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Spontaneous tumors regression has been associated with microbial infection for 100s
of years and inspired the use of bacteria for anticancer therapy. Dr. William B. Coley
(1862–1936), a bone- sarcoma surgeon, was a pioneer in treating his patients with
both live bacterial-based and mixture of heat-killed bacteria known as “Coley’s toxins.”
Unfortunately, Coley was forced to stop his work which interrupted this field for about
half a century. Currently, several species of bacteria are being developed against
cancer. The bacterial species, their genetic background and their infectious behavior
within the tumor microenvironment are thought to be relevant factors in determining
their anti-tumor effectiveness in vivo. In this perspective article we will update the
most promising results achieved using bacterial therapy (alone or combined with other
strategies) in clinically-relevant animal models of cancer and critically discuss the impact
of the bacterial variants, route of administration and mechanisms of bacteria-cancer-
cell interaction. We will also discuss strategies to apply this information using modern
mouse models, molecular biology, genetics and imaging for future bacterial therapy of
cancer patients.

Keywords: bacterial-based therapies, Coley’s toxins, antitumor effect, immune response, bactofection, combined
therapies, Salmonella enterica serovar Typhimurium (S. Typhimurium), animal models of cancer

BACK TO THE CONTROVERSIAL FUTURE

The use of microorganisms, in particular live bacteria, for prophylactic vaccination and cancer
therapy have been used in humans for long periods in the past and have been a matter of
controversy (Payette and Davis, 2001; Hoption Cann et al., 2003). Dr. William B. Coley in the 19th
century at the New York Hospital, later to become the Memorial Sloan Kettering Cancer Center
(McCarthy, 2006; Hoffman, 2016a), observed and reported spontaneous tumor regression in
patients with streptococcal infections (principally erysipelas, known to be caused by Streptococcus
pyogenes). In 1891 Dr. Coley started to treat his cancer patients with streptococcal living cultures
and observed that inducing a fever was crucial for tumor regression; however such a strategy also
caused some fatalities (McCarthy, 2006). Coley then generated a variety of “anti-tumor vaccines”
mixing heat-killed bacteria, combining S. pyogenes with Serratia marcescens. In this way he could
stimulate the symptoms of an infection (for example, inflammation, chills, fever) without the
risks of a bacteremia. These vaccines became known as “Coley’s toxins” and were administered to
patients with sarcomas, carcinomas, lymphomas, melanomas, and mielomas. Despite the cures and
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remarkable improvements obtained in patients treated with
Coley’s bacterial-based therapeutics (Nauts et al., 1946; Nauts,
2004; McCarthy, 2006), his boss, the renowned pathologist
James Ewing, forced Dr. Coley’s to end all projects involving
bacteria-based treatments alleging Coley’s inconsistent data and
pronouncing himself in favor of radiotherapy, which rapidly took
over the market of cancer therapeutics.

Sixteen different preparations of “Coley’s toxins” have been
used since the method was introduced in 1892, of which three
were considerably more potent than the rest (particularly the
Buxton’s Type VI formula). However, the only preparation
available in the United States since 1921 seemed to be
weaker compared to the used in the early years (Nauts
et al., 1946). Coley’s work gradually fell out of favor and by
1962 the Food and Drug Administration (FDA) refused to
acknowledge “Coley’s toxins” as an approved drug, making it
illegal to prescribe them outside of clinical trials. Since then,
several small clinical trials have been conducted with mixed
results.

To date, Bacillus Calmette-Guerin (BCG), is the only bacterial
agent approved by the FDA and it is employed for the treatment
of superficial, non-muscle invasive bladder cancer (NMIBC)
since the late 1970s (Gontero et al., 2010). BCG is an attenuated
strain of Mycobacterium bovis obtained at the Pasteur Institute
in the early 1900s. Patients typically receive repeated instillations
of live bacteria into the bladder. BCG is recommended as the
standard of care for high-risk NMIBC and remains the most
effective intravesical treatment for this disease, although the
response predictor factors of BCG are unknown (Kim and
Steinberg, 2001; Zlotta et al., 2009; Gontero et al., 2010).

