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Wheat bran fibers are considered beneficial to human health through their impact on
gut microbiota composition and activity. Here, we assessed the prebiotic potential of
selected bran fractions by performing a series of fecal slurry anaerobic fermentation
experiments using aleurone as well as total, ultrafine, and soluble wheat bran (swb) as
carbon sources. By combining amplicon-based community profiling with a fluorescent in
situ hybridization (FISH) approach, we found that incubation conditions favor the growth
of Proteobacteria such as Escherichia and Bilophila. These effects were countered in all
but one [total wheat bran (twb)] fermentation experiments. Growth of Bifidobacterium
species was stimulated after fermentation using ultrafine, soluble, and twb, in the latter
two as part of a general increase in bacterial load. Both ultrafine and swb fermentation
resulted in a trade-off between Bifidobacterium and Bilophila, as previously observed in
human dietary supplementation studies looking at the effect of inulin-type fructans on
the human gut microbiota. Aleurone selectively stimulated growth of Dorea and butyrate-
producing Roseburia. All fermentation experiments induced enhanced gas production;
increased butyrate concentrations were only observed following soluble bran incubation.
Our results open perspectives for the development of aleurone as a complementary
prebiotic selectively targeting colon butyrate producers.

Keywords: wheat bran, aleurone, prebiotic, in vitro, fermentation, microbiome

INTRODUCTION

Although amplicon sequencing approaches are nowadays applied routinely to study the bacterial
composition of the gut microbiota (Valles-Colomer et al., 2016), their application in prebiotic food
ingredient research has been lagging behind (Hutkins et al., 2016). Only recently, 16S rRNA gene
sequencing was applied to map the compositional changes induced by a dietary intervention using
inulin-type fructans (Vandeputte et al., 2017). A community-wide analysis estimated the effect
size of this prebiotic intervention in relative microbiome composition to 1.2% (Vandeputte et al.,
2017) – modest, but comparable to the impact of top covariates of microbiome variation such
as whole bread consumption (Falony et al., 2016). Unexpectedly, the study confirmed selective
stimulation of a limited number of bacterial taxa upon inulin consumption, in line with the original
definition of a prebiotic substrate (Gibson and Roberfroid, 1995). This observation has challenged
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the emerging scientific consensus regarding a community-level
response of the gut microbiota to prebiotic interventions (Claus,
2017). It will most likely revive efforts to identify complementary
food ingredients, selectively stimulating growth or activity of
distinct sets of intestinal bacteria with potential beneficial
properties.

A key aspect in maintaining gastrointestinal health lies in
the consumption of dietary fiber. Fiber does not only accelerate
intestinal transit (Burkitt et al., 1972), it also provides a variety of
fermentable substrates to the intestinal microbiota (Sonnenburg
and Sonnenburg, 2014). Fermentation of fiber polysaccharides
increases microbiota production of short chain fatty acids (De
Filippis et al., 2016), including butyrate. The latter not only
represents the main energy source for colon epithelial cells
(Roediger, 1982), it also affects cellular differentiation processes
and has been shown to exert anti-inflammatory effects (Hamer
et al., 2008; Louis et al., 2014). Moreover, the availability of readily
fermentable, fiber-derived polysaccharides reduces potentially
deleterious proteolytic fermentation processes (De Preter et al.,
2010) and restrains microbial erosion of the mucus layer (Desai
et al., 2016). By promoting growth and activity of commensal
micro-organisms, dietary fiber consumption also reduces the
risk of pathogenic invasion, both by enhancing colonization
resistance and decreasing luminal pH (Lawley and Walker,
2013).

Wheat bran represents one of the main contributors to daily
fiber intake in Western diets (Stevenson et al., 2012). Specific
components of bran fiber such as arabinoxylans (Broekaert et al.,
2011) have been shown to induce a prebiotic effect in the gut
microbial ecosystem. Here, we contribute to the pursuit of novel
potential prebiotics by assessing compositional and metabolic
changes in fecal slurries upon fermentation of selected wheat bran
fractions.

