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Urinary tract infections (UTIs) are often caused by Escherichia coli. Their increasing

resistance to broad-spectrum antibiotics challenges the treatment of UTIs. Whereas,

E. coli ST131 is often multidrug resistant (MDR), ST69 remains susceptible to antibiotics

such as cephalosporins. Both STs are commonly linked to community and nosocomial

infections. E. coli phylogenetic groups B2 and D are associated with virulence and

resistance profiles making them more pathogenic. Little is known about the population

structure of E. coli isolates obtained from urine samples of hospitalized patients in Brazil.

Therefore, we characterized E. coli isolated from urine samples of patients hospitalized

at the university and three private hospitals in Rio de Janeiro, using whole genome

sequencing. A high prevalence of E. coli ST131 and ST69 was found, but other

lineages, namely ST73, ST648, ST405, and ST10 were also detected. Interestingly,

isolates could be divided into two groups based on their antibiotic susceptibility. Isolates

belonging to ST131, ST648, and ST405 showed a high resistance rate to all antibiotic

classes tested, whereas isolates belonging to ST10, ST73, ST69 were in general

susceptible to the antibiotics tested. Additionally, most ST69 isolates, normally resistant

to aminoglycosides, were susceptible to this antibiotic in our population. The majority

of ST131 isolates were ESBL-producing and belonged to serotype O25:H4 and the

H30-R subclone. Previous studies showed that this subclone is often associated with

more complicated UTIs, most likely due to their high resistance rate to different antibiotic

classes. Sequenced isolates could be classified into five phylogenetic groups of which

B2, D, and F showed higher resistance rates than groups A and B1. No significant

difference for the predicted virulence genes scores was found for isolates belonging to

ST131, ST648, ST405, and ST69. In contrast, the phylogenetic groups B2, D and F

showed a higher predictive virulence score compared to phylogenetic groups A and B1.
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In conclusion, despite the diversity of E. coli isolates causing UTIs, clonal groups

O25:H4-B2-ST131 H30-R, O1:H6-B2-ST648, and O102:H6-D-ST405 were the most

prevalent. The emergence of highly virulent and MDR E. coli in Brazil is of high concern

and requires more attention from the health authorities.

Keywords: Escherichia coli, urinary tract infections, Brazil, ST131, antibiotic resistance, virulence genes, whole

genome sequencing, diagnostic stewardship

INTRODUCTION

Urinary Tract Infections (UTIs) are one of the most important
causes of community and healthcare-associated infections in
many clinical onsets worldwide, including Brazil (Terpstra
and Geerlings, 2016; Wurpel et al., 2016). Indeed 30–50% of
healthcare-associated infections are due to UTIs. This high
prevalence is linked to several risk factors, such as catheterization,
surgical manipulation and disruption of the urinary tract,
diabetes, immunosuppressant drug use, previous admissions, and
other comorbidities (Saltoglu et al., 2015; Redder et al., 2016).
The risk factors and antibiotic resistance profiles are different
for infections acquired in the community or in the hospital
environments (Saltoglu et al., 2015). Although in general the
majority of UTI cases are uncomplicated, UTIs in hospitalized
patients increase the risk for developing sepsis and lead to higher
mortality rates (Melzer and Welch, 2013).

Escherichia coli is the main etiological agent responsible
for 70–90% of all UTIs (Gurevich et al., 2016; Terpstra and
Geerlings, 2016). The treatment of patients with UTIs has
become increasingly difficult because of the rapid spread of
antibiotic resistance (Can et al., 2015). Especially, extended
spectrum beta-lactamase (ESBL)-producing E. coli are a problem,
but an observed rise in fluoroquinolones and aminoglycosides
resistance has also significantly contributed to problematic and

reduced treatment options for infected patients (Tsukamoto et al.,
2013; Bonelli et al., 2014). Several studies have already described

the high prevalence of UTIs caused by ESBL-producing E. coli
in the community and hospitals (Guzmán-Blanco et al., 2014;

Gonçalves et al., 2016).
Recently, high antibiotic resistance rates have been associated

with specific E. coli lineages, such as the multidrug resistant
(MDR) sequence type (ST) 131 (Ben Zakour et al., 2016).
Particularly, CTX-M beta-lactamase producing E. coli of
serotype O25:H4 and ST131 is a successful spreading clone

