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Desert microbes are expected to be substantially sensitive to global environmental
changes, such as precipitation changes and elevated nitrogen deposition. However,
the effects of precipitation changes and nitrogen enrichment on their diversity and
community composition remain poorly understood. We conducted a field experiment
over 2 years with multi-level precipitation and nitrogen addition in a desert shrubland
of northern China, to examine the responses of soil bacteria and fungi in terms of
diversity and community composition and to explore the roles of plant and soil factors
in structuring microbial communities. Water addition significantly increased soil bacterial
diversity and altered the community composition by increasing the relative abundances
of stress-tolerant (dormant) taxa (e.g., Acidobacteria and Planctomycetes); however,
nitrogen addition had no substantial effects. Increased precipitation and nitrogen did not
impact soil fungal diversity, but significantly shifted the fungal community composition.
Specifically, water addition reduced the relative abundances of drought-tolerant taxa
(e.g., the orders Pezizales, Verrucariales, and Agaricales), whereas nitrogen enrichment
decreased those of oligotrophic taxa (e.g., the orders Agaricales and Sordariales).
Shifts in microbial community composition under water and nitrogen addition occurred
primarily through changing resource availability rather than plant community. Our results
suggest that water and nitrogen addition affected desert microbes in different ways, with
watering shifting stress-tolerant traits and fertilization altering copiotrophic/oligotrophic
traits of the microbial communities. These findings highlight the importance of resource
availability in driving the desert microbial responses to short-term environmental
changes.

Keywords: copiotrophic/oligotrophic, global environmental changes, microbial diversity and community
composition, nitrogen deposition, precipitation changes, soil bacteria and fungi, stressful environment,
stress-tolerant
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INTRODUCTION

Deserts occupy approximately one-third of the Earth’s land
surface (Laity, 2009) and are currently experiencing widespread
global environmental changes, including precipitation changes
and elevated nitrogen deposition (Galloway et al., 2008; Maestre
et al., 2012). As desert ecosystems are usually characterized by
stressful conditions of low water and nutrient availability (Noy-
Meir, 1973; Makhalanyane et al., 2015), they are expected to
be substantially more sensitive to global environmental changes
than other ecosystems (Bobbink et al., 2010; Maestre et al.,
2016). Soil microbial diversity and community composition
in desert biomes have been shown to differ remarkably from
those in non-desert biomes (Fierer et al., 2012), suggesting
that their responses to environmental changes might also be
distinct. However, the impacts of environmental changes on
desert microbial communities are not well-understood.

Soil microbes play a crucial role in biogeochemical cycles,
and thus their responses to environmental changes can provide
feedback to influence plant communities and climate systems
(Nie et al., 2013; Wei et al., 2013). Recent high-throughput
sequencing data have shown that both precipitation changes
and nitrogen deposition can alter the microbial community
composition and diversity (Evans and Wallenstein, 2014;
Leff et al., 2015; Li et al., 2016; Zeng et al., 2016). In general,
nitrogen addition tends to decrease microbial diversity, increase
the relative abundance of copiotrophic (i.e., fast-growing,
low carbon-use efficiency) taxa (e.g., Proteobacteria and
Bacteroidetes), and reduce that of oligotrophic (i.e., slow-
growing, high carbon-use efficiency) taxa (e.g., Acidobacteria
and Basidiomycota) (Fierer et al., 2007; Ramirez et al., 2012;
Leff et al., 2015; Ho et al., 2017). It is generally hypothesized
that precipitation enrichment, similarly to nitrogen addition,
could favor copiotrophic taxa over oligotrophic taxa due to
water-induced increases in nitrogen availability (Li et al.,
2017b); however, results of the impacts of precipitation
changes on microbial communities are inconsistent. Data
from many field experiments have suggested that background
precipitation variability (e.g., seasonal or interannual variability)
more strongly shapes the microbial community composition
than does the direct effect of experimental precipitation
treatments (Cregger et al., 2012; Gutknecht et al., 2012;
Curiel Yuste et al., 2014). Data from other studies have
indicated that indirect environmental factors (e.g., the plant
community) that shift under precipitation changes might
play a larger role in determining microbial community
composition than direct changes to soil moisture (Evans
et al., 2014; Li et al., 2016). Water-induced indirect effects on
microbial communities might be ecosystem-specific, which
may contribute to previous inconsistent results among different
precipitation-manipulation experiments. Collectively, these
previous findings suggest that nitrogen addition consistently
impacts microbial communities, whereas the inconsistent
responses of microbes to precipitation changes may result
from ecosystem-specific background/history precipitation
regimes and/or water-induced indirect environmental
factors.

Precipitation changes and nitrogen addition not only directly
affect microbial physiology but also indirectly influence microbial
abundances by changing plant and soil properties (Chen et al.,
2015; Li et al., 2017b). Water and nitrogen availability can
change the quantity and quality of plant residua (e.g., root
exudates and litter), which represent major resource inputs to
soil (Ren et al., 2015; Liu et al., 2016). These changes can impact
microbial structure and function (Wardle et al., 2006; Bardgett
and van der Putten, 2014). Several lines of empirical evidence
have shown that nitrogen-induced soil acidification exerts native
effects on microbes (Chen et al., 2015; Zeng et al., 2016), while
precipitation increment can dampen these effects by increasing
the soil pH (Zhang et al., 2014; Li et al., 2016). Similarly,
precipitation and nitrogen enrichment have counteractive effects
on plant species richness, with water-induced increases and
nitrogen-induced declines in plant diversity (Xu Z. et al., 2015).
Plant diversity has been documented as one of the major
drivers in structuring microbial communities (Prober et al., 2015;
Chen et al., 2017; Li et al., 2017a), suggesting that increased
precipitation might alleviate the effects of nitrogen-induced loss
of plant richness on microbial communities through increasing
plant diversity. Collectively, previous findings have shown the
very complex nature of the interactive influences of precipitation
changes and nitrogen addition on microbial communities,
which occur via the alteration of plant communities and soil
properties.