In the last decades a resurgence of the field has taken place
and contemporary investigators demonstrated the efficacy of a
number live attenuated bacteria to destroy cancer cells in vitro,
to selectively accumulate, replicate within and destroy tumors
in rodents, to induce an immune-mediated anti-tumor response
and to target small metastatic nodules spread in the organism
and inhibit their growth (Yu et al., 2004; Adkins et al., 2012;
Hoffman, 2012b). Promising results were obtained using modern
methods of bacterial genetics, cancer cell and molecular biology,
and in vivo imaging (Min et al., 2008a,b; Uchugonova et al., 2012;
Hoffman, 2015). The mechanism of action of bacterial therapy
of cancer and toxicity in vivo is not yet clearly understood and
the potential acquisition of antibiotic-resistance or mutations
that would revert the bacteria attenuated phenotype could be
a real risk for the patients. Therefore, the building of a broad
integrated picture requires a critical scientific and medical vision,
for moving forward.

HIGHLIGHTS BUT STILL MANY
QUESTIONS

Bacteria display a number of different characteristics that
could be relevant in the therapy against cancer. The direct
and immune-mediated anticancer properties derive from
biological interactions between the bacteria and the host tumor
microenvironment. Important features of the bacteria such

as motility, tumor chemotaxis, invasive capacity, cytotoxic
potential, pathogen-associated molecular patterns (PAMP)
composition/abundance, among others, vary between strains
and may affect how they trigger the anti-tumor response (Dang
et al., 2001; Cheadle and Jackson, 2002; Hoffman, 2011; Adkins
et al., 2012; Kim et al., 2015; Phan et al., 2015). Although the
mechanism of bacterial tumor tropism is poorly understood there
is evidence indicating that irregular organization of blood vessels
within the tumor tissue that often leads to the development of
hypoxic and/or necrotic regions and/or an immune-suppressive
microenvironment inside the tumor mass may facilitate survival
and growth of attenuated auxotrophic bacteria by providing
them with nutrients and immune-protection (Forbes et al.,
2003; Wouters et al., 2003; Yu et al., 2004). Moreover, niche-
specific genes involved in the process of preferential tumor
colonization after systemic bacteria delivery, were also identified
(Silva-Valenzuela et al., 2014).

Different variants from the genera Bifidobacterium,
Clostridium, Lactococcus, Shigella, Vibrio, Listeria, Escherichia,
and Salmonella have been assayed in animal models of cancer
(Yazawa et al., 2000; Cheadle and Jackson, 2002; Oelschlaeger,
2010; Patyar et al., 2010; Hoffman, 2012b). Obligate anaerobes
such as Bifidobacterium longum and a Clostridium novyi strain
devoid of its lethal toxin (C. novyi-NT) have shown preferential
localization in low oxygenated necrotic areas of implanted
tumors in mice after systemic administration, inducing tumor
regression in some cases, although they were unable to grow in
viable tumor tissue due to high oxygen tension, a fact that may
have limited their efficacy as mono-therapy (Dang et al., 2001;
Hoffman, 2012a). However, intra-tumor (i.t.) administration of
C. novyi-NT has shown objective responses in canine tumors,
which are more like those of humans because they are naturally
occurring in animals with heterogeneous genetic backgrounds
(Roberts et al., 2014). On the other hand, attenuated auxotrophic
mutants of the facultative anaerobe Salmonella enterica serovar
Typhimurium (S. Typhimurium) have been shown to invade
and destroy a broad number of cancer cell types in vitro, as well
as to replicate in hypoxic and oxic tumor regions in vivo, being
the most efficient anti-tumor bacteria assayed in experimental
models of cancer thus far (Pawelek et al., 1997; Leschner and
Weiss, 2010; Nguyen et al., 2010; Hoffman, 2011, 2016b,c).
Among them, S. Typhimurium VNP20009, attenuated by
the lipid A (msbB) deletion and purine (purI) auxotrophic
mutations, has shown anti-tumor efficacy in mice and swine and
was safely administrated to patients with metastatic melanoma
and renal carcinoma in a Phase I clinical trial; however, efficacy
was not observed, perhaps due to over-attenuation (Toso et al.,
2002).

