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Functional Repertoire of Antibiotic

Resistance Genes in Antibiotic

Manufacturing Effluents and Receiving

Freshwater Sediments.

Front. Microbiol. 8:2675.

doi: 10.3389/fmicb.2017.02675

Functional Repertoire of Antibiotic
Resistance Genes in Antibiotic
Manufacturing Effluents and
Receiving Freshwater Sediments

Juan J. González-Plaza 1†, Ana Šimatović 2†, Milena Milaković 1, Ana Bielen 3,
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Environments polluted by direct discharges of effluents from antibiotic manufacturing

are important reservoirs for antibiotic resistance genes (ARGs), which could potentially

be transferred to human pathogens. However, our knowledge about the identity and

diversity of ARGs in such polluted environments remains limited. We applied functional

metagenomics to explore the resistome of two Croatian antibiotic manufacturing

effluents and sediments collected upstream of and at the effluent discharge sites.

Metagenomic libraries built from an azithromycin-production site were screened for

resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary

antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and

beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often

clinically relevant ARGs, which were frequently found in clusters and flanked by mobile

genetic elements. The majority of macrolide resistance genes identified from matrices

exposed to high levels of macrolides were similar to known genes encoding ribosomal

protection proteins, macrolide phosphotransferases, and transporters. Potentially novel

macrolide resistance genes included one most similar to a 23S rRNA methyltransferase

from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase

HflX from Emergencia. In libraries deriving from sediments exposed to lower levels

of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate

reductases and beta-lactamases from classes A, B, and D. In addition, we detected

7 potentially novel ARGs in upstream sediment, including thymidylate synthases,

dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to

finding known gene types, we report the discovery of novel and diverse ARGs in

antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for

monitoring the dispersal of ARGs from environmental hotspots such as discharge sites

of pharmaceutical effluents.

Keywords: antibiotic resistance, effluent, manufacturing, antibiotic pollution, sediment, macrolides, functional
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INTRODUCTION

Antibiotic resistance is one of the most serious global public
health threats of the twenty-first century (Carlet et al., 2012;
ECDC, 2016; O’neill, 2016). This phenomenon is strongly
associated with hospitals and other clinical environment (Brown
et al., 2006; Rodriguez-Mozaz et al., 2015), because the extensive
use of antibiotics in clinical settings is the driving force for
increasing antibiotic resistance. However, there is a growing
awareness that anthropogenic inputs of antibiotics into the
environment through effluents, use of manure and biosolids
in agriculture, and aquaculture contribute to this problem.
The selection pressure imposed by antibiotics and other
selective agents has promoted the propagation of antibiotic
resistant bacteria (ARB) and antibiotic resistance genes (ARGs)
(collectively known as the resistome) in the environment,
creating vast reservoirs of ARGs with potential to be transferred
to pathogens (Bengtsson-Palme et al., 2014; Cabello et al., 2016;
Tao et al., 2016; Peng et al., 2017; Su et al., 2017). Understanding
these reservoirs and behaviors of ARGs is crucial to control the
emergence of resistant pathogens at a global scale.

Direct discharge of pharmaceutical effluents in receiving water
bodies has been recognized as an important source of pollution,
as they may contain high concentrations of antibiotics, ARB,
heavy metals, and other hazardous materials (Babić et al., 2007;
Larsson et al., 2007; Li et al., 2009; Sim et al., 2011; Larsson, 2014;
Bielen et al., 2017). High concentrations of antibiotics which are
above the minimum inhibitory concentrations could cause death
of many susceptible environmental microorganisms and enrich
those genetically adapted, while sub-inhibitory concentrations
exert a selective pressure, which act as a moving force in
horizontal dissemination of ARGs (Baker-Austin et al., 2006;
Tacão et al., 2014; Di Cesare et al., 2016; Navon-Venezia et al.,
2017). Therefore, environments impacted by discharges from
manufacturing of antibiotics are high risk environments for
antibiotic resistance selection and dissemination into human
or animal pathogens. Hence, it is essential to understand
the contribution of manufacturing sites to the environmental
resistome in more detail.

Studies addressing the impact of effluent discharge from
antibiotic production on the resistome of the receiving
environment are still scarce and limited to Asian countries.
Several studies using culture- and PCR-based methods have
reported the presence of multidrug resistant bacteria (MDR) in
rivers receiving effluents from antibiotic production (Li et al.,
2009, 2010; Sidrach-Cardona et al., 2014; Lübbert et al., 2017).
Although these methods provide valuable information, their
major limitations are that the bacteria need to be culturable under
laboratory conditions or screening is limited to known ARGs.
Sequence-based metagenomics has enabled the exploration of
the total DNA of a sample, providing a broad spectrum of
known ARGs. This methodology has been used to study river
and lake sediments highly polluted with antibiotics (mostly
fluoroquinolones) from bulk drug production in India, revealing
a high diversity and promotion of resistance genes to several
classes of antibiotics as well as their mobilization elements
(Kristiansson et al., 2011; Bengtsson-Palme et al., 2014). Despite

these extremely valuable findings, metagenomic sequencing
cannot identify potentially novel ARGs nor gives information
on the expression of the ARGs (Mullany, 2014). Functional
metagenomics, which consists of heterologous expression of
metagenomic DNA in a surrogate host and activity-based
screening, is a useful approach to identify different types of
functional ARGs, both known and novel. Furthermore, the
genes discovered by functional metagenomics are, by definition,
candidates for horizontal transfer, as they must be functional in
a heterologous host (Crofts et al., 2017). This method has been
successfully applied in exploring the ARGs in different matrices
including the human microbiome (Sommer et al., 2009), soil
(Udikovic-Kolic et al., 2014), manure (Wichmann et al., 2014),
activated sludge (Parsley et al., 2010), river (Amos et al., 2014),
and ocean (Hatosy and Martiny, 2015).