To examine the effects of precipitation and nitrogen addition
on soil microbial communities in desert ecosystems, we
conducted a field experiment by varying precipitation and
nitrogen addition to a desert shrubland in the Mu Us Desert
of northern China. Our main goals were (i) to test how
soil bacterial and fungal communities respond to increased
precipitation and nitrogen and (ii) to identify the relative roles
of the direct and indirect effects of water and nitrogen addition
on microbial communities, thereby advancing a potential
mechanistic understanding of the responses of desert microbial
communities to global environmental changes.

MATERIALS AND METHODS

Study Site and Experimental Design
This study was conducted at the Yanchi Research Station
(37◦04′–38◦10′ N, 106◦30′–107◦41′ E, elevation 1,530 m above
sea level), which is located on the southwestern edge of the
Mu Us Desert in Ningxia, China. This region is characterized
by a semiarid continental monsoon climate with an average
annual temperature of 8.1◦C and a mean annual precipitation of
284.8 mm (1955–2013). Approximately 80% of the precipitation
occurs from May to September. The mean annual potential
evapotranspiration is 2,024 mm (Jia et al., 2016). The soil type
is quartisamment based on the US Soil Taxonomy (Gao et al.,
2014). The dominant shrub species in this region is Artemisia
ordosica, although sparse shrubs (Hedysarum mongolicum, Salix
psammophila, and Caragana korshinskii) and the grass Agropyron
cristatum are also indigenous to the region (She et al., 2015). The
study was conducted in a fenced area, in which grazing has been
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prohibited since the late 1990s and vegetation was allowed to
recover for over a decade (Sun et al., 2016).

A two-factor field experiment performed with constant
precipitation and nitrogen addition was established in October
2014. There were three precipitation levels (W0: ambient; W20:
ambient + 20%; and W40: ambient + 40%) and two nitrogen
levels (N0: ambient, 0 kg N ha−1 yr−1 and N60: fertilization,
60 kg N ha−1 yr−1), resulting in a total of six treatments
(including all permutations of both factors), each with four
replications. Twenty-four 5 m × 5 m plots were laid out in a
randomized block design (four blocks with six treatment plots
within each block). Plots were separated by a 1 m wide buffer
zone.

The amount of added precipitation was determined by
referring to the long-term mean annual precipitation in this
area (1955–2013: 284.8 mm). Specifically, the W20 and W40
treatment plots received 20% (∼56 mm) and 40% (∼112 mm)
of supplementary precipitation, respectively. According to
the magnitude and distribution of long-term mean monthly
precipitation in this area (see details in She et al., 2016), water
was applied with a sprinkler irrigation system as nine equal
applications during the growing season (May–September), three
times in July and August and once in May, June, and September.
Water was added following natural rainfall events to avoid
altering the precipitation regime. In this study, we defined annual
precipitation as the water-year precipitation received between
October 1 and September 30 in the following year. Ambient
water-year precipitation was 288 and 369 mm in 2015 and 2016,
respectively.

Fertilization treatments involved five equal applications of
NH4NO3 solution at the beginning of each month during the
growing season, corresponding to a total fertilization rate of
60 kg N ha−1 yr−1 for the N60 treatment. For each fertilization
event, NH4NO3 (analytical grade) was weighed and dissolved
in 10 L tap water. The same amount of water, equivalent to a
2 mm precipitation, was applied to the nitrogen control plots.
The rate of nitrogen addition in the N60 treatment was nearly
fivefold greater than the background deposition rate in the study
site (12 kg N ha−1 yr−1; She, unpublished data), but was well
within the range of current deposition rates in northern China
(an average value of 56.2 kg N ha−1 yr−1; Xu W. et al., 2015).

Plant and Soil Measurements
In mid-September 2016, herbaceous vegetation structure (i.e.,
plant density, height, and coverage) was investigated using two
permanent 1 m× 1 m quadrats in each plot. One of the quadrats
was placed under a shrub canopy, and another was placed
in the surrounding interspace between shrubs. The number,
height, and coverage of shrub species were estimated in each
5 m × 5 m plot. Using these measurements, the plant Shannon–
Wiener (SW) index was calculated as the relative abundance
of each plant species. Herbaceous aboveground biomass was
measured by randomly clipping a 1 m × 1 m quadrat within
each plot. The harvested plants were sorted by species, oven-
dried at 75◦C for 48 h, and weighed. We used herbaceous
aboveground biomass measurements to estimate the herbaceous
aboveground net primary productivity (ANPP) and classified

herbs into two functional groups according to their life forms,
including perennial herbs (PH) and annuals (AS). The shrub
ANPP was estimated by using an improved method (see details in
She et al., 2016) based on the length and number of current-year
plant twigs.

After harvesting plant biomass, soil samples were collected
to depths of 0−20 cm from the interspaces between shrubs.
For each plot, three sample cores were randomly collected
using a 3.8 cm diameter soil auger and then composited
into a single sample. All collected samples were transported
immediately to our laboratory. Fresh samples were sieved
through 2 mm screens and stored at 4◦C before chemical
analysis and at −80◦C before soil DNA extraction. All soil
samples were separated into two portions. One portion was
maintained fresh for measurements of soil moisture and
dissolvable inorganic nitrogen (nitrate and ammonium). The
other portion was air-dried for determinations of soil pH,
soil organic carbon (SOC), soil total nitrogen (STN), and
soil total phosphorous (STP). Soil moisture was determined
after oven-drying at 105◦C for 24 h. Soil nitrate and
ammonium were extracted with 2 M KCl and analyzed by dual-
wavelength ultraviolet spectrophotometry and indophenol blue
colorimetry, respectively. Soil pH was measured in a soil/water
(1:2.5) suspension. SOC was measured using the potassium
dichromate oxidation method. STN was analyzed by the micro-
Kjeldahl method. STP was determined by the Mo–Sb anti-
spectrophotometric method.

