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Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical
reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are
nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD.
Because these coenzymes differ in stability, bioavailability and costs, the enzyme
preference for a specific coenzyme is an important issue for practical applications.
Different approaches for the manipulation of coenzyme specificity have been reported,
with different degrees of success. Here we present various attempts for the switching
of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This
review covers 103 enzyme engineering studies from 82 articles and evaluates the
accomplishments in terms of coenzyme specificity and catalytic efficiency compared
to wild type enzymes of different classes. We analyzed different protein engineering
strategies and related them with the degree of success in inverting the cofactor specificity.
In general, catalytic activity is compromised when coenzyme specificity is reversed,
however when switching from NAD to NADP, better results are obtained. In most of the
cases, rational strategies were used, predominantly with loop exchange generating the
best results. In general, the tendency of removing acidic residues and incorporating basic
residues is the strategy of choice when trying to change specificity from NAD to NADP,
and vice versa. Computational strategies and algorithms are also covered as helpful
tools to guide protein engineering strategies. This mini review aims to give a general
introduction to the topic, giving an overview of tools and information to work in protein
engineering for the reversal of coenzyme specificity.

Keywords: oxidoreductases, coenzyme, enzyme engineering, cofactor, NAD(P)H

INTRODUCTION

Oxidoreductases (EC.1.X.X.X) are a large group of enzymes that catalyze the transfer of electrons
from one molecule to another. These enzymes are valuable biocatalysts for industrial uses, since
they allow the use of water as solvent and facilitate regio- stereo- and enantioselective conversions.
Therefore, oxidoreductases have several applications in the chemical industry, mainly for the
production of pharmaceuticals, agrochemicals, biofuels, polymers, amino acids, cosmetics, and
nutraceuticals (May and Padgette, 1983; May, 1999; Xu, 2005).
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Oxidoreductases usually need tightly bound cofactors for
their catalytic activity, therefore forming part of the enzyme
structure permanently as prosthetic groups. Oxidoreductases
can also function with external electron donors or acceptors;
in this case these cofactors are referred to as coenzymes
(Torres Pazmifo et al., 2010) and stoichiometric amounts of
them are required for the biotransformation at hand. Among
oxidoreductases coenzymes, nicotinamide adenine dinucleotide
(NAD) or its phosphorylated equivalent, nicotinamide adenine
dinucleotide phosphate (NADP), are the most typical, either in
their reduced and oxidized forms. These molecules possess two
structural moieties; (i) the nicotinamide, giving the coenzyme its
electrochemical function, accepting or donating a hydride group
from the C-4 position (Paul et al., 2014) and, (ii) the adenosine,
containing the phosphate group (NADP) or the hydroxyl group
(NAD) in the 2’-position of the ribose giving the coenzyme
its distinction (Knaus et al., 2016). Oxidoreductases are usually
specific for one of the coenzymes, those involved in anabolic
processes prefer NADP, and the ones participating in catabolic
processes prefer NAD (Takase et al., 2014).

Different structural motifs enable the union of the coenzyme
and give the specificity for NAD or NADP. Usually, enzymes
preferring NADP have larger pockets with positively charged
or hydrogen bond donating residues that interact with the
phosphate group of the adenine ribose (Pick et al., 2014). NAD
preferring enzymes contain negatively charged amino acids that
generate repulsion toward NADP and form hydrogen bonds to
the 2’-OH and 3’-OH of the adenine ribose (Petschacher et al.,
2014). A recurring structural motif for the binding of coenzymes
is the Rossman fold. This nucleotide-binding motif is formed
by two a-helices and three B-strands in the alternating pattern
papaf. The pyrophosphate union site is located at the amino
terminus of the first a-helix, characterized by the conserved
sequence GxGxxG in NAD dependent enzymes and GxGxxA in
NADP dependent ones (Hanukoglu and Gutfinger, 1989). The
specificity to each coenzyme is influenced by the C-terminus of
the second B-strand, where an acidic residue is usually present
for NAD preferring enzymes (Carugo and Argos, 1997). Another
coenzyme binding fold is the TIM barrel. This conformation
can, among others, be observed in the aldo-keto reductase
superfamily and is formed by eight a-helices and eight B-strands,
alternating and forming a barrel with the p-strands in the interior
and the a-helix in the exterior (Solanki et al., 2017).