Recently, our study on effluents from two Croatian
pharmaceutical industries showed that they are contaminated
with high levels of antibiotics and culturable ARB (Bielen et al.,
2017). Treated effluent from an azithromycin (AZI)-synthesizing
factory contained occasionally high, mg L−1 concentrations
of macrolide antibiotics, which are critical for use in human
medicine (WHO, 2017). On the other hand, partially treated
effluent from a formulation industry contained a range of
antibiotics (fluoroquinolones, trimethoprim, sulfonamides, and
tetracyclines) from low to high µg L−1 concentrations (Bielen
et al., 2017). These effluents are discharged into the nearby river
and stream providing an opportunity for selection of antibiotic
resistance. There is also the possibility that these environments
harbor yet undescribed resistance genes, some of which we
may face in pathogens in the hospitals tomorrow. Previous
studies, applying metagenomic sequencing, have shown high
levels of known and mobile ARGs, particularly those conferring
resistance to quinolones and sulphonamides, in Indian sediments
heavily polluted with fluoroquinolone antibiotics (Kristiansson
et al., 2011; Bengtsson-Palme et al., 2014). In this study, using
functional metagenomics we have explored the diversity of ARGs
in industrial effluents and sediments polluted with macrolide
or different veterinary antibiotics. We have also assessed the
genetic context of the identified resistance genes by analyzing
their flanking DNA.

MATERIALS AND METHODS

Study Areas and Sampling Procedures
Study areas lie in the northwest of Croatia where two local
pharmaceutical industries are situated. Industry 1 has a long
tradition in synthesizing the macrolide antibiotic AZI and
discharges its final, treated effluent into the Sava river. Industry
2 formulates various veterinary antibiotics, including antibiotics
from the tetracycline, sulfonamide and beta-lactam classes, and
discharges its partially treated effluent into the nearby small
stream. More detailed information about these two industries
and properties of their effluents have been recently published
(Bielen et al., 2017).

Industrial effluents and sediment samples from the receiving
river and stream were collected in January and February 2016.
Effluent from Industry 1 was collected as grab sample from the
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discharge pipe and effluent from Industry 2 consisted of a 24-
h composite sample. Both effluent samples were collected in
a sterile 2 L bottle and kept at 4◦C. Immediately upon return
to the laboratory, aliquots of 50–100mL were vacuum-filtered
throughmixed cellulose ester filters (0.22µmpore diameter) (GE
Healthcare Life Sciences) to collect the bacterial cells, and filters
were stored at −80◦C until DNA extraction. Surface sediment
samples (0–10 cm) were taken at effluent discharge locations and
at reference locations situated upstream of the discharge areas
(4 samples in total). Four sub-samples were collected at each
location and merged to a composite sample (10 g of each sub-
sample) within 4 h of collection. These samples were used fresh
for immediate culturing or stored at −80◦C until DNA was
extracted.

Culturing Bacteria from Sediments
To culture bacteria from fresh sediment samples, 1 g of the
composite sediment was suspended in physiological saline (0.9%
NaCl) by vortexing. Serial 10-fold dilutions were cultured on
three replicate R2A agar plates to enumerate total bacteria.
To enumerate resistant bacteria, serial dilutions were cultured
in triplicates on plates supplemented with AZI (15mg L−1)
(Fluka, Germany) for Industry area 1 samples; or sulfamethazine
(SMZ; 350mg L−1) (Sigma, Germany) or oxytetracycline
(OTC; 25mg L−1) (Sigma, Germany) for Industry area 2
samples. Colony forming units (CFU) were counted after a 5
day incubation at 28◦C. ARB cultured from sediments from
discharge locations were scraped from the plates, pooled and
stored in R2A broth containing antibiotic and 15% glycerol
at−80◦C.

Small Insert-Size Metagenomic Library
Construction
DNA for the construction of libraries was isolated from
the filters, sediment samples and from pools of cultured
sediment bacteria using the PowerSoil DNA isolation kit (MoBio
Laboratories, Carlsbad, CA) according to the manufacturer’s
recommendations. DNA was either partially digested with PstI
(NEB, USA) and cloned into the pCF430 vector (Newman and
Fuqua, 1999) or digested with HindIII (NEB, USA) and cloned
into the pZE21-MCS vector (Lutz and Bujard, 1997; Table 1).
Ligation products were dialyzed using 0.2-µm filter membranes
(Millipore, Ireland) and electroporated into Escherichia coli
DH5α cells (Invitrogen, Carlsbad, CA) using a Micropulser
(Biorad, Hercules, CA). After a 1 h incubation in SOC media,
cells were plated on LB plates supplemented with 5mg L−1

tetracycline (Industry area 1) or 50mg L−1 kanamycin (Industry
area 2), and incubated at 37◦C overnight. Library storage and size
estimation were performed according to previously published
protocols (Wichmann et al., 2014). Briefly, the average insert
size for each library was determined by restriction digest analysis
of 10 randomly picked clones using PstI (pCF430) or HindIII
(pZE21-MCS). After insert size analysis, all clones were pooled
together by scraping them from plates into LB supplemented with
20% glycerol and tetracycline or kanamycin followed by storage
at−80◦C.