RESULTS

Fecal Fermentations Impact Microbiota
Composition
To assess the prebiotic potential of different wheat bran fractions,
a series of 18 fecal fermentations experiments was set up using
fecal material donated by six healthy volunteers (Supplementary
Table S1). Selected bran fractions comprised total wheat bran
(twb), ultrafine wheat bran (uwb), soluble wheat bran (swb),
and aleurone (alr) (Table 1). Fermentations were carried out
in triplicate; each replicate was inoculated with fecal material
from a different donor. In parallel, cellulose incubations were
set up with fecal material from each volunteer. Given its limited
fermentability by colon bacteria (Mudgil and Barak, 2013), in
these control cellulose fermentations, the effect of experimental
conditions was expected to dominate over the impact of substrate
fermentation. Hence, they allowed assessing the impact of
the experimental set-up on the fecal microbiota composition.
Overall, 24 h cellulose fermentation resulted in a decrease of
genus richness when compared to donor material [paired t-test,
effect size (ES) = −0.66, p-value = 8.1 × 10−3; Supplementary
Figure S1]. Changes in taxa abundances included the increased

relative abundances of Escherichia (paired t-test, ES = 0.97,
FDR = 7.0 × 10−5), Bilophila (ES = 0.92, FDR = 3.3 × 10−4),
and Sutterella (ES = 0.62, FDR = 2.8 × 10−2; Supplementary
Table S2). In contrast, proportions of Roseburia (paired t-test,
ES = −0.95, FDR = 1.6 × 10−4), Bacteroides (ES = −0.61,
FDR = 2.8 × 10−2), Faecalibacterium (ES = −0.54, FDR = 4.9 ×
10−2), and Blautia (ES =−0.47, FDR = 6.4× 10−2) were reduced
(Supplementary Table S2). Hence, in summary, experimental
conditions were shown to result in a decrease of bacterial
richness, mostly due to proportional blooming of Proteobacteria.

Donor and Substrate Diversify the
Outcomes of Fecal Slurry Fermentations
Next, we assessed donor- and substrate-specific variation
through the analysis of sample microbiome dissimilarity after
24 h of fermentation. A principal component analysis (PCoA)
was used to visualize the between-samples dissimilarity in terms
of microbiota composition (Bray–Curtis dissimilarity), revealing
separate clusters of cellulose incubations and fermentations
inoculated with donor 3 (D3) fecal material (Figure 1). These
observations were confirmed by a hierarchical clustering
approach, with the cellulose and D3 subgroups branching out
at higher levels. D3 sample grouping clearly originated from
Acidaminococcus blooming. Even though only representing a
minor fraction of the donor microbiota, D3 fecal material was
characterized by elevated Acidaminococcus relative abundances
[unpaired t-test, (ES) = 0.99, p-value = 5.7 × 10−9; overall
donor variation in core taxa (present in 80% of samples,
abundance > 5% in at least one sample) is summarized
in Supplementary Table S3 and Figure S2]. Clustering of
cellulose incubations did suggest substrate-driven microbiome
differentiation of bran fraction fermentations. Overall, substrate
and donor explained, respectively, between 25–48 and 6–40%
of microbiome variation during incubation experiments
(Supplementary Table S4).

Bran Fraction Fermentations Do Not
Differentially Alter Community Richness
Fecal microbiome richness has been put forward as a read-
out of colonic microbiota stability or resilience (Vieira-Silva
et al., 2016), with reduced estimates thought to be indicative
for ecosystem dysbiosis (Qin et al., 2012; Le Chatelier et al.,

TABLE 1 | Chemical composition of total wheat bran, ultrafine wheat bran, wheat
aleurone, and soluble wheat bran (in %; mean values, rsd < 5%).

Total
wheat
bran

Ultrafine
wheat
bran

Aleurone Soluble
wheat
bran

Moisture (%) 11 7.7 6.6 2.1

Total protein (%) 17 18 17 0.5

Total fat (%) / / 5.5 /

Starch (%) 26 27 6.3 /

Ash (%) 5.2 5.1 7.2 0.4

Fiber 38 37 56 79

Insoluble fiber 34 33 48 /
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FIGURE 1 | Genus-level microbiome community variation of fecal slurry incubation experiments after 24 h, represented by principal coordinates analysis (Bray–Curtis
dissimilarity PCoA). Samples (n = 18) were colored and shaped by donor and substrate, respectively. Genera that displayed significant variation among samples
(db-RDA, FDR < 0.10) were scaled according to contribution and plotted on the ordination. The percentage of variance explained by the two first PCoA dimensions
are reported on the axes.