A more tumor-virulent variant and less toxic against the host
is S. Typhimurium A1-R (Zhao et al., 2006). Unlike VNP20009,
the A1-R variant was obtained by successive passages from re-
infected human tumor xenografts in nude mice treated with
the S. Typhimurium A-1 auxotrophic (Leu- Arg-dependent)
parental bacteria (Zhao et al., 2005). This selection procedure
may account for A1-R’s particular tumor-specificity and stronger
anti-tumor activity (Zhao et al., 2006). A comparative study
between VNP20009 and A1-R in nude mice showed that mice
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FIGURE 1 | Diagram showing main antitumor mechanisms induced by S. Typhimurium (Salmonella). Links are established between direct cytotoxicity induced by
bacteria and indirect tumor cell death triggered by the immune system. (a) Bacterial infection within the tumor microenvironment results in inhibition of tumor growth
and cell death. (b) Detection of bacterial pathogen-associated molecular patterns (PAMP) by immune cells, trigger cytokine release and recruitment of leukocytes
capable of initiating anti-tumor immune responses (Patyar et al., 2010). (c) Using their Type III secretion system, S. Typhimurium can introduce bacterial factors in
cancer cells allowing its internalization and intra-cellular replication (Avogadri et al., 2005; Knodler et al., 2010). (cI) Invasive Salmonella induces cell stress responses
through danger-associated molecular patterns (DAMP), which are interpreted as damage signals by the immune system. (cII) Simultaneously, this same process can
lead to cytokine expression and the transfer of antigens from the bacteria to the cancer cell, enabling the adaptive immune system to recognize and target the
invaded cancer cell as infected and bearer of exogenous antigens (Avogadri et al., 2005). Gap junctions are concomitantly induced in the invaded cell and enable
cross presentation of antigens to antigen presenting cells (Saccheri et al., 2010). Both processes can give rise to antigen-dependent elimination of infected cancer
cells. (cIII) Salmonella can lead to the death of the infected cell, by inducing apoptosis or pyroptosis. The later is a programmed inflammatory cell death, characterized

(Continued)
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FIGURE 1 | Continued
by activation of caspase 1, activation of the inflamosome, and IL-1B and IL-18 secretion, as well as cell rounding and detachment, cytoskeleton reorganization,
nucleus deformation and rupture of the cell membrane, resulting in the release of inflammatory signals (Fink and Cookson, 2005, 2007; Knodler et al., 2010; Wang
et al., 2013). This mechanism can result in cancer-cell death and immune-cell activation. Pyroptosis was first described in macrophages, which die quickly as a result
of this process, and is of particular interest in cancer immunotherapy, as tumor-associated macrophages have been shown to have immune-suppressive proprieties.
Reducing their number could be another component of the S. Typhimurium anti-tumor effect. Cancer cell death leads to tumor-antigen liberation, and the released
bacteria can infect surrounding cancer cells. (cIV) In the process of pyroptosis, pro-inflammatory cytokines IL1-B and IL-18 can trigger recruitment and activation of
immune cells (Knodler et al., 2010; Zhao et al., 2012; Wang et al., 2013). (d) Various mechanisms enhance and converge to enable tumor-antigen recognition and
activation of cytotoxic responses both in an antigen-dependent and -independent manner. S. Typhimurium proteins injected into the cancer cell cytosol are subject to
proteasomal degradation, resulting in bacterial peptides that can be presented through MHC I to cytotoxic lymphocytes (Avogadri et al., 2005; Saccheri et al., 2010).