(Giedraitiene et al., 2017) strongly associated with the resistance

to aminoglycosides and fluoroquinolones. In contrast, other E.
coli lineages such as ST69, ST73, and ST95, also frequently found

as a causative agent of community and hospital acquired UTIs,
seem to persist as non-ESBL-producing isolates (Riley, 2014;

Doumith et al., 2015).
Extra-intestinal pathogenic E. coli (ExPEC), including

uropathogenic E. coli (UPEC) most commonly associated
with human disease, consist of distinct phylogenetic groups

with different sets of virulence genes. Previous studies have

shown that most ExPEC isolates causing infections belong to
phylogenetic groups B2 and D, while isolates in phylogenetic

groups A and B1 were mostly identified as commensal E. coli

isolates (Katouli, 2010). Moreover, pathogenic ExPEC isolates
harbor specific virulence genes which confer their pathogenic
potential (Cyoia et al., 2015) and are involved in every step in
the pathogenicity of ExPEC. Thus, adhesins are a prerequisite to
adherence and successful colonization, toxins are responsible for
cell damage to urinary tract epithelial cells, and the iron uptake
system allows colonization of the urinary tract thereby helping
the bacteria to persist (Alizade et al., 2014).

Despite the diversity of ExPEC causing infections, previous
studies have shown the connection between specific E. coli
lineages and their particular resistance profiles, and severity of
the infections (Can et al., 2015; Matsumura et al., 2016; Zhang
et al., 2016). Thus, defining the genetic background of the
pathogen by the identification of a particular ST, its serotype
and the detection of resistance genes, can be useful not only
for improving further patient treatment but also to allow an
improved risk assessment of bacterial infections in the hospitals.
The aim of this study is to comprehensively characterize the
population structure of E. coli from urine samples collected from
patients in four hospitals in Rio de Janeiro, Brazil using whole
genome sequencing (WGS).

MATERIALS AND METHODS

Bacterial Isolates
E. coli isolates were collected from urine samples of patients
admitted to different wards of the Hospital Universitário Pedro
Ernesto (HUPE; a 600-bed university hospital) or to one of
three small private hospitals (coded Hospital A, Hospital B and
Hospital C; see Data Sheet S1). All four hospitals are located in
the city of Rio de Janeiro, Brazil. Patients were included regardless
the presence of risk factors or observed UTI symptoms. In
this study, 107 isolates were collected between November 2015
and November 2016 from the patients (50.60% were from the
private hospitals and 49.40% from the public hospital). Eighty-
eight percent of the isolates were from female patients. Bacterial
isolates were cultured on cysteine lactose deficient medium agar
plates (CLED, BD, Germany) till a cell density higher than 105

colony-forming units was obtained. Bacterial cells were stored
at −80◦C in a Luria-Bertani Broth (LB, Merck, S.A.) with 20%
glycerol.

Bacterial Identification and Antibiotic
Susceptibility Testing
All isolates were identified using a matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometry (Bruker, Germany). Antibiotic susceptibility was
performed using VITEK-2 (bioMérieux, Marcy l’Etoile, France)
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following EUCAST guidelines (v7.1, 2017) and confirmed by
E-test (bioMérieux) assays.

DNA Extraction and Whole Genome
Sequencing
Total bacterial DNA was extracted from each isolate using
the UltraClean R© microbial DNA isolation kit (MO BIO
Laboratories, Carlsbad, CA, US) following the manufacturer’s
protocol. A DNA library was prepared for individual samples
using the Nextera XT kit (Illumina, San Diego, CA, US) following
the manufacturer’s instructions. Whole genome sequencing was
performed on the Miseq (Illumina) to generate 250-bp paired-
end reads to obtain a coverage of at least 60-fold as previously
described (Ferdous et al., 2015).

Assembly and Data Analysis
De novo assembly was performed using CLC Genomics
Workbench v10.0.1 (Qiagen, CLC bio A/S, Aarhus, Denmark)
using default settings and an optimal word-size. The assembly
quality data for all isolates is available in the supplementary
data table (Data Sheet S2). Annotation was performed by
uploading the assembled genomes onto the RAST server version
2.0 (Aziz et al., 2008). The ST was identified by uploading the
assembled genomes in fasta format to the Center for Genomic
Epidemiology (CGE) MLST finder website (version 1.7) (Larsen
et al., 2012). Presence of antibiotic resistant genes was determined
by uploading assembled genomes in fasta format to ResFinder 2.1
(Zankari et al., 2012), the serotyping by using the SerotypeFinder
tool (Joensen et al., 2015), and the fimH type by uploading the
genomes to FimTyper (version 1.0) (Roer et al., 2017) all present
through the CGE website.