2013). However, some recent findings have associated high
community richness indices to hard stools (Vandeputte et al.,
2016), prolonged transit times (Roager et al., 2016), and enhanced
proteolytic fermentation (Macfarlane et al., 1989; Roager et al.,
2016), suggesting a less straightforward association between
richness and host health than generally assumed. Given the
interest in prebiotic modulation of microbiota richness (Druart
et al., 2014; Bindels et al., 2015; Vandeputte et al., 2017),
we assessed the impact of substrate variation on the number
of observed genera following 24 h fecal slurry incubations
(Figure 2). We did not observe any shift in richness associated
with incubation of cellulose or any of the selected wheat bran
fractions (Kruskal–Wallis test, p-value = 0.21; Supplementary
Figure S3). In contrast, donor material did moderately affect
the outcome of fermentation experiments (Kruskal–Wallis,
p-value = 6.3× 10−2; Supplementary Figure S4) – which could,
however, be attributed to reduced richness in D3 incubations
(Dunn’s test; Supplementary Table S5).

Bran Fraction Fermentations Suggest
Specific Prebiotic Effects on Gut
Microbiota
Using an in vitro incubation approach, the prebiotic potential
of a substrate can only be deduced from its ability to stimulate

beneficial bacteria upon fermentation. To identify substrate-
specific responsive genera, we compared taxa relative abundances
after 24 h of bran fermentations with the outcome of cellulose
incubations in matching donor fecal slurries (Supplementary
Table S6). On genus level, wheat bran fractions were found
to induce specific changes in slurry microbiota compositions.
While all bran fraction fermentations resulted in increased
Bifidobacterium relative abundances (paired t-test, twb, ES = 0.99,
FDR = 2.6 × 10−2; uwb, ES = 0.91, FDR = 9.8 × 10−2;
swb, ES = 0.90, FDR = 5.4 × 10−2; alr, ES = 0.77,
FDR = 9.5 × 10−2), alr microbiome profiles were additionally
characterized by higher proportions of both Roseburia (ES = 0.92,
FDR = 5.9× 10−2) and Dorea (ES = 0.80, FDR = 9.5 ×
10−2). In contrast, the genera Escherichia (swb, ES = −0.98,
FDR = 1.9 × 10−2; alr, ES = −1.0, FDR = 7.9 × 10−4),
Parabacteroides (swb, ES = −0.99, FDR = 9.7 × 10−3; alr,
ES = −0.88, FDR = 6.6× 10−2), and Bilophila (swb, ES = −0.94,
FDR = 3.9 × 10−2; alr, ES = −0.91, FDR = 5.9 × 10−2) were
underrepresented following swb and alr fermentation. While a
similar decrease in Parabacteroides relative abundances could be
observed in twb fermentation (ES = −0.97, FDR = 3.3 × 10−2),
uwb fermentation outcomes only mirrored reduced Bilophila
populations (ES = −0.98, FDR = 3.8 × 10−2). In general, the
addition of wheat bran fractions to fecal slurries resulted in
increased Bifidobacterium relative abundances – mostly at the
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FIGURE 2 | Genus level relative microbiome composition of fecal slurry incubation experiments. Samples are clustered based on Bray–Curtis dissimilarity. The top
15 classified genera are depicted, with all others pooled into ‘Other.’ Clustering analysis was performed by hierarchical clustering with mean linkage.

expense of the Proteobacteria, shown to be favored by incubation
conditions. Of all substrates under investigation, alr displayed the
broadest impact range on microbiota composition. Remarkably,
the Bifidobacterium/Bilophila trade-off observed in uwb, swb, and
alr incubations matched particularly well microbiota fluctuations
following inulin consumptions observed in vivo (Vandeputte
et al., 2017).

FISH Taxon Enumeration Confirms
Bifidogenic Effect of Bran Fractions
Given the compositional nature of microbiome data, comparative
analyses such as described above cannot reveal absolute
directionality of observed abundance fluctuation. To bypass
this problem, we performed a validation experiment using
a FISH approach (Figure 3 and Supplementary Table S7).
Given pretreatment and nature of the substrates studied,
overall increases in total bacterial abundances were mostly
limited (Supplementary Table S1). FISH enumeration data for
bifidobacteria were found to correlate surprisingly well with
relative abundances obtained through amplicon sequencing
(Pearson, r = 0.83, p-value = 2.4 × 10−5). Except for alr,
absolute quantification allowed us to confirm the bifidogenic