tolerated S. Typhimurium A1-R to at a least twofold higher
dose than VNP20009 when the bacteria were administered
intravenously (i.v.). In addition, A1-R showed higher tumor
targeting and inhibited the Lewis lung carcinoma to a greater
extent than VNP20009, with less body weight loss (Zhang et al.,
2015). In addition, S. Typhimurium A1-R mono-therapy has
shown to be effective against primary and metastatic human
prostate, breast, and pancreatic cancer as well as osteosarcoma,
fibrosarcoma, and glioma in clinically-relevant mouse models
(Hoffman, 2016c and references therein). Tumors with a high
degree of vascularity were more sensitive to A1-R and vascular
destruction appears to play a role in A1-R anti-tumor efficacy
(Liu et al., 2010). In addition, A1-R was shown to induce stem-
like and non-stem cancer-cell death in vivo, indicating that
A1-R could be used to kill chemo-resistant cancer stem-like
cells (Hiroshima et al., 2013). Together these results suggest that
S. Typhimurium A1-R may have a greater clinical potential than
VNP20009 (Zhang et al., 2015) and that not only the bacterial
species, but also their genetic background needs to be taken
into account when searching for improvements in bacteria-based
therapies.

Salmonella Typhimurium defective in the synthesis of ppGpp
(1ppGpp: depletion of relA and spoT), showed 105 to 106-
fold attenuation compared with WT strain (Na et al., 2006).
This attenuated strain showed very high tumor targeting and
stimulation of regional tumor immunity (Kim et al., 2015; Phan
et al., 2015; Zheng et al., 2017).

In this regard, high-throughput screenings for Salmonella
avirulent mutants can identify variants with reduced fitness in
normal tissues but unchanged fitness in tumors for potential
use as cancer therapeutics (Arrach et al., 2010). As an example,
a reported genetically-engineered S. Typhimurium aroA aroD
double mutant harboring the Flt3 Ligand, used to treat melanoma
in mice resulted in 50% tumor regression (Yoon et al., 2007).
However, aroA and aroD were later identified by Arrach et al.
(2010) as Class 2 mutants which show reduced fitness in tumors
compared to Class 1 mutants, increasing the probability that a
different avirulent mutant that grows better in tumors might
have resulted in a more complete anti-tumor response. In a
competitive fitness assay in human prostate tumors growing in
mice, Class 1 mutant STM3120 not only had a fitness advantage
over Class 2 mutants, but also effectively targeted tumors after
intragastric delivery, suggesting an oral route as an option for
bacterial cancer therapy (Arrach et al., 2010). The ability to
screen thousands of candidates and evaluate individual mutants
in parallel using high-throughput sequencing offers a clear

advantage over conventional screening methods. Mutants that
retain tumor-targeting while being poor colonizers of normal
tissue, are desirable for cancer therapeutics.

The patient-derived xenograft (PDX) mouse models
of cancer are emerging as an important component of
personalized cancer therapy (Cho et al., 2016). PDX models
are generated by implanting sectioned patient tumor fragments
into immunodeficient mice, subcutaneously or orthotopically
(into the organ or tissue of the cancer origin). Patient-derived
orthotopic xenografts (PDOX) have the additional advantage that
they usually metastasize as in the patient (Hiroshima et al., 2016).
These models retain the histologic characteristics, heterogeneity
of cancer cells and genomic signature of the patient tumor
enabling the identification of effective individualized therapy
(Cho et al., 2016). S. Typhimurium A1-R has shown to be
effective against osteosarcoma in a PDX model (Murakami
et al., 2017) and soft-tissue sarcoma, pancreatic cancer and
melanoma in PDOX models (Hiroshima et al., 2014; Murakami
et al., 2016; Yamamoto et al., 2016). Although these models
need to be immunocompromised in order to allow human
tumor engraftments and therefore do not allow evaluation of
the immune-mediated bacterial activity, we believe that studies
that employ PDOX models would allow the selection of the
best-suited bacteria for individual tumors and prediction for its
effectiveness in patients. “Humanized” PDOX models (Zitvogel
et al., 2016) will be used to determine tumor-immunology effects
of bacteria.