Switching the coenzyme preference in oxidoreductases is an
attractive research area, particularly when these enzymes are used
in biocatalysis and metabolic engineering. In some cases, the
enzyme is part of a cascade that allows intelligent use of an
alternative coenzyme (Gand et al., 2016). The bioavailability of
one of the coenzymes or the easiness of their regeneration has
been another topic of research (Lerchner et al., 2016). In cell free
biotransformations, NAD is usually preferred over NADP due
to its much lower price and higher stability (Beier et al., 2016).
For some applications it can be desirable that the enzyme uses
both coenzymes to increase process efficiency and circumvent
metabolic bottlenecks (Pick et al., 2014; Solanki et al., 2016).

In this mini review we focus on the achievements to
change the coenzyme preference of oxidoreductases reviewing

various coenzyme engineering attempts. We analyzed the
different protein engineering strategies and related them with
the degree of success in switching the cofactor preference.
Computational strategies and algorithms are also covered as
helpful complements for the guidance of protein engineering.

ATTEMPTS TO CHANGE THE COENZYME
SPECIFICITY IN OXIDOREDUCTASES

We reviewed 103 enzymes that have been engineered considering
their coenzyme specificity and updated the data provided by
Cahn et al. (2017) to build a corresponding table (Table 1). To
evaluate the degree of success of the reported results, we used
three parameters: (i) Coenzyme Specificity Ratio, reflecting the
degree of preference of the target coenzyme in the mutated
enzyme (Equation 1 when switching from NAD to NADP, and
Equation 2 for the opposite direction), (ii) Relative Catalytic
Efficiency, which compares the catalytic efficiency of the mutated
enzyme with the desired coenzyme and the wild type enzyme
using its natural coenzyme (Equation 3 when switching from
NAD to NADP, and Equation 4 for the opposite direction), and
(iii) Relative Specificity, which compares the coenzyme specificity
between the mutated and wildtype enzymes (Equation 5 when
switching from NAD to NADP, and Equation 6 for the opposite
direction) (Cahn et al., 2017).
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We classified the attempts by the EC number, and analyzed
the data regarding the degree of accomplishment in switching
the cofactor specificity. Different parameters were taken into
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FIGURE 1 | Attempts to change the coenzyme preference in oxidoreductases. (A) Studies where coenzyme specificity was successfully reversed were analyzed by
their Coenzyme Specificity and classified by the EC number and according to the target coenzyme. (B) Achievements were analyzed regarding their Relative Catalytic
Efficiency. Normalized values for the averages of Coenzyme Specificity, Relative Catalytic Efficiency, and Relative Specificity classified according to (C) the protein
engineering and (D) mutagenesis strategies employed. Frequency of the incorporation or removal of amino acids when changing specificity from (E) NAD to NADP

Incorporated Residues

account, which are represented in several graphics shown in
Figure 1.

We could observe that in 62% of the cases the Coenzyme
Specificity Ratio was greater than 1 (Figure 1A), meaning
that the coenzyme preference was reversed. Despite the fact

that 38% of the attempts to switch the enzymes cofactor
resulted in Coenzyme Specificities Ratios below one, in
some cases the research goal was to obtain an enzyme
that functions with both cofactors; therefore a Coenzyme
Specificity Ratio close to one should be considered a
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satisfactory result (Woodyer et al., 2003; Petschacher et al,
2014).