FIGURE 3 | Summary of significant changes in core taxa relative abundances
following bran fraction incubation experiments compared to cellulose
fermentations as detected through 16S rRNA gene amplicon sequencing.
Quantitative validation of results was performed using a FISH approach
(18 samples; paired t-test, statistics are included in Supplementary
Tables S6, S7).

effect of twb (paired t-test, ES = 0.90, p-value = 1.9× 10−2),
uwb (ES = 0.97, p-value = 4.8 × 10−3), and swb (ES = 0.81,
p-value = 4.0 × 10−2; Supplementary Table S7). The association
observed between alr and Roseburia/Dorea relative abundances
was also validated (ES = 0.87, p-value = 2.5 × 10−2) based
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on the abundances detected using the FISH Eubacterium
rectale/Clostridium coccoides spp (EREC) probe (Duncan et al.,
2007). Of note, total and soluble bran fermentations also
resulted in stimulated growth of EREC taxa (twb, ES = 0.75,
p-value = 5.9× 10−2; swb, ES = 0.94, p-value = 1.1 × 10−2),
which remained unnoticed using a compositional sequencing
approach – most probably due to the overall increase of bacterial
numbers following both twb (ES = 0.65, p-value = 9.8 × 10−2)
and swb (swb, ES = 0.81, p-value = 4.0× 10−2) incubation.

Incubation of Soluble Wheat Bran
Stimulates Butyrate Production
In all fermentation experiments, we quantified acetate,
propionate, butyrate, lactate, valerate, isobutyrate, and
methylbutyrate concentrations as well as total gas production
after 24 h of substrate fermentation. Based on the metabolite
profiles, dissimilarity between wheat bran and cellulose
fermentations was assessed (Euclidean distance). Metabolite
dissimilarity was found strongly correlated to sample
microbiome differentiation (Bray–Curtis) (Mantel test,
r = 0.24, p-value = 1.6 × 10−2). Hence, changes in taxa
relative abundances were reflected in the metabolic output
of fecal slurry fermentation processes (Supplementary Figure
S5). Compared to cellulose, fermentations of selected wheat
bran fractions gave rise to increased gas production (twb,
paired t-test, ES = 0.99, p-value = 2.2 × 10−3; uwb, ES = 0.98,
p-value = 3.8× 10−3; swb, ES = 0.98, p-value = 4.1 × 10−3;
alr, ES = 0.83, p-value = 3.7 × 10−2; Supplementary Table
S8). Moreover, swb fermentations displayed elevated butyrate
concentrations (ES = 0.88, p-value = 2.3× 10−2), matching FISH
findings regarding EREC cluster absolute counts (Hold et al.,
2003). Interestingly, independent of donor or substrate variation,
relative abundances of Bifidobacterium, Bilophila, Escherichia,
and Parabacteroides could be correlated with several metabolites,
including acetate, butyrate, isobutyrate, and cumulative gasses
(Supplementary Table S9). In contrast, Roseburia could only be
associated to butyrate, in line with the genus’ metabolic profile
(Duncan et al., 2002). Dorea, on the other hand, was exclusively
linked with valerate concentrations – although the taxon is
known as a major gas producer (Rajilić-Stojanović and de Vos,
2014). An overview of substrate, taxon, metabolite associations
observed in bran fraction incubation experiments is presented in
Figure 4.

DISCUSSION

Our in vitro incubation analyses largely confirmed the bifidogenic
effect of total, ultrafine, and swb fractions (Cloetens et al.,
2010; Neyrinck et al., 2011; François et al., 2012; Maki et al.,
2012). The strategies and mechanisms applied by Bifidobacterium
spp. to degrade non-digestible carbohydrates have previously
been described in detail (Rivière et al., 2014, 2016). Moreover,
wheat fiber is constituted primarily of arabinoxylans (Grootaert
et al., 2007; Hughes et al., 2007; Vardakou et al., 2008) with
known dose-dependent bifidogenic properties (Cloetens et al.,
2010; Neyrinck et al., 2011; François et al., 2012; Maki et al.,

2012). Although end-products of bifidobacterial carbohydrate
metabolism are mainly limited to lactate, acetate, formate, and
ethanol (Rivière et al., 2016), the genus has been shown to sustain
a broad range of gut microbial commensals through cross-
feeding interactions (Duncan et al., 2004; Belenguer et al., 2006;
Falony et al., 2006; Moens et al., 2016, 2017). The latter would
expand the metabolic impact of stimulated Bifidobacterium
growth to include the observed increase in butyrate and gas
production (De Vuyst and Leroy, 2011).