Identification of Antibiotic Resistance
Genes
Metagenomic libraries (10 µL of the pooled clones) were grown
in 5mL of LB supplemented with the appropriate antibiotic
(either tetracycline or kanamycin) for 2 h at 37◦C and 200
rpm. Appropriate dilutions were plated on LB plates containing
an antibiotic of interest: AZI (16mg L−1) or erythromycin
(ERI; 100mg L−1) for Industry area 1 libraries; trimethoprim
(TRM; 20mg L−1), tetracycline (TET; 20mg L−1), OTC (20mg
L−1) ampicillin (AMP; 100mg L−1), cefotaxime (CTX; 8mg
L−1), or ciprofloxacin (1 and 0.5mg L−1) for Industry area
2 libraries, and incubated overnight at 37◦C. For screening
of libraries from Industry area 2 on SMZ (350mg L−1) and
TRM, instead of LB media, Mueller-Hinton broth or agar
was used because it is low in sulfonamide and trimethoprim
inhibitors. The antibiotic concentrations used inhibited growth
of E. coli DH5α transformed with empty pCF430 or pZE21-
MCS plasmid. The proportion of resistant clones in each library
was calculated as the ratio of the number of resistant clones
(grown on plates containing an antibiotic of interest) and the
total number of clones (grown on plates containing vector
antibiotic). The diversity of individual resistant clones was
assessed with HindIII and BamHI digestion (libraries derived
from Industry area 1) or with PstI and BamHI digestion (libraries
derived from Industry area 2). Plasmids containing inserts
with distinct restriction patterns were sent to Macrogen DNA
Sequencing Service (Macrogen, Netherlands) for bi-directional
Sanger sequencing using vector-targeting forward and reverse
primers (Sommer et al., 2009;Wichmann et al., 2014). Additional
specific primers were designed as necessary for extension of
the obtained sequences. Sequencing data was processed using
the DNASTAR Lasergene software package (version 14) and
nucleotide sequences of the identified open reading frames
(ORFs) were compared to the publicly available sequences using
BLASTX search against the NCBI nr/nt database. Active gene was
considered to be unique if it did not have identical nucleotide
sequence to any other gene in the same library.

Determination of Minimum Inhibitory
Concentration (MIC)
MIC assays were performed on unique resistant clones by broth
microdilution in Mueller-Hinton broth (Difco, USA) according
to previously published protocols (Donato et al., 2010). The MIC
was defined as the lowest concentration of the antibiotic that
inhibited visible growth of 105 cells of tested clone. As a control
we used DH5α cells transformed with the empty vector (pCF430
or pZE21-MCS).

Phylogenetic Analysis
The Geneious software (version 6.0.5) (Kearse et al., 2012) was
used for sequence comparisons and phylogenetic analyses. For
sequence alignments, we used CLUSTALW (Thompson et al.,
2002), and the phylogenetic trees were inferred using maximum
likelihood (Jones et al., 1992). Bootstrap values were calculated
based on 100 replications. Trees were adapted using the FigTree
program (v1.4.3.) (Rambaut, 2009).
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TABLE 1 | Features of the metagenomic libraries constructed in this study.

Study area Library name Origin Vector/AR marker Average insert size (kb) Amount of cloned DNA (Gb)

Industry area 1 S_US_C1 Sediment at

upstream site

pCF430/TetR 4.40 5.47

F_WW_C1 Pharmaceutical

effluent

pCF430/TetR 4.20 19.20

B_DS_C1 Culturable AZI-resistant

bacteria from sediment

at discharge site

pCF430/TetR 3.40 5.50

S_DS_C1 Sediment at

discharge site

pCF430/TetR 2.80 1.54

Industry area 2 S_US_C2 Sediment at

upstream site

pZE21-MCS/KanR 3.70 2.20

F_WW_C2 Pharmaceutical

effluent

pZE21-MCS/KanR 3.38 4.56

B_DS_C2 Culturable SMZ and

OTC-resistant bacteria

from sediment at

discharge site

pZE21-MCS/KanR 2.90 1.96

S_DS_C2 Sediment at

discharge site

pZE21-MCS/KanR 2.50 4.58

Nucleotide Sequence Accession Numbers
The metagenomic insert sequences from Industry area 1 are
shown in Table 2 and were deposited in GenBank under
accession numbers MG585943 to MG585960. Sequences from
Industry area 2 are shown in Supplementary Table 2 and were
deposited under accession numbers MG585961 to MG586044.