Most of the studies were performed in enzymes belonging to
EC 1.1, with 58 cases considered in this review. The best results
were obtained for oxidoreductases of the aforementioned class,
together with the ones belonging to EC 1.2. Enzymes classified
in EC 1.6 and 1.14 gave poor results. Most enzymes belonging to
EC 1.14 are NADP-dependent Baeyer-Villiger monooxigenases,
it has been reported that switching the coenzyme preference in
these is more challenging, due to the complexity of their electron
transfer mechanisms (Beier et al., 2016; Cahn et al., 2017).
Recently, Beier et al. (2016) switched the coenzyme preference
of a Baeyer-Villiger monooxygenase. The best variant showed
higher conversion of cyclohexanone with NADH than using
NADPH, however the Coenzyme Specificity Ratio and Relative
Catalytic Efficiency were 4.7 and 0.0015 respectively.

Regarding the Relative Catalytic Efficiency, results were
separated in three scenarios: (i) Higher than one, indicating that
the catalytic efficiency of the mutated enzyme with the desired
coenzyme was better than the catalytic efficiency of the wild
type enzyme with its natural coenzyme, (ii) Lower than one
but higher than 0.5, indicating that the catalytic efficiency was
reduced by less than 50%, and (iii) Lower than 0.5, which reflects
an important reduction of the enzyme functionality. Figure 1B
shows the results analyzed by this index when changing from
NADP to NAD and vice versa. Most of the attempts resulted
in variants with decreased Relative Catalytic Efficiency using
the targeted coenzyme. When trying to alter the coenzyme
specificity from NAD to NADP, only in 30% of the cases the
catalytic efficiency of the obtained variant with NADP was
better than the catalytic efficiency of the wild type enzyme with
NAD. When changing from NADP to NAD, only 11% of the
cases showed better catalytic efficiencies, meaning that 89% of
the variants showed a reduced catalytic efficiency when using
NAD. Altogether these results show that a change in coenzyme
specificity typically leads to a loss of functionality of the enzyme,
as has been reported before (Cahn et al., 2017).

The Relative Specificity was also calculated and a log-
transformation (base 10) was applied for better analysis of the
data (Table 1). Only one of the studies reported an enzyme with
values lower than 1 (Solanki et al., 2016). The rest of the values
ranged from 1.1 to 8.4, indicating a favorable change in cofactor
preference. The lowest values were obtained when changing from
NADP to NAD, averaging a value of 3.0, as compared to NAD
to NADP changes which averaged 3.5. Enzymes belonging to EC
1.2 averaged the best value for this parameter (4.6), followed by
EC 1.6 (4.0) and EC 1.1 (3.1). Enzymes from EC 1.14 averaged
the lowest values (2.5). Although the Relative Specificity gives
information regarding the reversal success, it does not indicate
information about the absolute degree of cofactor preference or
usability of the new enzyme.

The protein engineering approaches utilized were rational or
semi-rational, and we grouped them in three categories: site
directed mutagenesis, saturation mutagenesis and loop exchange
(Figure 1C). Site directed mutagenesis was employed in 82
opportunities, saturation mutagenesis in 20 opportunities, and
loop exchange was used in 5 cases and gave best results. In this

strategy, a complete region determining cofactor specificity is
replaced for a region of another enzyme reported to have the
desired cofactor specificity. This approach was used in a DEH
reductase (Takase et al., 2014) where two loops were exchanged
to switch the specificity from NADH to NADPH, giving excellent
results. Despite these good achievements, only a few studies have
been reported using loop exchange. One of the limitations of this
strategy is to find proper coenzyme-binding loops in a protein
with a highly structural identity with the target enzyme.

As we have noticed, rational design is the preferred strategy
used for coenzyme engineering; and strategic positions within the
cofactor binding site should be identified. We were curious about
the criteria used for selection of the residues, and also evaluated
the rate of success regarding this parameter (Figure 1D). We
classified the approaches in 4 categories: (i) multiple sequence
alignments (MSA, 37 cases), (ii) rational transfer of amino acids
of previously reported studies (Bibliography, 36 cases), (iii)
structural analysis of the coenzyme binding site (Structure, 51
cases), and (iv) computational approaches and use of algorithms
(Computational, 12 cases). Some works employed more than
one of these approaches, therefore they were considered in each
case. As the analysis suggest (Figure 1D), when examining the
coenzyme binding site good results were obtained. Therefore, we
strongly recommend using this approach for a proper selection
of the target positions. MSA and bibliography could also be used
as a complement. When computational tools or algorithms were
used, their average Relative Catalytic Efficiency was the highest
(Figure 1D), therefore we evaluate this approach separately.