Given its putative health-promoting properties (Scheppach
and Weiler, 2004), the enhancement of colonic butyrate
production has been a long-standing target of prebiotic research.
Here, we noted increased abundance of Roseburia spp. following
fermentation of both swb and aleurone. Butyrate-producing
Roseburia spp. have been shown to be able to grown on inulin
(Scott et al., 2014), xylans (Duncan et al., 2002; Chassard et al.,
2007), and arabinoxylans (Sheridan et al., 2016), as well as on
intermediates of primary polysaccharide degradation (Belenguer
et al., 2006; Falony et al., 2006). While increased abundance
of Roseburia following soluble fiber incubation was part of a
more generalized stimulation of total bacterial growth, the effect
induced by aleurone appeared more taxon-specific. Aleurone has
previously been attributed bifidogenic properties (Brouns et al.,
2012). Here, using a community-wide analytical approach, we
demonstrate that it could potentially be applied for targeted
stimulation of Clostridium cluster IVa bacteria, encompassing
several colon butyrate producers.

In all but one (twb) incubation experiments, fermentation
of bran fractions resulted in decreased Proteobacteria taxa
when compared to cellulose. Besides the fact that these
genera are known to thrive under in vitro conditions, their
proteolytic or aminoacidolytic nature provides them with
a selective advantage when incubated in the absence of
readily fermentable carbohydrates. While their decrease in
relative abundances could partially result from compositionality
effects, it also demonstrates the potential of refined bran
fractions to extend saccharolytic fermentation to more distal
gut regions. Given the production of potentially deleterious
components resulting from proteolytic fermentation (Hamer
et al., 2011), the latter is considered a desirable property
of functional food ingredients targeting the microbial gut
ecosystem (Macfarlane et al., 2006). The effects of ultrafine
or swb incubations on Bilophila relative abundances matched
remarkably well previous in vivo findings regarding the prebiotic
properties of inulin (Vandeputte et al., 2017). The most
prominent intestinal Bilophila isolate is Bilophila wadsworthia,
an asaccharolytic sulfate reducer that has been characterized
as an opportunistic pathogen (Baron et al., 1989; Baron,
1997; da Silva et al., 2008). Our in vitro findings suggest
that the trade-off between the Bifidobacterium and Bilophila
taxa is a consequence of direct bacterial interactions (e.g.,
competition or metabolite production) rather than a host-
mediated response to a dietary intervention or intervention-
induced primary shifts in microbiota composition as suggested
previously (Vandeputte et al., 2017). Overall, the results presented
indicate that similar bacterial interactions make up the core of
the microbiota’s colonization resistance against non-commensal
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FIGURE 4 | Circos plot depicting correlations between substrates, metabolites, and relative genus abundances [FDR < 10% for core taxon (n = 14) – substrate
(n = 4) associations; FDR < 10% for core taxon (n = 4; only correlations of taxa with increased relative abundances following bran fermentations were included) –
metabolite (n = 8) correlations; p-value < 5% for metabolite (n = 8) – substrate (n = 4) associations]. Green and red ribbons represent positive and negative
relationships, respectively. Ribbons are sized and colored according to the strength of the association (effect size). R, Roseburia; M, methylbutyrate; V, valerate.

intruders – a phenomenon that appears to be strengthened by
the availability of fermentable substrates, as suggested by the
restrained blooming of Proteobacteria in bran incubations. The
fermentable fibers present in the wheat bran fractions studied
provide the commensal microbiota with a competitive advantage,
hampering settlement of opportunistic colonizers. In this pH-
controlled setting, we observed colonization resistance to be
independent of total bacterial abundance. The role of bacterial
metabolites produced upon fiber fermentations in this process
remains to be elucidated.

Finally, bran supplementation also altered the outcome of
niche competition between saccharolytic taxa. Parabacteroides
spp., part of a normal large-intestinal microbiota but often
associated with opportunistic infections (Nakano et al., 2011),
have been described to bloom on resistant starches (Martínez
et al., 2010) rather than on complex non-starch polysaccharides

(Sakamoto and Benno, 2006). Except for uwb, fecal fermentations
of bran fractions provided a growth advantage to saccharolytic
competitors such as bifidobacteria, allowing them to dominate
over the Parabacteroides fraction.