RESULTS AND DISCUSSION

Selection of Antibiotic Resistance in River
and Stream Sediments Receiving Effluents
from Antibiotic Manufacturing
Culturing of sediment bacteria showed a considerably higher
proportion of AZI-resistant or SMZ- and OTC-resistant bacteria
in sediments at the discharge vs. upstream sites, indicating an
enrichment of resistant populations in the effluent-impacted
environment (Figure 1). Higher proportion of ARB has also
been observed in the Indian sediment samples in comparison
with samples from reference locations, most likely caused
by the emissions of high concentrations of antibiotics from
local drug manufacturers (Flach et al., 2015). In a recent
study, we showed that effluents from two manufacturing sites
studied here contained high concentrations of antibiotics and
a high proportion of culturable ARB (Bielen et al., 2017). For
example, mg L−1 levels of macrolide antibiotics along with high
frequencies of AZI-resistant bacteria (up to 83%) were found
in effluents from Industry area 1. Furthermore, effluents from
Industry area 2 were found to contain high levels of SMZ-
and OTC-resistant bacteria (up to 90 and 50%, respectively)
and several antibiotics including sulfonamides, fluoroquinolones,
trimethoprim and tetracyclines in concentrations up to about
230 µg L−1. Consequently, it would be reasonable to expect
higher levels of these antibiotics in sediments at the discharge

compared with upstream sites, as shown in our preliminary
analyses (unpublished data). Therefore, the observed higher
proportion of culturable ARB at both discharge sites could be
due to a pollution of the river and stream with antibiotics that
select for resistant bacteria already resident in the sediment.
Alternatively, the released effluent-associated resistant bacteria
may proliferate in the sediment, or a combination of these
contributors may take place. Receiving sediments may thus act as
a reservoir where known circulating resistant bacteria and their
genes are maintained as well as new resistant strains and genes
may emerge and spread.

Metagenomic DNA extracted from sediment and effluent
samples was used to build eight small-insert libraries (2 from
effluents, 2 from upstream sediments, and 4 from discharge
sediments, Table 1). The libraries from Industry area 1 had an
average insert size of 3.7 kb and an average total size of 32
Gb. The libraries from Industry area 2 contained a total of 13
Gb with an average insert size of 3.1 kb. The proportion of
resistant clones selected on eight antibiotics was generally lower
in libraries originating from upstream sediments compared with
libraries from discharge sediments and effluents (Supplementary
Figure 1), suggesting a selection of resistance genes in matrices
impacted by pollution with antibiotics and ARB.

Identification of Macrolide Resistance
Genes in Effluent and River Sediments
Near Industry Area 1
Screening of the libraries of Industry area 1 yielded 17
different macrolide resistant clones with 18 resistance genes,
16 of which were unique based on their nucleotide sequence
(Table 2, Supplementary Table 2). These genes represented
one unknown resistance mechanism mediated by a GTPase
binding protein and three known mechanisms, such as efflux
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TABLE 2 | Summary of all macrolide resistance genes from clones with distinct restriction digest patterns in functional metagenomic libraries built from effluent and

sediments of Industry area 1.

Antibiotic used for

selection

Clone designation/origin MIC (mg L−1) Gene length (bp) Gene annotation (Closest BLASTX

hit in NCBI)

% amino

acid identity

GenBank

Accession

No.

Azithromycin AZI1_S_US_C1/

Upstream sediment

<16 (AZI)

128 (ERI)

1,281 GTPase binding protein HflX

(Emergencia timonensis
WP_067543614.1)*

63 MG585943

AZI2_S_US_C1/

Upstream sediment

<16 (AZI)

128 (ERI)

1,281 GTPase binding protein HflX

(Emergencia timonensis
WP_067543614.1)*

63 MG585944

AZI1_F_WW_C1/

Effluent

64 (AZI)

512 (ERI)

1,476 ABC-F type ribosomal protection

protein Msr(E)

(Klebsiella pneumoniae
YP_003754030.1)*

100 MG585948

AZI4_F_WW_C1/

Effluent

32 (AZI)

512 (ERI)

1,476 ABC-F type ribosomal protection

protein Msr(E)

(Klebsiella pneumoniae
YP_003754030.1)*

99 MG585949

AZI1_B_DS_C1/

Sediment bacteria

512 (AZI)

2,048 (ERI)

1,476 ABC-F type ribosomal protection

protein Msr(E)

(Klebsiella pneumoniae
YP_003754030.1)*

100 MG585952

885 Macrolide 2′-phosphotransferase

Mph(E)

(Klebsiella pneumoniae
YP_003754029.1)*

100 MG585954

AZI4_B_DS_C1/

Sediment bacteria

512 (AZI)

2,048 (ERI)

348 SMR family, quaternary ammonium

compound efflux QacE11

(Salmonella enterica NP_511227.1)*

100 MG585956

AZI1_S_DS_C1/

Discharge sediment

256 (AZI)

1,024 (ERI)

1,476 ABC-F type ribosomal protection

protein Msr(E)

(Acinetobacter baumannii
YP_724476.1)*

99 MG585957

Erythromycin ERI1_S_US_C1/

Upstream sediment

64 (ERI)

<16 (AZI)

1,281 GTPase binding protein HflX

(Emergencia timonensis
WP_067543614.1)

63 MG585945

ERI2_S_US_C1/

Upstream sediment

128 (ERI)

<16 (AZI)

1,278 GTPase binding protein HflX

(Emergencia timonensis
WP_067543614.1)*

62 MG585946

ERI9_S_US_C1/

Upstream sediment

64 (ERI)

<16 (AZI)

1,281 GTPase binding protein HflX

(Emergencia timonensis
WP_067543614.1)*

62 MG585947

ERI1_F_WW_C1/

Effluent

512 (ERI)

32 (AZI)

1,224 MFS macrolide efflux protein Mef(C)

(Colwellia chukchiensis
WP_085286200.1)*

100 MG585951

ERI4_F_WW_C1/

Effluent

1,024 (ERI)

64 (AZI)

1,473 ABC-F type ribosomal protection

protein Msr(E)