Virulence Genes, Virotype, Phylogenetic
Typing, and Analysis
The virulence genes were identified by blasting them against
known virulence reference genes (see Data sheet S3) downloaded
from the NCBI or ENA database into the CLC Genomics
Workbench v10.0.1 (Qiagen, CLC bio A/S, Aarhus, Denmark).
In total, 64 virulence genes were investigated and the predictive
virulence score was determined using the number of genes found
in each isolate. Predictive virulence genes scores were also used
to characterize the isolates as ExPEC or UPEC as described by
Johnson et al. (2015). The virotype of the ST131 isolates was
defined as described by Dahbi et al. (2014). Phylogenetic groups
were defined as described by Clermont et al. (2013). To determine
the phylogenetic relationship the isolates were uploaded into
SeqSphere v.4.1.9 (Ridom, Munster, Germany) and a gene-by-
gene typing approach using a 2764-genes core genome (cg)MLST
scheme was used as previously described (Ferdous et al., 2016).

Statistical Analysis
The Mann-Whitney test was used to compare the mean of
predictive virulence scores (PVS) between the phylogenetic and
ST groups. Analysis was performed using GraphPad Prism v7.03
(GraphPad Software, La Jolla, US).

Nucleotide Sequence Accession Number
The raw data of all whole genome sequenced isolates were
deposited in the European Nucleotide Archive under the project
number PRJEB23420. See the supplementary data table (Data
Sheet S2) for individual accession numbers.

RESULTS

Antibiotic Resistance Pattern
MDR was defined as an isolate showing resistance to three or
more antibiotic classes. In total, 66 of 107 (61.68%) isolates
were MDR and among these isolates, 31 (28.97%) were ESBL-
producing, 5 (4.67%) were carbapenemase-producing and 30
(28.04%) were non-ESBL. In addition, 16 (14.95%) isolates were
resistant to less than three antibiotic classes and 25 (23.36%)
were fully sensitive (Figure 1A). The majority of the isolates
was susceptible to fosfomycin (n = 105; 98.13%) (Figure 1B).
Furthermore, the resistance rate to aminoglycosides (n = 50;
46.72%), fluoroquinolones (n = 56; 52.33%), trimethoprim (n
= 52; 48.59%), and trimethoprim-sulfamethoxazole (n = 48;
44.85%) was high (Figure 1B), compared to the resistance rates
to piperacillin/tazobactam and nitrofurantoin which were 13.08
and 3.73%, respectively. Observed antibiotic resistance profiles
including MDR could be linked to the genetic background of E.
coli isolates (see Data Sheet S1).

MLST and Serotype
In this study, 63 (58.87%) isolates were categorized as ExPEC (n
= 10; 9.34%) or UPEC (n = 53; 49.53%) (see Data Sheet S4).
Multi locus sequence typing (MLST) was performed and revealed
the predominance of six ST groups, namely ST131, ST69, ST648,
ST10, ST73, and ST405. ST131 was the most frequent ST found
(n= 26; 24.07%), followed by ST69 (n= 9; 8.33%). In addition, 6
(5.56%) isolates belonged to ST648 and 7 (6.48%) isolates to ST10.
ST73 and ST405 were both represented by 4 (3.70%) isolates. Of
all the isolates, 29 (26.85%) were singletons representing their
own sequence type (Figure 2A). Serotype O25:H4 was the most
frequently found (n = 24;22.64%) (Figure 2B). Of the ST131
isolates, 92.30% (n = 24) belonged to the most frequently found
serotype O25:H4 and the other two isolates belonged to serotype
O16:H5. All ST405 isolates were serotype O102:H6 and all ST648
isolates were of the O1:H6 serotype. Most isolates of the ST69
group belonged to serotypes O17/O77:H18 (n = 4; 44.44%) or
O17/O44:H18 (n = 2; 22.22%). Other serotypes found in more
than 1% of the isolates were O89:H10 (n = 4; 3.77%), O102:H6
(n= 4; 3.77%), O16:H5 (n= 3; 2.83%), O15:H11 (n= 3; 2.83%),
O6:H1 (n = 3; 2.83%), O75:H5 (n = 3; 2.83%), O7:H4 (n = 3;
2.83%). The other isolates (n= 32; 30.19%) had a unique serotype
(Figure 2B).