MATERIALS AND METHODS

Donor Fecal Material
Fecal material was collected from six healthy, male subjects
aged between 30 and 47, not receiving antibiotic treatment for
at least 3 months, not consuming pre- or probiotic containing
supplements prior to experimentation, and without history of
intestinal disorders. Fecal slurry was prepared under anaerobic
conditions by homogenizing fresh human fecal material in ten
times the volume of pre-reduced phosphate buffered saline
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(PBS; 8 g/L NaCl, 0.2 g/L KCl, 1.15 g/L Na2PO4, and 0.2 g/L
KH2HPO4).

Substrates
Total wheat bran (twb), uwb, swb, and aleurone (alr) were
used. Uwb was obtained through mechanical milling of
twb, resulting in particles with a size < 100 µm. Swb
was obtained through enzymatic treatment of wheat bran,
reducing arabinoxylan chain length into shorter oligosaccharides
(arabinoxylan-oligosaccharide content = 79%). Aleurone is a
single cell layer of wheat located between the starchy endosperm
and the outer bran layers. The aleurone cells were separated from
the pericarp layer and isolated to obtain a standard aleurone
fraction. Cellulose (methyl-cellulose, Sigma–Aldrich) was used
as a negative control substrate. All substrates were added to the
fermentation medium at a concentration of 1% (wt/vol).

Fecal Fermentation Experiments
Anaerobic (N2-sparged) batch fermentations were performed
in triplicate using 10% fecal slurry (1% fecal inoculum) under
controlled conditions [water-jacket vessels (Soham Scientific,
Soham, United Kingdom), pH 6.8, temperature 37◦C]. Basal
medium contained per liter: 2 g peptone (Oxoid, Basingstoke,
United Kingdom), 2 g yeast extract (Oxoid), 0.1 g NaCl
(Fisher Scientific, Fair Lawn, NJ, United States), 0.04 g K2HPO4
(BDH, Toronto, ON, Canada), 0.04 g KH2PO4 (BDH), 0.01 g
MgSO47H2O (BDH), 0.01 g CaCl26H2O (Honeywell, Morris
Plains, NY, United States), 2 g NaHCO3 (Oxoid), 2 mL
Tween 80 (Sigma–Aldrich, Oakville, ON, Canada), 0.05 g
Hemin (Sigma–Aldrich) dissolved in 1 mL of 4 M NaOH
(Fisher Scientific), 10 µL Vitamin K (Sigma–Aldrich), 0.5 g
l-Cysteine HCL (Sigma–Aldrich), 0.5 g Bile Salts (Oxoid),
and 4 mL of Resazurin (Sigma–Aldrich) (0.025 g/100 mL).
Vessels were dosed with the substrates (1% wt/vol) after
simulated in vitro upper gastrointestinal digestion and dialysis
(Mandalari et al., 2008) and inoculated with 10% fecal slurry.
The final volume of each culture was 200 mL. Samples were
harvested at time points 0 (immediately after incubation) and
24 h.

Fecal Microbiota Phylogenetic Profiling
Samples taken at T0 and originating from a same donor
were pooled for further analysis. Briefly, DNA was extracted
from 1 mL aliquots of fermentation effluent using the Fast
DNA spin kit for feces (MP Biomedicals, Santa Ana, CA,
United States). Fecal microbiota profiling was performed as
described previously (Falony et al., 2016). The V4 region of
the 16S rRNA gene was amplified with primer pair 515F/
806R (GTGYCAGCMGCCGCGGTAA/GGACTACNVGGGTW
TCTAAT, respectively) modified to contain a barcode sequence
between each primer and the Illumina adaptor sequences to
produce dual-barcoded libraries (Tito et al., 2017). Sequencing
was performed on the Illumina MiSeq platform (MiSeq Reagent
Kit v2, 500- cycles, 20% PhiX; Illumina, San Diego, CA,
United States) according to the manufacturer’s specifications
to generate paired-end reads of 250 bases in length in each
direction. After de-multiplexing, fastq sequences were merged