(Klebsiella pneumoniae
YP_003754030.1)*

100 MG585950

ERI2_B_DS_C1/

Sediment bacteria

1,024 (ERI)

256 (AZI)

1,476 ABC-F type ribosomal protection

protein Msr(E)

(Acinetobacter baumannii
YP_724476.1)

100 MG585953

ERI9_B_DS_C1/

Sediment bacteria

1,536 (ERI)

<16 (AZI)

903 23S ribosomal RNA

methyltransferase

(Clostridium sp. CAG:780

CCZ18576.1)*

67 MG585955

ERI1_S_DS_C1/

Discharge sediment

1,024 (ERI)

128 (AZI)

885 Macrolide 2’-phosphotransferase

Mph(E)

(Acinetobacter baumannii
YP_001736317.1)*

100 MG585958

(Continued)
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TABLE 2 | Continued

Antibiotic used for

selection

Clone designation/origin MIC (mg L−1) Gene length (bp) Gene annotation (Closest BLASTX

hit in NCBI)

% amino

acid identity

GenBank

Accession

No.

ERI2_S_DS_C1/

Discharge sediment

1,024 (ERI)

64 (AZI)

1,224 MFS macrolide efflux protein Mef(C)

(Colwellia chukchiensis
WP_085286200.1)*

100 MG585959

ERI7_S_DS_C1/

Discharge sediment

512 (ERI)

<16 (AZI)

885 Macrolide 2′-phosphotransferase

Mph(G) (Colwellia chukchiensis
SEL95196.1)*

100 MG585960

Unique genes (based on their nucleotide sequence) from the same library are marked with *. MIC, Minimal inhibitory concentration.

FIGURE 1 | The proportion of resistance (mean ± SD) of culturable bacteria to (A) azithromycin (AZI) and (B) sulfamethazine (SMZ) and oxytetracycline (OTC) in

sediments from discharge and upstream sites of two study areas. The percentage of antibiotic resistant bacteria was calculated as the ratio of resistant bacteria CFU

and total CFU.

pumps, macrolide inactivation by phosphotransferases and target
modification/protection by ribosomal RNA methyltransferases
or ribosomal protection proteins (Table 2). To classify our
annotated genes as novel genes, we set a cut-off of 80% protein
sequence identity (Zhao et al., 2014).

The majority of unique genes (12/16) matched known ARGs
encoding macrolide efflux pumps, ribosomal protection proteins
and macrolide 2′-phosphotransferases (Supplementary Figure 2,
Supplementary Table 1A). Efflux pump genes included two
major facilitator superfamily (MFS) transporter genes with high
sequence identity to mef (C) from Colwellia chuchiensis and one
small multidrug resistance (SMR) transporter, highly similar
to the quaternary ammonium compound efflux gene (qacE11)
from Salmonella enterica. Themef genes have largely been found
among clinically relevant macrolide resistant pathogens (Fyfe
et al., 2016). Ribosomal protection proteins were encoded by six
ABC-F protein genes with high similarity to msr(E) previously
found in Klebsiella pneumoniae and Acinetobacter baumannii.
Recently, Sharkey et al. (2016) provided strong evidence that
these proteins interact with the ribosome and displace the drug
from its binding site, thus revealing a novel role for ABC-F
proteins in antibiotic resistance. Macrolide inactivating enzymes
included phosphotransferase genes, mph(E) and mph(G) which
were identical (100% of amino acid identity) to those from
A. baumanii, K. pneumoniae, and C. chuchiensis, respectively.
All of these known genes (mef, msr, mph) were obtained from
libraries deriving from antibiotic-impacted matrices (effluent
and receiving sediment), suggesting their relation to selection

pressure from macrolide antibiotics and possibly other co-
selecting agents from AZI production.

Only one gene (erm, clone ERI9_B_DS_C1) deriving from
the library from the discharge site shared low amino acid
sequence identity (67%) with a 23S rRNA methyltransferase
from Clostridium sp. (Table 2). This suggests that it encodes
for a potentially novel member of this methyltransferase family,
which confers clinically relevant levels of ERI resistance (MIC
= 1,536mg L−1; Table 2) through ribosomal methylation. The
mechanism mediated by erm genes remains the most widespread
mechanism of macrolide resistance in clinically important
pathogens (Fyfe et al., 2016).

Contrary tomost known genes in pollutedmatrices, all unique
genes deriving from upstream reference sediment (4/16) had
≤63% protein sequence identity with their best hit in the NCBI,
a GTPase HflX from Emergencia timonensis, indicating potential
novelty of these genes (Table 2, Supplementary Table 1A,
Supplementary Figure 2). Although the exact mechanism
mediated by HflX remains to be unraveled, Lau et al. (2017)
proposed that the GTPase HflX acts as an alternative ribosome
splitting factor which disassembles the 70S ribosomes into its
subunits and in this way helps to overcome the translational
arrest caused by macrolides.

Based onMIC results, the HflX-mediatedmacrolide resistance
seems less effective than the other identified mechanisms, which
conferred a higher level of macrolide resistance (ERI 64–128
vs. 512–2,048mg L−1; AZI 16 vs. 32–512mg L−1, Table 2).
This indicates that the bacteria living in sediment at the
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discharge site have evolved or acquired increasing resistance
to macrolides in response to exposure to high macrolide
selection pressure. In contrast, sediment bacteria from the
upstream site that has had no known anthropogenic exposure
to antibiotics are source of different, yet unknown mechanisms
of macrolide resistance. These might evolve coincidentally in
the presence of selective forces other than antibiotics that may
cause accumulation of mutations that incidentally also confer
antibiotic resistance (Knöppel et al., 2017). Other studies also
showed that environments (i.e., sediments) not subjected to
anthropogenic antibiotic pollution could be reservoirs of novel
ARGs (Kristiansson et al., 2011; Amos et al., 2014; Nesme et al.,
2014).