Soil DNA Extraction, Amplification, and
Sequencing
Genomic DNA was isolated from 0.25 g of each soil sample using
the MoBio PowerSoil DNA Isolation Kit (MoBio Laboratories,
Inc., United States) following the manufacturer’s instructions.
DNA concentrations and purities were assessed by 1% agarose
gel electrophoresis. DNA samples were diluted to 1 ng µL−1 in
sterile water.

The V4 hypervariable region of bacterial 16S rRNA was
amplified from bacterial DNA samples with a barcoded primer
set, including primers 515F (5′-GTG CCA GCM GCC GCG GTA
A-3′) and 806R (5′-GGA CTA CHV GGG TWT CTA AT-3′). The
V4 hypervariable region of fungal 18S rRNA was amplified using
a barcoded primer set, including primers 528F (5′-GCG GTA
ATT CCA GCT CCA A-3′) and 706R (5′-AAT CCR AGA ATT
TCA CCT CT-3′). All PCR procedures were performed in 30 µL
reaction mixtures containing 15 µL of Phusion R© High-Fidelity
PCR Master Mix with GC Buffer (New England BioLabs, Inc.,
United States), 0.2 µM of each primer, and approximately 10 ng
template DNA. Thermal cycling involved an initial denaturation
at 98◦C for 1 min, followed by 30 cycles of denaturation at 98◦C
for 10 s, annealing at 50◦C for 30 s, and elongation at 72◦C for
60 s, with a final extension at 72◦C for 5 min.

Polymerase chain reaction products were assessed by 2%
agarose gel electrophoresis, and those with a bright main band
between 400 and 450 bp were chosen for further experiments.
Equal amounts of the PCR product from each sample were
pooled and then purified using the GeneJET Gel Extraction
Kit (Thermo Scientific, Inc., United States). A sequencing
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library was generated using the NEB Next R© UltraTM DNA
Library Prep Kit for Illumina (New England BioLabs, Inc.,
United States) following the manufacturer’s instructions, and
then sequencing adapters were added to the 5′ ends of the
amplicons. The library quality was assessed on the Qubit R©

2.0 Fluorometer (Thermo Scientific, Inc., United States) and
Agilent Bioanalyzer 2100 system (Agilent Technologies, Inc.,
United States). Finally, the qualified library was sequenced using
an Illumina HiSeq 2500 platform (Illumina, Inc., United States)
at Novogene (Beijing, China), producing 250-bp paired-end
reads.

Bioinformatics Processing
Paired-end reads were assigned to samples based on their unique
barcodes and were truncated by filtering out the barcode and
primer sequences. Paired-end reads from the original amplicon
were merged using FLASH software (Magoc and Salzberg, 2011)
which is a very fast and accurate analysis tool used to merge
paired-end reads when the original DNA fragments are shorter
than twice the length of reads. The obtained splicing sequences
were referred to raw tags. Quality filtering of the raw tags was
performed under specific filtering conditions to obtain high-
quality clean tags (Bokulich et al., 2013) using QIIME software
(Caporaso et al., 2010) as a quality-control process. The clean tags
were compared with the reference database using the UCHIME
algorithm (Edgar et al., 2011) to detect chimeric sequences (Haas
et al., 2011). After removing the chimeric sequences, we obtained
effective tags.

Effective tags were clustered into operational taxonomic
units (OTUs) at ≥97% sequence similarity with the UPARSE
program (Edgar, 2013), and singleton OTUs (with only one
read) were removed. A representative sequence from each OTU
was selected and annotated for taxonomic information using
the Ribosomal Database Project classifier (Wang et al., 2007)
against the SILVA Database (Quast et al., 2013). Phylogenetic
relationships of different OTUs were conducted using MUSCLE
software (Edgar, 2004). OTU abundance tables were constructed
using USEARCH software. The relative abundances of species
at different taxonomic levels were calculated using the OTU
abundance tables. To rarify all data sets to the same level of
sampling effort, OTU abundance tables were rarefied to 45,469
bacterial 16S rRNA sequences and 3,138 fungal 18S rRNA
sequences (the minimum number of sequences for a sample)
for each soil sample. Further analysis of alpha diversity and
beta diversity were performed based on these rarefied OTU
tables. Finally, microbial diversity was assessed based on the
observed species (species richness) and SW index, and Bray–
Curtis dissimilarities were used to assess differences in microbial
community composition among treatment groups.

All raw sequence reads generated in this study were archived
in the Sequence Read Archive database of the National Center for
Biotechnology Information under accession number SRP126812.

Statistical Analyses
The Shapiro–Wilk test was conducted to examine the normality
of data that were used for analysis of variance (ANOVA). Data

that did not meet the assumption of normality were log/sqrt-
transformed prior to analyses to normalize their distributions.
Two-way ANOVA was performed to test the impacts of water,
nitrogen addition, and their interactions on plant ANPP and
diversity, soil chemical properties, microbial diversity, and
the relative abundances of dominant microbial taxa. One-way
ANOVA with Duncan’s multiple-range tests was performed
to compare the effects of watering on each response variable
at each nitrogen-addition rate and to compare the effects
of nitrogen at each water-treatment level. To estimate the
effect sizes of water or nitrogen treatment on the relative
abundances of the dominant microbial taxa, the response ratio
was calculated as ln(Xij / Xic), where Xij is the observed
value for variable i in each experimental plot j and Xic is
the mean value of the variable i in the control treatment
(Byrne et al., 2017). One-sample t-test was applied to determine
whether each response ratio was significantly different from
zero. Differences in microbial community composition (Bray–
Curtis dissimilarities) among the water- and nitrogen-treatment
groups were assessed by permutational multi-variate ANOVA
(PERMANOVA) and visualized using principal coordinate
analysis (PCoA). Spearman’s rank correlation analysis (Mantel
test) was used to test the relationships between plant/soil variables
and the microbial community composition. Stepwise regression
analysis was conducted to explore the multi-variate effects of
plant and soil factors on the microbial diversity and relative
abundances of dominant microbial phyla. Prior to performing
stepwise regression, environmental factors that showed a high
collinearity with other factors (r > 0.6) were removed, and
other factors (plant SW, shrub ANPP, PH ANPP, AS ANPP, soil
moisture, dissolvable inorganic nitrogen (DIN), and STN) were
retained.