using FLASH (Magoč and Salzberg, 2011) software with default
parameters, except for –min-overlap and –max-overlap which
were set to 140 and 230, respectively. Successfully combined reads
were filtered based on quality using seqtk trimfq with default
parameters1. Chimeras were removed with the uchime2_ref
algorithm of USEARCH (version 9.2.64) (Edgar et al., 2011).
The taxonomy of reads was assigned using RDP classifier
2.12 (Wang et al., 2007) to generate phylum to genus level
composition matrices. Bootstrap values from the RDP classifier
were used to identify sequences with high-confidence genus
assignments (bootstrap value > 0.8), while sequences classified
with lower confidence were binned to the family assignment
(labeled unclassified_family). To compare the different samples,
sample counts were rarefied to 20,000 reads by random selection
of reads and trimmed for the consequently absent OTUs with
the phyloseq package (McMurdie and Holmes, 2013) in R version
3.3.0. In total, 18 samples, retrieved after 24 h of incubation, were
analyzed covering 161 genera with an average of 65 genera per
sample.

Fluorescence in Situ Hybridization (FISH)
Genus-specific 16S rRNA targeted oligonucleotide probes
labeled with the fluorescent dye Cy3 were used for enumerating
bacteria. Fecal batch culture samples (375 µL) were fixed
using cold 4% paraformaldehyde (Sigma–Aldrich) (pH 7.2)
at a ratio of 1:3 (vol/vol) in a 1.5 mL Eppendorf tube and
stored at 4◦C between 4 and 16 h. Samples were centrifuged
at 13,000 g for 5 min and washed twice (resuspending the
pellet in 1 mL filtered PBS and subsequent centrifuging).
The washed pellet was resuspended in a filtered-sterilized
PBS/ethanol mix (1:1 vol/vol) and stored at −20◦C for up
to 3 months. The enumeration of microbial populations was
carried out as described previously (Daims et al., 2005) using
FISH-technique. Oligonucleotide probes used were Bif164
[specific for the Bifidobacterium genus (Langendijk et al., 1995)];
Bac303 [Bacteroides and Prevotella (Manz et al., 1996)], Chis150
[Clostridium histolyticum subgroup (Franks et al., 1998)],
Erec482 [Ruminococcus–Eubacterium–Clostridium (EREC)
cluster (Franks et al., 1998)], and Fpra655 [Faecalibacterium
(Hold et al., 2003)]. Oligonucleotide EUB388 mix (Amann
et al., 1990) was used for total bacteria enumeration, using 4′-6-
diamidine-2-phenylindole (DAPI) staining as a control. Slides
were enumerated using an Olympus microscope (Olympus,
Shinjuku-ku, Tokyo, Japan) fitted with an EPI-fluorescence
attachment and 15 randomized views (0,025 mm2, 100×) were
counted for each sample.

Gas Chromatography
Short-chain fatty acids (acetate, propionate, and butyrate) and
branched short-chain fatty acids (isobutyrate, valerate, and
methylbutyrate) were analyzed as described by Fava et al. (2012)
with slight modifications to the method. Samples were acidified
to pH 2–3 with 6 M HCl, centrifuged at 13,000× g for 5 min, and
filtered through a 0.2 mm polycarbonate syringe filter. Standard
solutions containing 20, 10, 5, 1, and 0.5 mM external standards

1https://github.com/lh3/seqtk
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and 2 mM of internal standard (2-ethylbutyric acid) were used.
Fatty acids were determined by gas chromatography on a Hewlett
Packard (Agilent) 5890 Series II GC system (HP, Crawley,
United Kingdom), fitted with a FFAP column (30 m × 0.53 mm,
diameter 0.50 mm, J&W Scientific, Agilent Technologies, Ltd.,
South Queensferry, United Kingdom), and a flame-ionization
detector. Glass wool was inserted in the injection port. The
injected sample volume was 1 mL. Helium was used as carrier gas.
The head pressure was set at 10 psi and the split ratio was 10:1.
The flow rate of total gas was 140 mL/min. Injector and detector
temperature were set at 280 and 300◦C, respectively. The initial
oven temperature was 100◦C, maintained for 0.5 min, raised to
150◦C at 81◦C per min, then increased to 250◦C at 50◦C per min,
and finally held at 250◦C for 2 min. Fatty acid concentrations
were calculated by peak integration using Atlas Lab managing
software (Thermo Lab Systems, Mainz, Germany) and expressed
as mM.