In addition, the discovery of potentially novel macrolide
resistance genes originating from Emergencia and Clostridium
genera in E. coli further demonstrates the power of functional
metagenomics to identify resistance genes from Gram-positive
bacteria in Gram-negative host.

Identification and Phylogeny of
Sulfonamide, Tetracycline, Trimethoprim,
and Beta-Lactam Resistance Genes in
Effluent and Environment Near Industry
Area 2
Of 82 clones with 84 genes conferring resistance to sulfonamides,
tetracyclines, trimethoprim and beta-lactams, we obtained 66
unique ARGs (Supplementary Tables 1B, 2). No clones resistant
to fluoroquinolones (ciprofloxacin) were obtained in this study,
as has also been reported in one other study of soil (Charles
et al., 2017), which may be due to incompatibility resulting
from the use of E. coli as surrogate host. The predicted protein
sequences of identified ARGs shared between 49 and 100%
amino acid sequence identity with proteins in the NCBI database
(Supplementary Figure 3), although the average sequence
identity differed among the types of ARGs. For example, all of the
genes conferring resistance to SMZ, OTC, and TET were highly
similar (amino acid identity≥94%) with previously known genes.
SMZ resistant clones contained the dihydropteroate synthase
genes (sul1 and sul2), which are also found in pathogens such as
Enterobacter cloacae and A. baumannii (Supplementary Table 2).
The fact that the sul1 gene was detected in all of the four libraries
suggests a wide distribution of this gene in background sediment
and industrial effluent. In contrast, the sul2 was detected in
sediment only at the discharge site, suggesting that its presence
may have resulted from effluent discharge. However, both genes
(sul1 and sul2) have been previously reported in antibiotic
polluted (Luo et al., 2010; Kristiansson et al., 2011; Bengtsson-
Palme et al., 2014) and unpolluted sediments (Czekalski et al.,
2015; Archundia et al., 2017), which is likely due to their genetic
localization on mobile elements that could be easily transferred
among bacteria (Heuer et al., 2011; Hu et al., 2016; Johnson et al.,
2016; Koczura et al., 2016).

All functional genes from OTC and TET resistant clones
matched previously reported tetracycline transporters that
belong to the MFS, indicating that efflux is the predominant
mechanism of resistance to tetracyclines in Industry area 2

(Supplementary Table 2). Phylogenetic analysis (Supplementary
Figure 4) showed that the majority of tetracycline and
oxytetracycline resistance genes (14/21), identified from all four
libraries, cluster closely together with a tet transporter gene
from Flavobacterium psychrophilum which is not similar to
any annotated group of tet resistance genes. The detection
of these genes in all four libraries suggests their natural
distribution in the sediment and industrial effluent. The rest of
the sequences are related to tet(39), tet(A), or tet(C) from the
γ-Proteobacteria. These genes have also been found in a highly
antibiotic polluted lake sediment, with the tet(39) being the most
abundant (Bengtsson-Palme et al., 2014). Of these genes, we
only detected tet(C) in our upstream sediment, suggesting that
it may occur naturally in the studied sediment or it comes from
nearby agricultural sources. However, other studies detected tet
resistance genes, including tet(A) and tet(C), in environments
not subjected to anthropogenic antibiotic pollution (Andersen
and Sandaa, 1994; West et al., 2011; Durso et al., 2016), implying
their wide distribution in the environment.

Screening of libraries with TRM resulted in a substantial
proportion (11/35) of potentially novel genes (≤80% amino
acid identity) along with the known genes (Supplementary
Table 2). Both known and all potentially novel genes were
found in libraries of both upstream and discharge sediment
indicating that sediment itself is a natural reservoir for
TRM-resistant bacteria carrying a diverse set of known and
unknown TRM resistance genes (Supplementary Table 2).
All identified genes were predicted to encode target-modified
dihydrofolate reductases (DHFR) or thymidylate synthases
(TYMS). Phylogenetic clustering showed that the majority of
identified genes are distributed in the cluster containing type I
DHFRs from the Proteobacteria, Firmicutes, and Bacteroidetes
(Figure 2). Within this cluster, known resistance genes were
mainly related to dfr14, dfrA1, and dfr17 genes from pathogenic
γ -Proteobacteria or dfr from Bacteroidetes. In contrast, novel
resistance genes formed a separate clusters with DHFR type I
proteins from β-Proteobacteria, Firmicutes, and Bacteroidetes.
Only one gene (TRM6_F_WW_C2) originating from effluent
was identified as type II DHFR gene from Pseudomonas
aeruginosa (99% homology). In addition, the TYMS group of
sequences included both known and novel thy genes found in the
Proteobacteria and Bacteroidetes.