We conducted structural equation modeling (SEM) to
specifically test the direct and indirect effects of water and
nitrogen addition on the composition of soil microbial
communities (as assessed by PCo1 of the Bray–Curtis
dissimilarity matrix). Prior to performing SEM analysis,
we hypothesized that increased precipitation and nitrogen
would impact the bacterial/fungal communities, directly
by increasing water and nitrogen availability, or indirectly
through changing plant ANPP, based on our ANOVA,
Mantel test, and stepwise regression results. Subsequently,
a priori model of the above hypothetical relationships
was constructed (Supplementary Figure S1). Thus, the
pairwise correlations among these environmental factors,
including the water- and nitrogen-addition rates, soil
moisture, DIN, shrub ANPP, PH ANPP, AS ANPP, and
bacterial/fungal PCo1 values, were examined by Spearman’s
rank correlation analysis. The matrix of R values derived
from the Spearman’s correlation analysis was retained to
conduct SEM. The data matrix was fitted to the model using
the maximum likelihood estimation method (Grace, 2006).
The overall goodness-of-fit of our model was characterized
by a non-significant chi-square test (P > 0.05), low
Akaike information criteria (AIC), low root-mean-square
error of approximation (RMSEA < 0.05 and P > 0.1),
and a comparative fit index (CFI) > 0.95. The final
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model was improved by removing relationships between
observed variables from a priori models, according to these
indices.

All analyses and figures were performed with R software,
version 3.3.1 (R Core Team, 2016). Statistical significance was
determined at a level of P ≤ 0.05. We used the “vegdist,”
“adonis,” and “capscale” functions in the vegan package (Oksanen
et al., 2013) for computing the Bray–Curtis dissimilarity,
conducting PERMANOVA and Mantel test, and implementing
PCoA, respectively. We employed the “stepAIC” function in the
MASS package (Venables and Ripley, 2002) to conduct stepwise
regression analysis, the psych package (Revelle, 2016) to construct
a Spearman’s rank correlation matrix, the lavaan package (Yves,
2012) for SEM, and the ggplot2 package (Wickham, 2009) for
generating graphs.

RESULTS

Plant and Soil Properties
Water addition significantly increased plant SW, but
did not affect plant ANPP (Supplementary Table S1).
Plant SW increased from 1.14 ± 0.05 (W0 treatment) to
1.23 ± 0.04 (W20) and 1.40 ± 0.05 (W40), amounting to
average increment rates of 7.89 and 22.81%, respectively.
Nitrogen addition significantly enhanced PH ANPP, but
did not alter plant SW, shrub ANPP, and AS ANPP
(Supplementary Table S1). Nitrogen-induced increase in
PH ANPP under N60 treatment (58.13 ± 14.66 g m−2)
was 178.13% higher than that under ambient treatment
(N0, 20.90± 6.15 g m−2). No significant interactive effects
of water and nitrogen addition were found among any plant
properties.

Water and nitrogen enrichment significantly influenced soil
moisture and nitrogen availability, but did not affect soil pH,
SOC, STN, or STP (Supplementary Table S1). Soil moisture
significantly increased only in plots with added water, from
4.18± 0.27 (W0) to 6.04± 0.38 (W20) and 7.53± 0.36% (W40),
an average increase of 44.50 and 80.14%, respectively. Nitrogen-
induced increase in soil nitrogen availability in the plots with
fertilization (N60, 2.40 ± 0.17 mg N kg−1) was 144.90% higher
than that in unfertilized plots (N0, 0.98 ± 0.08 mg N kg−1).
No significant interactive effects were detected among any soil
properties.

Diversity and Composition of Microbial
Communities
Soil bacterial species richness and SW index showed positive
responses to water addition, but were unresponsive to nitrogen
addition and water–nitrogen interactions (Figure 1A and
Supplementary Table S1). Relative to ambient treatment,
water addition increased bacterial species richness and SW
index by 4.28-7.91% and 1.35-2.50%, respectively. Shifts
in soil bacterial community composition were detected
under different water treatments (PERMANOVA, F = 1.800,
P = 0.005), but not under nitrogen treatments (PERMANOVA,
F = 0.826, P = 0.675) and water–nitrogen interaction

treatments (PERMANOVA, F = 0.952, P = 0.533) (Table 1
and Figure 2A).

Both water and nitrogen addition had no influences on fungal
species richness and SW index (Figure 1B and Supplementary
Table S1). Soil fungal community composition was significantly
altered under nitrogen treatments (PERMANOVA, F = 2.268,
P = 0.019), but not under water treatments (PERMANOVA,
F = 1.063, P = 0.386) and water–nitrogen interaction treatments
(PERMANOVA, F = 0.894, P = 0.603) (Table 1 and Figure 2B).

Relative Abundance of Dominant
Microbial Taxa
Soil bacterial community was dominated by Proteobacteria
(38.11%), Actinobacteria (31.09%), Acidobacteria (5.46%),
Bacteroidetes (4.79%), Gemmatimonadetes (4.52%),
Planctomycetes (4.49%), Chloroflexi (4.07%), Cyanobacteria
(2.40%), and Firmicutes (1.04%), based on the analysis of all
soil samples (Supplementary Figure S2). Water addition had
significant impacts on the relative abundance of Bacteroidetes,
whereas nitrogen addition, alone or in combination with
water, had no effects on the dominant bacterial phyla
(Supplementary Table S2). Watering reduced the relative
abundance of Bacteroidetes from 5.72± 0.59 (W0) to 4.61± 0.48
(W20) and 4.06 ± 0.24% (W40). Response ratio analysis
showed that the relative abundances of Proteobacteria,
Actinobacteria, and Bacteroidetes decreased with water
addition, while Acidobacteria and Planctomycetes exhibited
the opposite trend (Figure 3A). Nitrogen enrichment increased
the response ratio of the Cyanobacteria relative abundance,
but had no effects on that of other dominant bacterial phyla
(Figure 3B).