Lactate Analyses Using Enzymatic
Assays
Lactate was measured using the Lactate Assay Kit (Sigma–
Aldrich) according to manufacturer’s instructions. Briefly,
samples were centrifuged at 13,000 × g for 10 min and the
supernatants were stored at −80◦C, thawed on ice and filtered
through 10 kDa MW cut-off columns (Millipore Amicon Ultra,
Merck, Darmstadt, Germany). Two standard curves were used
for each sample reading. Results are reported in mM.

Gas Measurements
Gas production was measured through five replicate
measures in separately conducted batch cultures (utilizing
fecal samples from the same donors) and under anaerobic
conditions using airtight serum bottles. Growth medium
(pH controlled) [according to Rycroft et al. (2001)] was
inoculated with freshly (anaerobic) prepared feces (1% wt/vol)
and incubated anaerobically at 37◦C for 24 h. Gas volume
and pressure were measured at 3, 6, 9, 12, and 24 h using a
transducer (Gems Sensors, Basingstoke, United Kingdom)
according to the manufacturer’s instructions (Sarbini et al.,
2011).

Microbiome Analysis
Statistical analyses were performed in R version 3.3.0 (R Core
Team, 2013). Observed richness was calculated with the R
package phyloseq (McMurdie and Holmes, 2013). Microbiome
variation between samples was determined by principal
coordinates analysis (PCoA) using Bray–Curtis dissimilarity on
the genus-level relative abundance matrix with the R package
vegan (Oksanen et al., 2015) and visualized using the R package
ggplot2 (Wickham, 2009). Clustering analysis was performed
based on hierarchical clustering with mean linkage using the
R package stats (R Core Team, 2013). To assess microbiome
variation between bran fraction and cellulose incubations, and
between donors, (un)paired t-tests with Welch’s correction for
unequal variances were carried out on log(1+×) transformed
relative genus abundance data. Analyses were performed on

core taxa, identified as annotated genera, present in at least
80% of samples, with abundance > 5% in at least one sample.
The corresponding correlation effect sizes were calculated
in R using the lsr (Navarro, 2015) and compute.es (Del Re,
2013) packages. Correction for multiple testing [Benjamini–
Hochberg method (Benjamini and Hochberg, 1995), FDR] was
performed. For the microbiome variation between bran fraction
and cellulose incubations, FDR was applied for each substrate
separately. Differences in observed richness between the different
substrate incubation regimes (five-level categorical data) were
assessed using non-parametric ANOVA (Kruskal–Wallis test
using R package stats) and post hoc Dunn’s test (using R
package FSA) for all pairs of comparisons between groups, with
Benjamini–Hochberg adjustment for multiple testing (FDR).

Donor/Substrate Effect Sizes in
Microbiome Variation
Variation partitioning by stepwise distance-based redundancy
analysis (dbRDA) was performed to determine how much
of the microbial community profiles variation (Bray–Curtis
dissimilarity) could be explained by the cumulative and
individual contributions of substrate and donor, with significance
calculated with a permutation test.

Analysis of Metabolite Production
A Mantel test, based on Spearman’s rank correlation rho,
was performed to test whether microbiome Bray–Curtis
and metabolome Euclidean distance-based between-sample
dissimilarities were correlated (1,000,000 permutations, R
packages vegan and ecodist). Metadata was fitted on the PCA
ordination (Supplementary Figure S5) using the prcomp function
in the R package stats.

Normality of quantitative FISH and metabolite concentrations
was assessed using the car package in R. As these metadata
were normally distributed, no data transformation was applied.
Differences between bran fraction and cellulose incubations
were calculated using paired t-tests with Welch’s correction
for FISH data and metabolite concentrations as described
before. Correlations between relative genus abundances and
metabolite data were analyzed using non-parametric Spearman
tests for which correction for multiple testing [Benjamini–
Hochberg method (Benjamini and Hochberg, 1995), FDR] was
applied. The circos plot was constructed using the R package
circlize.

CONCLUSION

Here, we assessed the prebiotic potential of selected wheat
bran fractions by performing a series of fecal slurry
fermentations. We confirmed the bifidogenic effect of wheat
bran fractions. The increase in Bifidobacterium spp. following
ultrafine and soluble bran incubations was paired with a
decrease in Bilophila relative abundances, matching in vivo
observations on the prebiotic effect of inulin. In contrast with
the more generalized effects observed upon pericarp bran
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fraction supplementation, aleurone fermentations selectively
stimulated growth of butyrate-producing Roseburia, opening
perspectives for its future development as a complementary
prebiotic.
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