Figures 1, 2 show some of the complex net of events
that are involved in promoting bacterial anti-tumor efficacy.
However, in most models bacteria mono-therapies are not
sufficient to eliminate a primary tumor or the metastatic
burden. Combined therapies including chemotherapy (Dang
et al., 2001; Yamamoto et al., 2016; Yano et al., 2016), radiotherapy
(Jiang et al., 2010), traditional herbal medicine (Zhang et al.,
2013), anti-angiogenic and/or immunotherapy (Binder et al.,
2013; Kramer et al., 2015) or the use of bacteria carrying
plasmids coding for anti-tumor genes (reviewed in Moreno
et al., 2010; Nguyen and Min, 2017) have shown enhanced
results. Based on the use of eukaryotic gene-expression systems
it has been suggested that bacteria can act as vector systems for
plasmid transfer to mammalian cancer cells, a process known
as “bactofection” (Weiss and Chakraborty, 2001; Baban et al.,
2010; Othman et al., 2013). However, this trans-kingdom gene
delivery assumption is still a matter of controversy (Gahan
et al., 2009 and Figure 2A). Therefore, for the best performance
of a bacteria + plasmid combination, the determination of
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FIGURE 2 | Direct and synergystic anti-tumor effects of attenuated S. Typhimurium integrating cellular and systemic immune responses. (A) Induction of cell death
and granulocyte recruitment associated with intracellular replication of attenuated S. Typhimurium LVR01 (Salmonella), which previously showed a modest antitumor
effect in the 4T1 metastatic breast cancer model (Kramer et al., 2015). (a) Confocal microscopy indicates bacteria invasion and replication in breast cancer cell lines:
4T1 (ATCC-CRL2539) (upper line) and NMU (ATCC-CRL1743) (lower line) in a time-course experiment. Cell cultures were grown in glass coverslips, infected with
Salmonella expressing the GFP gene and sampled at 2, 12, 24, or 48 h to follow progression of intracellular replication. Specimens were fixed in paraformaldehyde
4%, washed in PBS and stained with DAPI and Phalloidin-Alexa555 (InvitrogenTM). After the staining, the coverslips were washed with PBS, mounted using Pro
Long Gold (InvitrogenTM) and sealed with nail polish. This three color fluorescence pattern allowed the 3D analysis of the infected cultures, by simultaneously
visualizing the bacteria, the nucleus and the F-actin cytoskeleton. Intracellular/extracellular determination of bacteria was possible due to the delimited borders of the
actin cytoskeleton which are close to the cell membrane. Images were obtained with a LEICA R©TCS SP5 II spectral confocal microscope and processed with the
software Leica R©LAS AF. As observed, bacterial invasion progresses, showing intracellular cytoplasmic hyperreplication over time. (b) Epifluorescence microscopy of
4T1 monolayers infected cells. Cancer cells were infected with Salmonella-GFP for 2 h and observed at different time points. Specimens were washed in PBS, fixed