Phylogenetic Analysis
In the present study, the most frequently found phylogenetic
group was B2 (n = 52; 49.53%), followed by phylogenetic
groups A (n = 20; 18.69%), D (n = 14; 13.08%), B1 (n = 14;
13.08%), and F (n = 4; 3.74%; Figure 2C). For 1.87% of the
isolates it was not possible to identify the phylogenetic group
(Figure 2C). All ST131, ST73, and ST648 isolates belonged to
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FIGURE 1 | Resistance rates to different classes of antibiotics. (A) The percentage of ESBL isolates, Escherichia coli carbapenemase producing isolates (E-CP),

multidrug resistance isolates excluding ESBL producing ones [MDR (non-ESB)], isolates resistant to less than three antibiotic classes (resistant to < 3) and fully

sensitive isolates; (B) The frequency for all antibiotic tested, showing the high resistance rate to antibiotics most frequently used in the treatment of UTIs such as

aminoglycosides, fluoroquinolones, trimethoprim, and trimethoprim-sulfamethoxazole and a low frequency of resistance to fosfomycin and nitrofurantoin.

FIGURE 2 | Distribution of sequence types (ST), serotypes, and phylogenetic groups extracted from the whole genome sequence data. (A) Percentage of ST lineages

found in this study, showing the high prevalence of ST131, ST69, ST10, ST648, ST450, and ST73. Isolates belonging to singleton STs comprise more than one third

of the isolates; (B) Frequencies of serotypes found showing O25:H4 to be the most frequent serotype; (C) Frequencies of the five phylogenetic groups, showing the

high prevalence of B2, followed by A, D, and B1 and the low prevalence of isolates belonging to phylogenetic group F.

phylogenetic group B2 while ST69 and ST405 isolates belonged
to phylogenetic group D. The isolates of ST10, ST1703, ST744

were classified in the phylogenetic group A and the ST354 isolates
were classified in phylogenetic group B1 (see Data Sheet S4).
The other isolates represented by a diversity of ST groups were
classified into different phylogenetic groups. We investigated

the genetic relationships of the sequenced isolated based on

their core genome. Not surprisingly, the isolates of the same ST

were genetically related and formed ST specific cgMLST clusters
(Figure 3). The ST131 isolates with serotype O25:H4 showed

less genetic diversity and clustered closely to each other in the

cgMLST phylogenetic tree. In general, the ST131 isolates were
more closely related with each other while the isolates within

ST69 were more diverse. On the other hand, the ST131 isolates
could be separated by their serotype and O16:H5/ST131 isolates
clustered separately from O25:H4/ST131 ones. Based on the core
genome analysis the same was observed for isolates belonging to
ST405, ST1703, and ST648 that clustered according to their ST
and within such cluster isolates showed a high degree of genetic

relatedness. Observed genetic relationships between isolates were
independent from their hospital origin.

Clonal Associations of blaCTX-M
Whole genome sequencing data was used to screen for the
presence of genes responsible for the ESBL phenotype. This
analysis revealed that 30 of the 31 (96.77%) ESBL-producing
isolates contained a gene encoding a beta-lactamase of the
blaCTX−M type. In addition, two isolates were AmpC beta-
lactamase producing and contained the blaCMY−2 gene. In the
CTX-M positive isolates, blaCTX−M−15 was the most frequently
found variant (n = 17; 53.12%) followed by blaCTX−M−8

(n = 5; 15.62%). The majority of blaCTX−M−15 isolates
belonged to O25:H4/ST131, and all the isolates that were
CTX-M-15-producing belonged to high risk clonal groups
(O25:H4/ST131, O1:H6/ST648, or O102:H6/ST405). Among the
singleton isolates 17.24% (n = 5) were ESBL-producing, and
carried different CTX-M genes (Table 1). Interestingly, the
CTX-M-producing isolates were also frequently found to carry
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FIGURE 3 | Neighbor-joining (NJ) phylogenetic tree of Escherichia coli isolates based on a 2764-genes core genome MLST scheme. High-risk clonal groups are

indicated by red doted boxes. For all isolates the phylogenetic groups, serotype and ST group is indicated unless the typing could not be identified from the whole

genome sequence data.

genes associated with aminoglycosides and fluoroquinolones
resistance. The carbapenemase-producing isolates contained
blaKPC−2 (5 isolates).Twelve (70.58%) CTX-M-15-producing
isolates were also positive for the blaOXA1 gene (Table 1 and Data
Sheet S5).