Ampicillin screens led to the identification of 15 unique beta-
lactamase genes from all four Amber molecular classes (A–D)
(Bush, 2017) (Supplementary Table 1B). The majority of these
genes (11) were known beta-lactamase genes (Supplementary
Figure 3; Supplementary Table 2) originating mostly from
industrial effluent and receiving stream sediment. Three known
genes (AMP2_S_DS_C2, AMP3_S_DS_C2, AMP10_S_DS_C2)
cluster with the beta-lactamase genes blaGES-1 and blaVEB-9
(class A) from K. pneumoniae and P. aeruginosa (Figure 3B),
and blaCMY-10 (class C) from A. baumannii (Supplementary
Table 2), all of which are clinically relevant gene families
(Paterson and Bonomo, 2005; Jacoby, 2009). In addition to
high-level resistance to AMP (MIC > 1,024mg L−1), these
enzymes displayed activity against CTX, a 3rd generation
cephalosporin (MIC = 8–32mg L−1, Supplementary Table 2).
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FIGURE 2 | Phylogenetic tree of protein sequences of TRM resistance genes. Best BLAST hits and representative protein sequences of the studied genes were

retrieved from the NCBI database. The evolutionary history was inferred by using the maximum likelihood method and the Geneious software. Bootstrap values were

calculated on 100 replications and only those higher than 80% are shown. Sequences that share ≤80% amino acid identity with proteins in the NCBI database are

shown in blue. Scale bar = 0.2 changes/site.

FIGURE 3 | Phylogenetic trees of protein sequences of class D beta-lactamases (A), class A beta-lactamases (B), and class B beta-lactamases (C). Best BLAST hits

and representative protein sequences of the studied gene were retrieved from the NCBI database. The evolutionary history was inferred by using the maximum

likelihood method and the Geneious software. Bootstrap values were calculated on 100 replications and only those higher than 80% are shown. Sequences that

share ≤80% amino acid identity with proteins in NCBI database are shown in blue. Scale bar = 0.2 changes/site.

Moreover, the blaGES-1 variant is known to display activity
against carbapenems, a class of last resort antibiotics (Stewart
et al., 2015). All of these observations indicate that the studied

effluent-impacted sediment can act as a reservoir of pathogen-
borne extended-spectrum beta-lactamases such as the GES,
VEB, and CMY-10 types. The detection of these genes in
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sediment only at the discharge site suggests their accumulation
in the environment because of effluent discharge. As effluent
from Industry area 2 is mixed with human sewage within the
industry, we suspect that these genes could have derived from
human sources. Recently, Marathe et al. (2017) showed that
untreated urban waste enriches river sediment with GES-type
carbapenemases.

Nine remaining known genes cluster with either
class D OXA-type genes from K. pneumoniae and
A. baumannii (AMP6_F_WW_C2, AMP18_F_WW_C2,
AMP7_S_DS_C2, AMP9_S_DS, AMP18_S_DS_C2,
AMP6_S_US_C2, AMP7_F_WW_C2,) or subclass B1-metallo
beta-lactamases from Flavobacterium sp. (AMP11_F_WW_C2,
AMP12_S_DS_C2) (Figures 3A,C). Some of the class D, OXA-
type beta-lactamase genes (blaOXA-10 and blaOXA-198) were
obtained from upstream sediment suggesting that the occurrence
of these genes was not limited to the release of industrial
effluents. As the studied stream flows through the rural area and
might be impacted by livestock fecal runoff, the source of the
observed blaOXA genes is likely attributed to fecal pollution,
rather than antibiotic selection pressure from effluent, although
the latter cannot be excluded (Agga et al., 2015).

Along with the known genes, four potentially novel
beta-lactamases were identified encoding putative class A
beta-lactamases (AMP4_S_DS_C2; Figure 3B), two class D beta-
lactamases (AMP6_S_DS_C2, AMP1_S_US_C2; Figure 3A)
and one class B beta-lactamase (AMP8_S_DS_C2; Figure 3C),
sharing 55–74% amino acid sequence identity with known
enzymes (Supplementary Table 2). All clones with these genes
conferred high-level resistance to AMP (MIC > 1,024mg L−1)
and two of them, with class A and class B beta-lactamases
(AMP4_S_DS_C2, AMP8_S_DS_C2), conferred additional
resistance to CTX (MIC = 8mg L−1, >16mg L−1), suggesting
their increased spectrum of activity. Selection on CTX resulted in
the identification of a single, known, AmpC beta-lactamase gene
originating from discharge sediment (Supplementary Table 2).
This gene displayed a high sequence similarity to the blaMOX-9
gene from carbapenem-hydrolyzing Citrobacter freundii, isolated
from a hospital wastewater plant in central Italy (Antonelli
et al., 2015). This suggests that the blaMOX-9 gene may have
originated from human bacteria present in industrial effluent.

Collectively, these results provide a survey of those ARGs
in effluents and sediments that are accessible by functional
metagenomics. It is also likely that these matrices contain
resistance determinants that are not expressed in E. coli.
Nevertheless, our findings indicate that sediments impacted by
antibiotic polluted pharmaceutical effluents could be important
sources of clinically relevant known and novel resistance genes,
including those conferring resistance to antibiotics that are
critically important for human medicine, such as penicillins, 3rd
generation cephalosporins, and carbapenems (WHO, 2017).