We also evaluated the frequencies in amino acids that were
removed or incorporated for the engineering of coenzyme
specificity. Usually, acidic residues are mutated to switch
coenzyme specificity from NAD to NADP (Figure 1E), and are
used as a replacement in the opposite case (Figure 1F). In the
analyzed studies, when switching the coenzyme specificity from
NAD to NADP, 28% of the residues corresponded to Asp and
9% to Glu, covering together over one third of the mutations
(Figure 1E). When seeking the switch from NADP to NAD,
Asp and Glu were added in 34% of the cases (Figure 1F). The
relevance of these residues has been reported in other occasions
(Brinkmann-Chen et al., 2014; Pick et al., 2014), and is mainly
due to the acidic groups repulsion with the negatively charged
phosphate of the NADP (Jensen et al., 2014). On the other hand,
amino acids with positive charges stabilize the binding of NADP.
Actually, in NADP binding enzymes containing a Rossmann
fold, an Arg forms a cation-pi interaction with the adenine
ring system (Cahn et al., 2017). Therefore, it is not unexpected
that Arg and Lys were the most incorporated amino acid when
switching from NAD to NADP, and most replaced ones when
inverting the cofactor specificity to NAD (Schepens et al., 2000;
Brinkmann-Chen et al., 2013).

Alanine has also been frequently used for both, as a
target residue and a replacement for bidirectional coenzyme
engineering (Figures 1E,F). In some cases, alanine has been
used to remove a hydrogen bond and debilitate the interaction
between the natural coenzyme and its binding site (Woodyer
et al., 2003; Bubner et al., 2008; Zeng et al., 2009; Lerchner et al.,
2016). In other studies, Ala was used to increase the flexibility and
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size of the coenzyme binding site for a better acceptance of NADP
(Hoelsch et al., 2013). Among these lines, alanine has also been
used to replace the third glycine of the NADH-binding motif
GxGxxG, hampering the interactions occurring in the Rossman
fold and facilitating the use of NADP (Dambe et al.,, 2006).
Alanine was also applied for the switching from NADP to NAD,
this was the case for an isocitrate dehydrogenase where a valine
was mutated to alanine reducing the distance between an Asp and
the 2’- and 3’- hydroxyls of the ribose (Rodriguez-Arnedo et al.,
2005). When switching from NADP to NAD, alanine was used
to replace larger and more acidic amino acids, such as aspartate
or glutamate, to broaden the binding site and facilitate the union
of NADP (Zheng et al.,, 2013). Moreover, alanine scanning has
been used to study the relevance of some positions for coenzyme
binding (Kamerbeek et al., 2004).

Serine has been targeted to change coenzyme specificity
toward NAD, and incorporated in the other direction
(Figures 1E,F). Ser usually interacts with the phosphate
group of NADP stabilizing the coenzyme binding (Schepens
et al., 2000; Ge et al., 2014). The short side chain of Ser makes it
difficult for the OH groups of NAD-adenine moiety to interact
with this residue in the coenzyme binding site (Ge et al., 2014).
Therefore, in several studies a serine has been replaced to switch
from NADP to NAD usage (Medina et al., 2001; Khoury et al,,
2009), by Asp (Bastian et al, 2011; Brinkmann-Chen et al.,
2013) and Arg (Chen et al., 1995; Rodriguez-Arnedo et al., 2005)
respectively.