Escherichia coli ST131
UPEC strains produce different adhesins and fimbriae, including
type 1 fimbriae. The FimH protein is the adhesive subunit
of type 1 fimbriae that is used for epidemiological typing of
UPEC. In this study, three fimH types were identified among the
ST131 isolates, two O25:H4/ST131 isolates belonged to fimH22,
two O16:H5/ST131 isolates to fimH41 while the majority of
O25:H4/ST131 isolates (n = 22) belonged to fimH30 (Table 2).
The virulence genes (afa/draBC, iroN, sat, ibeA, papGII, papGIII,

cnf-1, hlyA, cdtB, neuC-K1, kpsMIIK2, kpsmII-K5) were used
to determine the virotype of ST131 isolates based on the
virulence profile. O25:H4/ST131 isolates belonged to different
virotypes, i.e., 7 (26.92%) to virotype A, 1 (3.84%) to virotype
B, 14 (53.84%) to virotype C, and 3 (11.53%) to virotype
D. Isolates belonging to virotype C could be divided into
subtypes C2 (n = 6) or C3 (n = 3), whereas five isolates
could not be further subtyped. The only two isolates with
serotype O16:H5/ST131 were classified as virotype A (see Data
Sheet S6). Almost all O25:H4/ST131 isolates were resistant
to fluoroquinolones, whereas the O16:H5/ST131 isolates were
susceptible to this antibiotic. The blaCTX−M gene was most
prevalent in O25:H4/ST131 fimH30 fluoroquinolones resistant
(O25:H4/ST131-H30-R) isolates belonging to virotype C. Within
ST131, blaCTX−M15 was confined to the H30-R sub-clone known
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TABLE 1 | Beta-lactamase genes in carbapenemase and ESBL-producing E. coli isolates divided by ST groups.

bla genes

STs blaCTX−M−15 blaCTX−M−14 blaCTX−M−8 blaCTX−M−2 blaCTX−M−1 blaCMY−2 blaKPC−2 blaOXA−1 blaTEM−1A blaTEM−1B blaTEM−1C

NUMBER OF ISOLATESa (%)

ST131 8 (30.76) 0 (0) 0 (0) 1 (3.84) 0 (0) 2 (7.69) 4 (15.38) 7 (26.92) 0 (0) 5 (19.23) 0 (0)

ST648 4 (66.66) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (66.66) 0 (0) 1 (16.66) 2 (33.33)

ST405 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (100) 0 (0)

ST69 0 (0) 0 (0) 1 (11.11) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (11.11) 0 (0)

ST1703 0 (0) 0 (0) 1 (11.11) 2 (66.66) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (66.66) 0 (0)

ST354 0 (0) 1 (33.33) 0 (0) 1 (33.33) 0 (0) 0 (0) 0 (0) 0 (0) 1 (33.33) 1 (33.33) 0 (0)

ST641 0 (0) 0 (0) 0 (0) 0 (0) 1 (33.33) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Singleton STs 0 (0) 1 (33.33) 2 (6.89) 0 (0) 0 (0) 0 (0) 1 (3.44) 0 (0) 1 (33.33) 1 (16.66) 0 (0)

aPlease note that only isolates that have the ESBL phenotype are included in this table.

TABLE 2 | Distribution of fimH types among ST131 Escherichia coli isolates.

Isolates Phylogenetic group FimH type Serotype Virotype ESBL genes Fluoroquinolone resistanta