(Continued)
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FIGURE 2 | Continued
in paraformaldehyde 4%, and stained with DAPI (InvitrogenTM). After 5 min staining, invaded cultures were washed and observed in a Nikon R©Ti-S epifluorescence
inverted microscope. At 2 h few peri-nuclear bacteria could be seen (b.I) At 24 h (b.II) bacteria replicated in the cytoplasm and some infected cells appear rounded
and extruded. At 48 h (b.III) densely-infected cells were similar, and eventually burst and release their cellular contents (b.IV). (c) Live infected cultures were observed
either intact or in the presence of propidium iodide (500 nM) to assess intracellular bacterial mobility and cell viability, respectively. Monolayers of mammary cancer
cells: 4T1 (c.I) and NMU (c.II), as well as macrophage cells J774.A (c.III) were infected with Salmonella-GFP. At 24 h post-infection, infected cells (green) die as
indicated by propidium iodide staining (red). Macrophages died at earlier time points (2–16 h). Arrows point the extruded cells. (d) Flow cytometry of intratumor
immune cells at 6 days after Salmonella inoculation of 4T1 tumors in vivo. As observed, the intra-tumor granulocyte/myeloid-derived-suppressor cell
(Ly6G+CD11b+) levels increase and macrophage (F4/80+CD11b+) levels decreased after bacteria administration among total leukocytes (CD45+ cells). (f) X-gal agar
plates were used to seed the untransformed bacteria (control) or bacteria transformed with a plasmid containing the lacZ gene under the control of the eukaryotic
cytomegalovirus (CMV) promoter (pCMV-lacZ). As observed, the lacZ gene product β-galactosidase was detected, indicating that the CMV promoter was active in
prokaryotic cell species. (B) In vivo effects of attenuated S. Typhimurium (Salmonella) in mice bearing metastatic cancer. This integrative diagram shows the
anti-tumor effects of attenuated variants of Salmonella evaluated as mono-therapy. The bacteria inoculation by different routes (systemic or intratumoral) results in its
biodistribution to most organs, but with a marked preference for tumors, including metastasic sites (Pawelek et al., 1997; Low et al., 1999; Forbes et al., 2003;
Yu et al., 2004; Hoffman, 2016a). In tumors, bacterial infection is associated with tumor-tissue architecture deterioration, a rise in granulocytic cells and INF-γ
induction and a decrease of intra-tumor macrophages (Avogadri et al., 2005; Westphal et al., 2008; Zheng et al., 2017). Late effects (10–20 days after bacteria
administration) are characterized by a moderate decrease in tumor size, adaptive immune responses including INF-γ production, antibody recognition of tumor
antigens, and cytotoxic immune activities (Avogadri et al., 2005; Kramer et al., 2015; Masner et al., unpublished results). Repeated administration of attenuated
bacteria could result in a better targeting of metastases (Zhao et al., 2012), while stimulating immune responses that enhance cancer-cell elimination.

the actual location of transgene expression would allow the
right selection of the gene, promoter, and secretion system (if
required) to achieve optimized therapy (Forbes, 2010; Zheng
et al., 2017). In addition, since the bacteria usually induce
death of infected cells within few hours, the rational to
use bacteria as a gene delivery system (vector) to immune
and/or tumor cells needs to be re-evaluated if medium- or
long-term persistence of therapeutic gene expression is necessary
in vivo.

In terms of combined therapies, a remarkable example of
a neoadjuvant (pre-operatory) synergistic efficacy was observed
using S. Typhimurium aro C mutant LVR01 in combination with
interleukin 12 (IL-12) expressed from the alfaviral eukaryotic
gene vector SFV-IL-12 (Kramer et al., 2015). This approach
was evaluated in an immunocompetent mouse model of locally-
advanced breast cancer and resulted in a highly effective anti-
metastasic therapy, leading to 90% disease free mice, while
either mono-therapy was not effective. Moreover, the efficacy
of this combined therapy depended on the order in which
both agents were administered (Kramer et al., 2015). An initial
anti-angiogenic effect associated with a T helper-cell-1-primed
response that was timely induced seemed to account for the
main global effect. However, the underlying mechanisms of this
combination and timing of both factors raised various questions
that remain un-answered.

Other relevant questions to be answered for bacteria-based
cancer therapy optimization are related to the dose, schedule, and
route of administration. A dose-dependent effect of attenuated
S. Typhimurium was observed, as well as multiple dosing are
more efficient than mono-doses (Hayashi et al., 2009; Nagakura
et al., 2009; Grille et al., 2014), although the range needs to
be determine to avoid toxicity (Zhao et al., 2012). The efficacy
and safety of three different routes of S. Typhimurium A1-R
administration: oral (p.o.), i.v. and i.t. was compared in nude
mice with orthotopic human breast cancer indicated that the p.o.
route was safer, and the i.v. route was more effective (Zhang et al.,
2012). However, such experiments may need to be performed
for each type of tumor, since it was also shown in a model
of disseminated human ovarian cancer treated with i.v. and

intraperitoneal (i.p.) S. Typhimurium A1-R, that i.p. treatment
was less toxic than i.v. administration (Matsumoto et al., 2015).