The fungal community was dominated by Ascomycota
(88.03%) and Basidiomycota (8.32%), while Zygomycota (1.59%)
and Chytridiomycota (1.03%) were minor phyla under all
treatments (Supplementary Figure S3). At the order level,
we identified nine dominant orders (Pleosporales, 38.21%;
Chaetothyriales, 15.63%; Hypocreales, 6.68%; Sordariales, 4.13%;
Pezizales, 2.86%; Capnodiales, 2.72%; Verrucariales, 1.88%;
Eurotiales, 1.80%; and Lichinales, 1.18%) in the Ascomycota
division, and one order each in the Basidiomycota (Agaricales,
5.03%) and Zygomycota (Mortierellales, 1.57%) division among
all soil samples studied (Supplementary Figure S4). ANOVA
results showed that nitrogen enrichment significantly influenced
the relative abundances of the Ascomycota and Basidiomycota
phyla and the Pleosporales, Sordariales, and Agaricales orders,
whereas water addition and water–nitrogen interactions showed
no effects on the relative abundances of any dominant fungal
taxa (Supplementary Table S3). Relative to the unfertilized
plots, nitrogen addition increased the relative abundances of
Ascomycota and Pleosporales by 6.38 and 23.53%, respectively,
but reduced those of Basidiomycota, Sordariales, and Agaricales
by 41.12, 37.53, and 67.73%, respectively. Response ratio analysis
showed similar results to ANOVA, in terms of the phylum- and
order-level responses of fungi to nitrogen addition (Figure 4B).
In addition, response ratio analysis also demonstrated that water
addition had remarkable impacts on dominant fungal taxa, with
Ascomycota increasing but Basidiomycota, Agaricales, Pezizales,
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FIGURE 1 | Effects of water and nitrogen addition on soil bacterial (A) and fungal (B) diversity. ∗P < 0.05, ∗∗P < 0.01; ns, not significant.

and Verrucariales decreasing in their relative abundances
(Figure 4A).

Relationships between Microbial
Communities and Plant/Soil Properties
Soil bacterial community composition strongly correlated with
PH ANPP, STN, and STP, but weakly correlated with soil moisture
(Table 2). Stepwise regression analysis demonstrated that
bacterial diversity and the relative abundances of Bacteroidetes
and Planctomycetes, whose value being altered by water addition,
were mainly affected by soil moisture and total nitrogen content;
those of Proteobacteria and Acidobacteria were shifted by
watering, but were unrelated to any plant and soil properties
measured in our study; and that of Cyanobacteria, whose
abundance being increased by nitrogen addition, showed positive
correlations with the ANPP of perennial shrub and herbs
(Table 3). SEM results showed that water addition directly
affected soil bacterial community by increasing soil moisture,
while nitrogen enrichment indirectly influenced the bacterial
community by changing PH ANPP (Figure 5A). The total
net effect of water addition on the bacterial community

TABLE 1 | Effects of water addition (W), nitrogen addition (N), and their interaction
(W × N) on the compositions of soil microbial communities, as determined by
PERMANOVA.

W N W × N

Bacteria F 1.800 0.826 0.952

P 0.005 0.657 0.533

Fungi F 1.063 2.268 0.894

P 0.386 0.019 0.603

P-values reflecting statistical significance are shown in boldface.

was marginally significant [standardized coefficient = 0.28,
Zvalue (dividing the regression weight estimate by its standard
error) = 1.79, P = 0.073], whereas that of nitrogen addition was
non-significant (standardized coefficient = 0.11, Zvalue = 1.35,
P = 0.176).

The fungal community composition strongly correlated
with STN and weakly correlated with the ANPP of shrub
and annual plants (Table 2). Stepwise regression analysis
revealed that fungal diversity and the relative abundances of
Ascomycota and Basidiomycota strongly correlated with shrub
ANPP (Table 3). The dominant fungal phyla Ascomycota,
Basidiomycota, and Chytridiomycota were shifted by water
and nitrogen addition, and also showed strong correlations
with soil moisture and/or available nitrogen (Table 3). In
the order level, the relative abundances of Pezizales and
Verrucariales, whose abundance being reduced by water
addition, were negatively correlated with soil moisture and
total nitrogen content; that of Pleosporales increased with
nitrogen enrichment and showed positive correlations with AS
ANPP and soil available nitrogen; that of Sordariales, whose
abundance being reduced by nitrogen fertilization, showed a
positive correlation with AS ANPP, but a negative correlation
with soil available nitrogen; that of Agaricales, whose abundance
being decreased in both water and nitrogen treatments, showed
negative correlations with the ANPP of perennial shrub and
herbs (Table 3). SEM analysis demonstrated that nitrogen
enrichment could directly affect the fungal community by
increasing nitrogen availability and indirectly via changing PH
ANPP (Figure 5B). The total net direct effect of nitrogen
enrichment was significant (standardized coefficient = −0.38,
Zvalue = −2.30, P = 0.022), whereas the indirect effect was
non-significant (standardized coefficient = 0.18, Zvalue = 1.64,
P = 0.101).
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FIGURE 2 | Principal coordinate analysis of soil bacterial (A) and fungal (B) community differences (Bray–Curtis dissimilarities) following different water and nitrogen
treatments.

FIGURE 3 | Response ratio analysis of changes in the relative abundance of dominant bacterial phyla in response to water treatment (A) and nitrogen treatment
(B) compared to the control treatment, at the 95% confidence interval. Red points indicate significant changes compared with the control treatment.