5332 B2 fimH22 O25:H4 D blaCMY−2 Pos

7018 B2 fimH30 O25:H4 A blaOXA−1 Pos

7104 B2 fimH30 O25:H4 C2 blaKPC−2 Pos

9260 B2 fimH30 O25:H4 C blaCTX−M−15 Pos

3218 B2 fimH30 O25:H4 C2 blaKPC−2 Pos

9581A B2 fimH30 O25:H4 C blaCTX−M−15 Pos

x5770d B2 fimH30 O25:H4 C blaCTX−M−15 Pos

x6638 B2 fimH30 O25:H4 A blaCTX−M−15 Pos

1294D B2 fimH30 O25:H4 B blaKPC−2 Pos

2102 B2 fimH30 O25:H4 A blaKPC−2 Pos

1710D B2 fimH30 O25:H4 C blaCTX−M−15 Pos

9533D B2 fimH30 O25:H4 C blaCTX−M−15 Pos

3528 B2 fimH30 O25:H4 C2 blaCTX−M−15 Neg

7078 B2 fimH30 O25:H4 C3 blaTEM−1B Pos

9893 B2 fimH30 O25:H4 C2 blaKPC−2 Neg

7974 B2 fimH30 O25:H4 D blaCTX−M−2 Pos

4233 B2 fimH30 O25:H4 NT blaKPC−2 Pos

5420 B2 fimH30 O25:H4 A blaCTX−M−15 Neg

2478 B2 fimH41 O16:H5 A blaTEM−1B Neg

4006 B2 fimH41 O16:H5 A blaTEM−1B Pos

5976 B2 fimH30 O25:H4 C3 blaTEM−1B Pos

2206 B2 fimH30 O25:H4 A blaCTX−M−15 Pos

8565 B2 fimH30 O25:H4 C3 blaTEM−1B Pos

x2724 B2 fimH30 O25:H4 C2 blaTEM−1B Pos

6202 B2 fimH30 O25:H4 C2 blaTEM−1B Pos

5848 B2 fimH22 O25:H4 D blaCMY−2 Neg

aNeg. indicates susceptible to fluoroquinolones and Pos. indicates resistant to fluoroquinolones. NT, not typeable.

as O25:H4/ST131-H30-Rx, represented by 9 (34.61%) isolates
(Table 2).

Virulence Genes
E. coli isolates were screened for the presence of virulence genes
potentially associated with UTIs. In total, 64 virulence genes
were investigated among the analyzed isolates (Data Sheet S7).
Most frequently virulence genes found were those involved in

the iron uptake system, such as fhuE (ferrichrome receptor)
(n = 105; 98.13%), tonB (TonB protein) (n = 105; 98.13%), fepA
(ferrienterobactin receptor precursor) (n = 105; 98.13%), fhuA
(Ferrichrome receptor precursor) (n = 101; 94.39%), and fyuA
(yersiniabactin receptor) (n= 78; 72.89%). Less frequently found
genes involved in the uptake of iron were: iroN (enterobactin
siderophore receptor protein) (n = 23; −21.49%), iha gene
(encoding the adherence protein) (n = 34; 31.77%), and iutA
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(aerobactin receptor) (n = 52; 48.59%). The presence of the
gene cluster papAH (P fimbria structural subunits) known to be
responsible for P fimbria formation was present in 48 isolates.
Interestingly, in 12 isolates papGII (a P adhesin variant) was
identified and in 15 isolates (14.01%) papGIII was found. Other
virulence genes, encoding adhesins, detected were: the fimH gene
in 104 isolates (97.19%) and the lpfA gene (encoding for the
long polar fimbriae) in 31 isolates (28.97%). The gene encoding
a toxin hlyD (hemolysin D) was identified in 105 isolates tested
(98.13%), however other toxin genes were less frequently found
and included sat (n = 30; 28.03%), senB (n = 21;19.69%), and
cnf -1 (n = 9; 8.41%). Other virulence genes identified in the
majority of isolates were malX (pathogenicity island marker)
(n = 103; 96.26%), gad (glutamate decarboxylase) (n = 88;
82.24%), iss (increase serum survival) (n = 82; 76.63%), ompT
(outer membrane protease) (n = 72; 67.28%), traT (serum
resistance associated) (n = 66; 61.68%), and kpsM (capsule
transport protein) (n= 60; 56.07%) (Table 3).

Association of ST and Phylogenetic
Groups with Resistance Pattern
The majority of the MDR isolates belonged to ST131, ST648,
or ST405 while most non-MDR isolates belonged to ST69,
ST10, ST73, or singleton STs. The ST131, ST648, and ST405
isolates also showed a higher resistance rate to other antibiotic
classes as ampicillin and amoxicillin/clavulanate (Figure 4A).
Among the singleton STs, the number of MDR isolates was
low. The phylogenetic groups B2, D, and F were more often
found to be resistant to ampicillin, amoxicillin/clavulanate,
ciprofloxacin, and trimethoprim than phylogenetic groups A and
B1 (Figure 4B).