Although useful in many approaches, human xenografted
tumors into immunodeficient mice limit our knowledge about
the range of effects that certain bacterial strains can exert.
In this regard, studies in immunocompentent animals are
more representative of the complex spectrum of interactions
between the bacteria and the tumor microenvironment,
thereby enabling immune effects that are otherwise absent in
immunocompromised mice. This could be crucial for “tunning”
the bacteria to the right degree of immunogenicity/attenuation,
avoiding shock while promoting adjuvant effects (Yu et al., 2004).
Moreover, toxicity issues regarding immunotherapies are a main
concern today. From acute shock to autoimmune diseases, we
could gain a better understanding of the risk of side effects of
bacteria therapy of cancer from preclinical models that include
all the functional branches of the immune system. Undesirable
attenuated bacterial infection can be in theory treated with
antibiotics; however, long-term clinical trials in humans are
required to evaluate toxicity in detail, since the chance of septic
shock and/or tumor lysis syndrome could be a fact. In addition,
we believe that, there is still a considerable need of work to
evaluate bacteria for natural acquisition of antibiotic-resistant
genes and/or reversion of attenuation mutations, as well as
comparing the anti-tumor efficacy and secondary effects of
bacteria or bacterial products versus conventional therapies.
Moreover, we cannot rule out the possible clearance of bacteria
by the immune system before reaching the tumor site in a
patient-dependant manner, resulting in treatment failure.

THE FUTURE OF WHAT Dr. Coley BEGAN

Each of the 16 “Coley’s toxins” that have been used might
have a complex and variable composition, including components
of the culture media, products released by the bacteria in the
medium, components relevant by bacteria lysis (and autolysis).
The inactivation method used to prepare the vaccine and the
inclusion, or not, of a filtration step in the preparation of the
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toxins will affect the final products. The i.v. administration of a
suspension of inactivated bacteria cells may mimic a nanodrug,
and the number of particles, their size, shape, charge, and surface
molecules may affect the immune system response (van Riet et al.,
2014).

Both Streptococcus pyogenes and Serratia marcescens produce
exotoxins. S. pyogenes produces the pyrogenic exotoxins SpeA,
SpeB, and SpeC which have the capacity to unspecifically
stimulate CD4+ lymphocytes, leading to a strong secretion
of different cytokines (Babbar, 2015). S. marcescens, produces
prodigiosin, a low-molecular weight red pigmented heterocyclic
tripyrrolic toxin with anti-tumor activity (Elahian et al., 2013).
The toxins, together with other components of the formulation,
result in generation of fever and potential anti-tumor response.
The administration route may also influence the efficacy of
Coley’s toxins including i.v., i.p., direct injection in the tumor,
or subcutaneous or intramuscular administration (Nauts et al.,
1946).

A chemical description of “Coley’s toxins” can be assessed
using the analytical tools currently used for proteomic
and metabolomic studies (Wishar, 2016). Nuclear magnetic
resonance (NMR) and mass spectrometry (MS) methods for
the analysis of high- and low-molecular weight components
of complex mixtures or their derivatives (Alonso et al., 2015)
could be used in combination with multivariate analysis to
identify the components responsible for anti-tumor activity. The
identification of the active components and their mode of action,
would allow the selection of more active and better-defined
vaccines, as well as the design of tailored formulations capable of
producing the right amount of systemic or tumor-localized fever
(Noe, 2016) for optimal stimulation of the host immune system
and cytokine secretion to achieve best anti-tumor efficacy.
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