways
too. Cyclic-di-GMP, the key second messenger for the motile–sessile lifestyle switch, is generated by diguanylate cyclases (orange) and degraded by
phosphodiesterases (green). The other second messenger, cAMP, is also involved in the regulation of T4P and flagella biosynthesis. The purple cylinder represents
the assembled T4P across the outer membrane (OM) and inner membrane (IM). Phosphorylated proteins are labeled with . Activation events (black arrowheads)
and inhibition events (red T-bars) may be mediated by transcriptional, translational, or post-translational regulatory mechanisms. Dashed arrows or T-bars represent
indirect regulation or unknown pathways. Asterisk-labeled FleQ indicates that FleQ plays a dual role as an activator or a repressor in biofilm formation depending on
c-di-GMP or ATP binding, respectively.

concentration also promotes the expression of type II and type
III secretion systems for further attachment-induced virulence
(Siryaporn et al., 2014; Leighton et al., 2015). Moreover, cAMP-
Vfr can stimulate the transcription of the fimS-algR TCS operon
encoding the FimS sensor kinase for AlgR phosphorylation, thus
causing activation of the pili operon for T4P assembly and
alginate biosynthesis (Figure 1; Whitchurch and Alm, 1996; Yu
et al., 1997; Whitchurch et al., 2002; Kanack et al., 2006; Belete
et al., 2008). After surface contacts, the bacterial cell wall or
periplasm may be damaged or stressed, triggering stress pathways
for cell wall recovery and surface behaviors. AlgR is also activated
by a stress-induced sigma factor σ22 (AlgU/T). Together, AlgR
and σ22 activate the transcription of genes responsible for alginate
production and inhibit cAMP-Vfr pathways by repressing vfr
expression (Figure 1; Wood et al., 2006; Wood and Ohman, 2009;
Jones et al., 2010).

In a bifA mutant, excessive biofilm formation and swarming
defect phenotypes (resulting from the failure of c-di-GMP
degradation) are suppressed by the second mutation in the
pilY1 gene. In the wild type, increased expression of PilY1
with c-di-GMP produced by SadC suppresses swarming motility.
Nonetheless, the global pools of c-di-GMP are not altered in
the pilY1 mutant. Therefore, PilY1 is involved in c-di-GMP
regulation related to surface behaviors and functions upstream
of SadC-BifA by unknown mechanisms (Kuchma et al., 2010).
When bacteria grown on agar surfaces were compared to those
grown in liquid broth, expression of pilY1 increased twofold
at transcriptional and translational levels (Luo et al., 2015).
A further transposon mutagenesis analysis indicated that pilY1

is not only regulated by Pil-Chp, cAMP-Vfr, and FimS-AlgR
systems but also modulated by T4P assembly. PilJ, a methyl-
accepting chemotaxis protein (MCP) in the Pil-Chp system,
activates CyaB to produce cAMP when cells are grown on an
agar surface. PilJ also interacts directly with FimS thus inducing
downstream operons for alginate and pili biosynthesis including
the fimUpilVXY1Y2E operon. Thus, both cAMP-Vfr and FimS-
AlgR coordinate T4P biosynthesis through the input signals from
Pil-Chp. PilY1, secreted by the assembled T4P to the outer
membrane, then activates SadC resulting in increasing c-di-
GMP levels, promoting sessility, and downregulating motility
(Figure 1; Luo et al., 2015). A recent study indicates that FimV,
an inner-membrane protein, with the Chp system via cAMP-
Vfr regulates T4P and T4P-regulated twitching motility, which
involves repeated extension and retraction of pili mediated by
assembly and disassembly of a pilin subunit PilA (Buensuceso
et al., 2017). The involvement of FimV and its associated
pathways in surface sensing are still unclear. Upon surface
contact, attachment and retraction may exert tension on
T4P. A bacterial two-hybrid system study suggests that PilJ
interacts directly with PilA through their periplasmic domains,
suggesting that PilJ may respond to the mechanical tension
via PilA (Persat et al., 2015). The mechanical force generated
by T4P retraction was measured and found to be ∼30 pN
in an experiment with laser tweezers, and the retraction of
T4P was not systematically dependent on the levels of c-di-
GMP. Nevertheless, c-di-GMP-dependent Pel enhances the T4P-
mediated attachment (Ribbe et al., 2017). The shear force in
flowing fluid sensed by PiY1 and T4P also provides a cue for
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elevation of c-di-GMP levels and surface attachment (Rodesney
et al., 2017). Thus, mechanosensing via T4P upon initial
attachment induces the production of c-di-GMP and c-di-GMP-
dependent gene expression via complex regulatory networks and
thereby determines bacterial lifestyles on surfaces.

Although several models have been proposed, most biofilm
studies have been conducted only with a single material (Tuson
and Weibel, 2013). To identify novel anti-biofilm materials, Hook
et al. (2012, 2013) employed polymer microarray techniques with
various polymer surfaces showing different bacterial responses
and biofilm formation on different materials. According to their
studies, the bacteria–material interaction cannot be predicted
by wettability or surface energy of materials (Alexander and
Williams, 2017). Although T4P has been suggested as the major
mechanosensing apparatus for surface sensing, how bacteria
sense different surfaces and determine attachment is still mostly
unknown. It is unlikely that the T4P-mediated surface sensing is
the only pathway for responding to every material encountered
by bacterial cells, but more likely, unknown pathways or
extracellular macromolecules are also involved in the response
to attachment to different substrata. A proteomic study of
P. aeruginosa attached to three different abiotic materials revealed
that 785 proteins are common for all three materials, 107 for
two of them, and 38 were detected specifically on only one
surface (Guilbaud et al., 2017). Accordingly, bacterial responses
are specific to attached materials. There is much to learn about
bacteria–material interactions.

CONCLUSION

I have summarized recent studies on surface sensing and
regulatory pathways for biofilm formation in P. aeruginosa
(Figure 1). T4P and its components perform crucial functions

in the receipt of external signals and communication between
c-di-GMP- and cAMP-associated pathways. The major question
in the T4P model is how the secreted PilY1 controls downstream
SadC-BifA located on the inner membrane. Sensing of different
surface materials is another major question. In addition, chemical
characterization or functional groups of materials interacting
with key bacterial components (e.g., TCSs) will provide a different
angle for studies on bacterial surface sensing. Fundamental
multi-disciplinary studies will address these questions, e.g., how
bacteria know that they are on a surface, how bacteria distinguish
between different materials, and how bacteria respond to
different surfaces. Investigating P. aeruginosa surface sensing on
different substrata will advance our knowledge for identification
of effective approaches to elimination of complex biofilms in
clinical settings.
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