DISCUSSION

Precipitation Increment But Not Nitrogen
Enrichment Significantly Influenced
Desert Bacterial Community
Our results showed that water addition significantly increased
soil bacterial diversity, and altered the bacterial community
composition, with Acidobacteria and Planctomycetes increasing
but Proteobacteria and Bacteroidetes decreasing in terms of their
relative abundances (Figures 1–3 and Table 1). These results

suggest that water addition tended to promote flourishing of
oligotrophic taxa and depress copiotrophic taxa. Many species
of oligotrophic taxa (e.g., Acidobacteria) have been shown to
act as stress tolerators, which can enter a dormant state to
evade stressful conditions (Fierer, 2017; Tecon and Or, 2017).
As desert environments are water-stressful, alleviating that stress
following water addition would revive dormant microorganisms
and increase their abundances (Tecon and Or, 2017). However,
this shifting trend in bacterial taxa in our study contrasted with
the results from studies performed in a temperate grassland, in
which water addition tends to increase the relative abundance
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FIGURE 4 | Response ratio analysis of changes in the relative abundance of dominant fungal phyla/orders in response to water treatment (A) and nitrogen treatment
(B) compared to the control treatment, at the 95% confidence interval. Red points indicate significant changes compared with the control treatment.

of Proteobacteria and decrease that of Acidobacteria (Zhang
et al., 2013, 2014). One possible mechanism underlying the
responses of bacterial phyla to water addition in grasslands was
that watering could increase nitrogen availability by stimulating
the mineralization of soil organic matter (Li et al., 2016, 2017b).
However, in our study, soil nitrogen availability was not affected
by water addition, probably due to the quite low amount of
soil organic matter (Supplementary Table S1), which is roughly
equivalent to one-seventh of that in grassland soils (Zeng et al.,
2016; Li et al., 2017b). Alternatively, this contrary response was
likely due to the high sensitivity of oligotrophic taxa to water
addition in the more stressful desert environment. Evidence from
aridity-gradient studies in northern China indicates that the
relative abundances of Acidobacteria and Planctomycetes increase
with an increasing aridity index (AI, estimated by the ratio of
precipitation to potential evapotranspiration) in more arid areas
(AI < 0.2), but exhibit no further variation at higher AI values
(Wang X. et al., 2015; Wang et al., 2017); whereas the relative
abundances of Bacteroidetes and most Proteobacteria subphyla
show non-linear relationships with AI, with the lowest value

being present at AI ≈ 0.2 (Wang X. et al., 2015). The AI in
our study site is 0.14; thus, oligotrophic taxa were expected to
increase and copiotrophic taxa were expected to decrease with
water addition. The dormancy of oligotrophic taxa might be
more prevalent in more stressful environments, resulting in a
larger population recovery when conditions improve and further
depress copiotrophic taxa.

In contrast to previous findings, neither the bacterial diversity
nor the community composition was substantially affected by
nitrogen addition in our study (Figures 1, 2 and Table 1). Among
all dominant bacterial phyla identified, only Cyanobacteria were
slightly increased with nitrogen input in terms of the relative
abundance (Figure 3B). Previously, the relative abundance
of Cyanobacteria has been shown a non-linear response to
nitrogen enrichment, with an increase under moderate nitrogen
input (35−70 kg N ha−1 yr−1) and a decrease under excess
nitrogen addition (140 kg N ha−1 yr−1) (Wang J. et al.,
2015). The overall unresponsiveness of the bacterial community
following nitrogen enrichment was also reported in fertilization
experiments conducted in semiarid grasslands (Carey et al., 2015;
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TABLE 2 | Correlations between plant/soil properties and soil microbial
communities (Bray–Curtis dissimilarities), as determined by Mantel test.

Properties Bacteria Fungi

r P r P

Plant SW −0.103 0.820 −0.076 0.778

Shrub ANPP −0.050 0.652 0.154 0.094

PH ANPP 0.264 0.032 0.111 0.166

AS ANPP −0.112 0.790 0.182 0.064

Moisture 0.128 0.092 0.055 0.268

DIN −0.057 0.711 0.112 0.101

Soil pH −0.045 0.683 −0.017 0.577

SOC 0.113 0.135 0.075 0.190

STN 0.313 0.010 0.183 0.040

STP 0.391 0.004 0.082 0.215

P-values reflecting statistical significance are shown in boldface.
ANPP, aboveground net primary productivity; AS, annuals; DIN, dissolvable
inorganic nitrogen; PH, perennial herbs; SOC, soil organic carbon; STN, soil total
nitrogen; STP, soil total phosphorous; SW, Shannon–Wiener index.

McHugh et al., 2017). There are several potential explanations
regarding these insensitive responses. The low nitrogen-retention
capacity of desert soil is likely to weaken the effects of nitrogen
addition (Jin et al., 2015; McHugh et al., 2017). In addition, data
from numerous fertilization studies have shown that nitrogen-
induced soil acidification is an important mechanism in shifting
the bacterial community composition (Chen et al., 2015; Zeng
et al., 2016; Zhang et al., 2017b). However, in our study, nitrogen
addition did not influence the soil pH (Supplementary Table S1),
which was likely due to the high buffering capacity of the soil
(Liu et al., 2015). Although direct effects of nitrogen addition on
the bacterial community were not detected, our results suggest
that nitrogen addition could indirectly influence the bacterial
community by changing PH ANPP (Figure 5A). In grasslands,
many field studies have shown that nitrogen-induced changes
in aboveground plant biomass are important drivers of shifting
bacterial communities (Chen et al., 2015; Yuan et al., 2016). We
also found that nitrogen addition increased the biomass of PH
(Supplementary Table S1), although this indirect effect was weak
(Figure 5A). It is possible that the effects of nitrogen deposition,
as seen in the fertilization experiments, take longer to emerge
than the 2-year observation period of this study.