COMPUTATIONAL TOOLS AND
ALGORITHMS FOR SWITCHING THE
COENZYME PREFERENCE

Recently, computational tools and algorithms have been applied
to assist in the selection of “hot” positions for coenzyme
engineering. Cui et al. (2015) proposed a computational
approach that enhances the hydrogen-bond interaction between
an enzyme and its coenzyme, using only the protein structure of
the target protein. Using this strategy, they reversed the coenzyme
specificity of a dehydrogenase from NADH to NADPH (Cui et al.,
2015). Khoury et al. (2009) used a computational approach based
on the iterative protein redesign and optimization algorithm
(IPRO). With this algorithm they generated in silico mutations
to improve binding of NADH to the target enzyme evidenced by
improved interaction energies. Seven out of ten designed mutants
showed a significant switch in coenzyme specificity toward the
desired coenzyme and two showed dual coenzyme specificity
(Khoury et al., 2009). Brinkmann-Chen et al. (2014) developed an
algorithm to reverse the cofactor preference based on structural
analysis of the enzymes.

Cahn et al. (2017) developed a web tool for switching
coenzyme preference in a general approach, allowing for its
application to any oxidoreductase. This structure-guided, semi
rational strategy named SCR-SALAD (Coenzyme Specificity
Reversal-Structural Analysis and Library Design) involves
three steps: (i) analysis of enzyme structure to detect crucial
residues determining coenzyme specificity, (ii) design of small

degenerated codon libraries targeting the detected positions and,
(iii) recovery of the catalytic efficiency which is usually lost
during modification. Using this program, cofactor specificity
was efficiently switched in four structurally diverse NADP-
dependent enzymes. Despite the fact, that the authors did
not try to reverse the coenzyme specificity of NAD-dependent
enzymes, comparison of previously published studies with
CSR-SALAD showed, that the generated libraries contained
all the beneficial mutations for reversing the specificity from
NAD to NADP. Although the results obtained by using CSR-
SALAD are promising, this web tool has not proven useful in
multistep electron transfer pathways (for instance mono- and
dioxygenases) and does not consider natural evolution with
insertions and deletions (Cahn et al., 2017).

CONCLUSIONS

Efforts on inverting the cofactor specificity of oxidoreductases
have been made for practical reasons. The process has proven
to be complex, even though a reversal of the preference is
usually achieved, a loss of efficiency regularly appears as a
side effect. Among the publications analyzed, oxidoreductases
acting on CH-OH groups of donors (EC 1.1) have been the
most studied, with high rates of successful reversals, while
oxidoreductases acting on paired donors with incorporation
or reduction of molecular oxygen (EC 1.14) have led to poor
efficiencies, most probably due to the decoupling of flavin-
dependent monooxygenases present in this group. In all studies
covered by this review, positions were selected rationally and
site directed mutagenesis was the most common methodology
to introduce the changes. Moreover, when the enzyme structure
was available and applied, better results have been obtained.
Loop engineering provided the best results, however it was
used in only 5 specific cases. We believe that more studies
should consider this technique in the future, specifically to have
a more compelling statement regarding the favorable results.
NADP depending enzymes usually present positively charged
residues in their coenzyme union site in positions able to
interact with the phosphate group of the adenosine ribose
moiety or to establish hydrogen bonding with it. Contrarily,
NAD-dependent enzymes possess positively charged residues.
These residues are the most added or eliminated depending
on the desired coenzyme specificity. Although early works
on coenzyme engineering already used enzyme structures for
mutational design, the availability of novel structures crystalized
with the corresponding coenzyme will undoubtedly help in
future rational cofactor engineering. Moreover, most recent
works include new computational strategies, which make
coenzyme specificity changes much simpler. The satisfactory
results obtained by using computational tools and algorithms
make us believe that their application will be widespread in
coenzyme engineering. We expect that improvement of these
strategies, and also novel tools, will become available in the near
future.

Despite we did not cover the natural reaction of the
engineered enzymes, we believe it would be interesting in future
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coenzyme engineering studies to give an insight of the relation
between the natural reaction of the enzyme, the test reaction
reported and the success of the switch.
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