Organization and Mobility of Identified
ARGs
To assess the genomic context of identified ARGs, we studied
the available flanking DNA in more detail. Identification of

ORFs in macrolide resistant clones revealed that many clones
from the libraries of effluent and receiving sediment carried
more than one macrolide resistance mechanisms, sometimes
on the same mobile element (Figure 4). For example, clone
AZI1_B_DS_C1 contained a cluster comprised of genes that
encode for a ribosomal protection protein, [msr(E)] and a
macrolide phosphotransferase [mph(E)], separated just by a 55
bp spacer. As observed here, this gene cluster was previously
found to be flanked by an IS6 family transposase and is localized
on plasmids in different hosts (Schlüter et al., 2007b; Kadlec
et al., 2011; Zhang et al., 2013), suggesting that these vectors
may play an important role in the dissemination of the msr(E)-
mph(E) cassette. Clone ERI2_S_DS_C1 contained a similar gene
cassette composed of the genes mph(G) and mef (C), which
encode a macrolide phosphotransferase and a macrolide efflux
pump, respectively. This gene cluster has been found on plasmids
from different hosts in Asia (Nonaka et al., 2012; Sugimoto et al.,
2017), suggesting its potential for dissemination across species.
This seems to be the first time that this gene cassette is reported in
Europe. Each gene cluster [mef (C)-mph(G) andmsr(E)-mph(E)]
might be collectively involved in a phenotype of observed high-
level resistance to ERI (MIC ≥ 1,024mg L−1) and AZI (MIC ≥

64mg L−1) as has been previously shown (Schlüter et al., 2007a;
Nonaka et al., 2015). The fact that clones with identical gene
clusters, eithermsr(E)-mph(E) ormef (C)-mph(G) were found in
libraries of effluent and receiving river sediment (Supplementary
Figure 5), indicates that industrial effluent is a point source of
these gene clusters in river sediment.

Besides carrying genes for two different macrolide resistance
mechanisms, some macrolide resistant clones (i.e., clone
ERI2_S_DS_C1) carried additional genes, such as sul2
(sulfonamide resistance). This suggests the potential for co-
selection of macrolide and sulfonamide resistance genes as well
as their co-transfer under the selection pressure of macrolides
and/or other factors.

In addition to clones harboring macrolide resistance genes
and deriving from Industry area 1, clones deriving from Industry
area 2 and conferring resistance to TRM, sulfonamides and beta-
lactams also harbored clusters of ARGs (Figure 4). For example,
the TRM resistant clone TRM4_S_DS_C2 contained a cluster
comprised of two different genes involved in TRM resistance,
thy and dfr, which have previously been found in bacteria
(Kehrenberg and Schwarz, 2005). Clones TRM10_F_WW_C_2
and TRM3_S_DS_C2 harbored clusters containing genes
involved in TRM resistance (dfr14) and aminoglycoside
resistance or TRM resistance (dfr) and ubiquinone biosynthesis
(methyltransferase). Little is known about the involvement
of this methyltransferase in bacterial resistance to antibiotics,
though Baisa et al. (2013) reported that the deletion of the ubiE
gene led to bacterial insensitivity to D-cycloserine, a second-line
drug in the treatment of MDR Mycobacterium tuberculosis
infections. The SMZ resistant clone, SMZ5_B_DS_C2, harbored
clustered genes encoding sulfonamide (sul1) and aminoglycoside
resistance (aac). Similarly, genes encoding beta-lactamases
were usually clustered with aminoglycoside resistance genes
(ant or aac) or chloramphenicol resistance genes (cmlA5 or
mdtL), or co-localized with other beta-lactamase genes (blaVEB
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FIGURE 4 | Genetic context of the resistance genes and flanking ORFs identified in the metagenomic libraries. Orientation of the annotated genes in comparison to

their genetic context is given by the direction of the arrow. ORFs involved in antibiotic resistance to macrolides are shaded in blue, sulfonamides in purple,

trimethoprim in green, beta-lactams in pink, aminoglycosides in yellow, chloramphenicol in red, and D-cycloserine in brown. ORFs connected to gene dissemination

are shaded in gray and ORFs annotated as hypothetical proteins in white. Dashed parts of arrows indicate incomplete sequences.

and metallo hydrolase gene). Finally, we also found that many
resistance genes are flanked by mobile genetic elements such as
insertion sequence (IS) elements (e.g., IS91, IS5, and IS6) and
integron elements (e.g., intL and intI1 integrase genes).

Taken together, our results and previous studies of sediments
subjected to industrial pollution (Kristiansson et al., 2011;
Bengtsson-Palme et al., 2014) suggest that ARGs selected
in such settings are candidates for dissemination to other
bacteria in the environment, including pathogens. Further
quantitative studies are needed to assess the transfer of identified

genes to other environmental reservoirs or clinical settings.
Such studies will provide the basis for future mitigation
efforts.

CONCLUSIONS

The present study is the first effort to catalog the resistome
from antibiotic polluted pharmaceutical effluents and receiving
sediments using functional metagenomics. We highlight these
polluted matrices as an important sources of diverse functional
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ARGs, both known and novel. The association of many of these
resistance genes with mobile genetic elements raises the concern
that they may spread among bacteria with the potential to
reach human pathogens and ultimately lead to clinical failure.
Today’s traveling habits and trade practices can cause a quick
and worldwide spread of any of these resistant bacteria (Zhu
et al., 2017). It is of utmost importance to set discharge limits for
antibiotics and antibiotic-resistant bacteria from manufacturing
sites, in order to limit further evolution of antibiotic resistance in
pathogens or commensal bacteria. Furthermore, we need global
metagenomic surveys of resistance within high risk habitats such
as these impacted by pharmaceutical waste as a prerequisite for
proper risk assessment and future mitigation efforts.
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