Increased Precipitation and Nitrogen
Altered the Drought-Tolerant and Trophic
Traits of Desert Fungal Community
In contrast to the bacterial community, both water and
nitrogen addition significantly impacted the fungal community
composition, but not the fungal diversity (Figures 1, 2 and
Table 1). Nitrogen addition mainly increased the relative
abundance of Ascomycota and decreased that of Basidiomycota
(Figure 4B and Supplementary Table S3). It was suggested
that the phyla Ascomycota and Basidiomycota could roughly
grouped into copiotrophic and oligotrophic taxa, respectively
(Ho et al., 2017; Yao et al., 2017), suggesting that they would
respond oppositely to nitrogen enrichment. Moreover, many field

experiments conducted in diverse ecosystems have also revealed
that Basidiomycota decreased in relative abundance following
nitrogen input (Allison et al., 2007; Entwistle et al., 2013; Chen
et al., 2018). We also found that the relative abundance of
Chytridiomycota decreased under nitrogen treatment; however,
its relative proportion was quite small (∼1%), and thus its
variation can be negligible. The increased relative abundance
of Ascomycota following nitrogen addition was primarily due
to an increased relative abundance of Pleosporales, which was
the predominant fungal order in our study. Members in the
order Pleosporales have been shown to live as plant endophytes
in arid grass species and were shown to transfer nutrients
between plants and nearby soil (Green et al., 2008; Porras-Alfaro
et al., 2011). Our stepwise regression analysis also indicated that
the relative abundance of Pleosporales was positively correlated
with annual plants and soil inorganic nitrogen (Table 3).
Previous data also demonstrated that the relative abundance
of Pleosporales increases with nitrogen enrichment (Lowell and
Klein, 2001; Wang J. et al., 2015), which supports our findings.
In contrast to Pleosporales, members of the orders Sordariales
(Ascomycota) and Agaricales (Basidiomycota) are considered
as the potent degraders of lignin and predominantly show
oligotrophic features (Poggeler, 2011; Entwistle et al., 2013; Ho
et al., 2017). Results from stepwise regression showed that the
relative abundance of Sordariales was negatively correlated with
soil available nitrogen, while that of Agaricales showed a negative
correlation with PH ANPP, suggesting that nitrogen enrichment
was likely to directly affect Sordariales relative abundance via
increasing nitrogen availability, whereas indirectly influence
Agaricales by changing PH ANPP (Table 3). Taken together,
our results indicated that nitrogen enrichment tended to depress
oligotrophic fungal taxa, but to facilitate taxa regarding nutrient
transfer.

Our response ratio analysis indicated that water addition
tended to favor Ascomycota over Basidiomycota (Figure 4A).
The ANOVA and PERMANOVA results showed that the fungal
community composition was unresponsive to water addition
(Table 1, Figure 2, and Supplementary Table S3), probably due
to the large variation in our fungal data. Data from many field
experiments have demonstrated that drought treatment decreases
the relative abundance of Ascomycota and increases that of
Basidiomycota (McHugh and Schwartz, 2014; He et al., 2016;
Bastida et al., 2017), suggesting that Basidiomycota adapt better
to drought conditions. Our stepwise regression analysis also
revealed that the relative abundance of Ascomycota was positively
correlated with soil moisture, while that of Basidiomycota
exhibited an opposite pattern (Table 3). Analyzing the order-
level responses of fungi to water addition demonstrated that
the relative abundances of Pezizales (Ascomycota), Verrucariales
(Ascomycota), and Agaricales (Basidiomycota) decreased with
water input, indicating that the change of Basidiomycota was
mainly caused by Agaricales and the increase in Ascomycota
relative abundance was likely driven by many low-abundance
taxa. Results from stepwise regression showed that the relative
abundances of Pezizales and Verrucariales were negatively
correlated with soil moisture (Table 3), suggesting that these
fungal orders might prefer to live in drought conditions.
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TABLE 3 | Results of stepwise regression analysis of the relationships between plant/soil properties and the diversity and relative abundance of various microbial groups.

Diversity/relative
abundance

Model R2 F P

Bacterial SR y = 4101.935 + 104.470 (moisture) − 2591.638 (STN) 0.383 6.520 0.006

Bacterial SW y = 9.795 + 0.081 (moisture) − 1.858 (STN) 0.459 8.924 0.002

Proteobacteria – 0.361 12.452 0.002

Actinobacteria y = 0.376 − 0.235 (STN)

Acidobacteria – 0.444 8.389 0.002

Bacteroidetes y = 0.038 − 0.005 (moisture) + 0.151 (STN) 0.463 4.098 0.015

Gemmatimonadetes y = 0.098 − 0.006 (shrub ANPP) − 0.004 (PH ANPP) + 0.001 (AS ANPP) − 0.046 (STN) 0.130 3.279 0.084

Planctomycetes y = 0.007 + 0.006 (moisture) 0.331 5.187 0.015

Chloroflexi y = 0.053 + 0.003 (moisture) − 0.107 (STN) 0.361 12.452 0.002

Cyanobacteria y = −0.023 + 0.007 (shrub ANPP) + 0.004 (PH ANPP) 0.311 4.746 0.020

Firmicutes y = 0.018 − 0.026 (STN) 0.134 3.415 0.078

Fungal SR –

Fungal SW y = 6.684 − 0.370 (shrub ANPP) 0.173 4.589 0.043

Ascomycota y = 0.556 + 0.045 (shrub ANPP) + 0.011 (moisture) + 0.023 (DIN) 0.562 8.545 0.001

o_Pleosporales y = 0.272 + 0.002 (AS ANPP) + 0.043 (DIN) 0.550 12.811 0.000

o_Chaetothyriales y = −3.452 + 0.340 (shrub ANPP) − 0.011 (AS ANPP) 0.262 3.733 0.041

o_Hypocreales y = 0.095 + 0.011 (PH ANPP) − 0.222 (STN) 0.351 5.683 0.011

o_Sordariales y = 0.063 + 2.928∗10−4 (AS ANPP) − 0.010 (DIN) 0.391 6.754 0.005

o_Pezizales y = 0.045 − 0.003 (moisture) 0.206 5.695 0.026

o_Capnodiales y = −2.367 − 0.328 (shrub ANPP) + 0.168 (DIN) 0.288 4.248 0.028

o_Verrucariales y = 0.012 − 0.004 (moisture) + 0.117 (STN) 0.258 3.659 0.043

o_Eurotiales y = 0.033 + 0.004 (PH ANPP) − 0.097 (STN) 0.368 6.116 0.008

o_Lichinales –

Basidiomycota y = 0.368 − 0.462 (shrub ANPP) − 0.123 (moisture) 0.510 10.942 0.001

o_Agaricales y = 3.567 − 1.167 (shrub ANPP) − 0.405 (PH ANPP) 0.524 11.561 <0.001

Zygomycota –

o_Mortierellales –

Chytridiomycota y = − 4.349 − 0.174 (DIN) 0.169 4.487 0.046

Groups in boldface type are those that showed significant responses to water and/or nitrogen addition, as assessed by two-way ANOVA and response ratio analysis.
ANPP, aboveground net primary productivity; AS, annuals; DIN, dissolvable inorganic nitrogen; PH, perennial herbs; STN, soil total nitrogen; SR, species richness;
SW, Shannon–Wiener index.

Previous studies have also revealed that species of the order
Pezizales are important members of ectomycorrhizal fungi
(Tedersoo et al., 2006; Healy et al., 2013) and adapt well in
water-stressed environments (Smith et al., 2006; Gordon and
Gehring, 2011). In contrast to Pezizales, most species of the
order Verrucariales are characterized as lichen-forming fungi
(Gueidan et al., 2007; Wang et al., 2014). Previous physiological
data indicated that, in arid areas, these fungi are extremely
drought-tolerant and, thus, are expected to adapt well in desert
environments (Wang Y. et al., 2015; Zhang et al., 2017a).
These studies indirectly supported our findings that water
addition reduced the relative abundances of drought-adapted
fungi.

Precipitation and Nitrogen Addition
Primarily Directly Affected Desert
Microbial Communities via Changing
Resource Availability
The present study indicated that water and nitrogen addition
resulted in stronger direct effects on soil microbial communities

through changing resource availability rather than indirect
influences via changes of plant community (Table 3 and
Figure 5). Specially, shifts in the fungal community composition
following water and nitrogen enrichment were primarily
caused by the changes of water and nitrogen availability,
whereas shifts in the bacterial community composition
were mainly driven by changes in soil moisture. Fungal
and bacterial communities responded in different ways
to resource availability, probably due to their distinctive
adaptive strategies to desert environments. Fungi are typically
more drought-tolerant and nutrient-sensitive than bacteria,
attributed to their ability to access soil water and nutrients
better through hyphal networks (Boer et al., 2005; Yuste
et al., 2011; Manzoni et al., 2012). Consequently, when
water and nitrogen availability are improved, drought- and
oligotrophic-adapted fungal taxa are expected to be suppressed
(Crowther et al., 2014). However, desert bacteria probably
show limited responses to a moderate rate of nitrogen
fertilization due to their relatively low ability for nutrient
acquisition and the low nutrient-retention capacity of desert
soils. In contrast to nitrogen availability, desert bacteria are
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FIGURE 5 | Structural equation modeling showing the relationships between plant/soil properties and the bacterial (A) and fungal (B) community compositions.
Solid arrows indicate positive effects, and the dashed arrow indicates a negative correlation. The standardized path coefficients are adjacent to the arrows and
indicate the effect size of the relationship. Arrow widths are proportional to the strength of each relationship. Percentages beside the response variables refer to the
proportion of variance explained by the model (R2). Results of model fitting: (A) bacteria: χ2 = 10.096, df = 9, P = 0.343; CFI = 0.984; AIC = 353.187;
RMSEA = 0.071, P = 0.391; (B) fungi: χ2 = 2.052, df = 2, P = 0.358; CFI = 0.999; AIC = 238.585; RMSEA = 0.033, P = 0.380. PH ANPP, the aboveground net
primary productivity of perennial herbs. #P < 0.07, ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

likely more sensitive to the improvement of soil moisture,
probably due to the revival of dormant taxa when water
stress is alleviated (Lennon and Jones, 2011; Tecon and Or,
2017).

The SEM results suggest that nitrogen enrichment could
indirectly influence soil microbial communities via altering PH
ANPP, while the indirect effects of water addition were not
detectable (Figure 5). Although the indirect nitrogen effects
were found in our study, their strength was relatively weaker
than the direct effects. Our findings were not in line with the
results reported in grassland ecosystems, where nitrogen-induced
shifts in microbial community composition are mainly indirectly
mediated by changes of soil pH and/or plant community rather
than directly via changing resource availability (Chen et al.,
2015; Yuan et al., 2016; Zeng et al., 2016). It is likely that
desert ecosystems are more resource limited than grasslands,
suggesting that desert microbial communities are likely more
sensitive to resource availability. The high buffering capacity
of our soils might weaken the effects of nitrogen-induced
soil acidification. It is also possible that a stronger indirect
effect of nitrogen enrichment can be seen in a long-term
experimental treatment. Owing to limitations of our short-
term experiment, further filed studies with longer observation
period will be necessary to disentangle the direct and indirect
influences of global environmental changes on desert microbial
communities.

CONCLUSIONS

In summary, our results indicated that soil microbial
communities responded differently to increased precipitation
and nitrogen in this desert ecosystem. Watering increased soil
bacterial diversity and shifted the community composition by

promoting the flourishing of stress-tolerant (dormant) taxa,
whereas nitrogen enrichment had no substantial effects. Water
and nitrogen addition did not influence soil fungal diversity, but
significantly altered the community composition with drought-
adapted taxa being suppressed following water addition and
with oligotrophic-adapted taxa being suppressed under nitrogen
enrichment. Water- and nitrogen-induced changes in soil
microbial communities arose mainly through altering resource
availability rather than plant community. Our results suggest
that water addition affected desert microbial communities by
altering their stress-tolerant traits, while nitrogen enrichment
shifted their copiotrophic/oligotrophic traits. Although, in a
short-term experiment, our findings highlight the importance
of resource availability in driving the desert microbial responses
to altered environmental conditions, further long-term study
is needed to help in better understanding the responses
of desert microbial communities to global environmental
changes.
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