Association of ST and Phylogenetic Group
with Virulence Genes
The main six ST groups identified in this study were compared
to evaluate their urovirulence-potential, using the 64 identified
virulence genes (Data Sheet S7). Based on the predictive virulence
score (PVS) no statistically significant difference was found for
ST131 (PVS = 18.3) and ST648 (PVS = 17.6) isolates compared
to ST69 (PVS = 17.8) isolates (p = 0.2444 and p = 0.9993,
respectively). In contrast, the ST405 (PVS= 13.0) and ST10 (PVS
= 12.7) isolates had lower PVS compared to other STs groups
(p < 0.0001). The ST73 isolates appeared to have the highest PVS
(24.0) compared to other groups (p < 0.0001). Interestingly, the
PVS for isolates belonging to singleton ST groups scored slightly
higher (PVS = 19.0) than isolates belonging to ST131, ST648,
ST405, ST69, and ST10 (p = 0.0439). When the same analysis
was performed on different phylogenetic groups, phylogenetic
groups B2, D, and F had higher PVSs than phylogenetic groups A
and B1 (p= 0.2190), although this was not statistically significant
(Table 3).

DISCUSSION

In this study, a comprehensive molecular characterization of
E. coli isolated from urine samples of hospitalized patients in

hospitals in Rio de Janeiro was performed and showed the
presence of successful MDR clones similar to those found in
other parts of the world (Riley, 2014). In general, high resistance
rates to antibiotics such as cephalosporin, aminoglycosides,
fluoroquinolones and trimethoprim often used to treat patients
with UTIs were found. The emergence of MDR E. coli
complicates the treatment of UTIs and is a major concern
for hospitals (Flores-Mireles et al., 2015). Our results are
in agreement with previous reports from Brazil, showing an
increase of resistance rates of E. coli to aminoglycosides and
fluoroquinolones (Correal et al., 2014; Rodrigues et al., 2016). In
addition, the resistance rates to fosfomycin and nitrofurantoin,
antibiotics used to treat uncomplicated UTIs, were found to
be low in the investigated isolates, consistent with results from
previous studies (Michalopoulos et al., 2011; Derakhshandeh
et al., 2015).

In our study, 49.53% of the isolates were identified as UPEC
and 9.34% were classified as ExPEC (non-UPEC) based on
predictive virulence genes score. The other 41.13% could not be
typed as ExPEC using this method, indicating that the predictive
virulence genes score is not always sufficient for classification of
ExPEC as has also been reported before (Berman et al., 2014). In
general, ExPEC can be classified into five phylogenetic groups,
i.e., A, B (subgroups B1 and B2), D, E, and F, and the majority
of the isolates in our study belonged to phylogenetic groups B2
and D. Indeed, other studies, as the ones from Iran and China,
show that human pathogenic ExPEC predominantly belong to
these two groups (Kazemnia et al., 2014; Tong et al., 2014), that
are also considered to be more virulent and more associated with
infections than, e.g., phylogenetic groups A and B1 (Lee et al.,
2016). In our study, two isolates could not be assigned to any
of the phylogenetic groups. This is in agreement with findings
of others that assigning isolates to a specific phylogenetic group
based on the current guidelines is not always possible (Clermont
et al., 2013). The phylogenetic groups B2 and D were more often
found to be MDR than the isolates of phylogenetic groups A and
B1, which is agreement with other studies (Lee et al., 2016).

In our study population, the two most frequently found
E. coli lineages were ST131 and ST69, which is in line with
previous studies showing the worldwide spread of these STs
and their association with UTIs (Peirano et al., 2014; Doumith
et al., 2015). ST69 has previously been associated with both
community acquired and healthcare associated UTIs (Riley,
2014) and appears to be frequently MDR, due to the presence of a
resistance gene cassette (dfrA17-aadA5) that confers resistance to
aminoglycosides and trimethoprim (Riley, 2014). Interestingly,
our results showed that ST69 isolates were susceptible to
aminoglycosides but had a high resistance rate to trimethoprim.
As ST131 has emerged as the most prevalent high-risk lineage
among infections caused by E. coli (ExPEC), its high prevalence
in this study is not surprising. Moreover, the high frequency
of the O25:H4/ST131 clonal group was also similar to findings
of others in Brazil, Lithuania and the Netherlands (Dias et al.,
2009; Overdevest et al., 2015; Giedraitiene et al., 2017). Other
ST groups found in this study include ST648, ST405, ST73, and
ST10, previously shown to be associated with urinary and blood-
stream infections (Peirano et al., 2014; Doumith et al., 2015;
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TABLE 3 | Prevalence of main virulence genes among E. coli isolates in relation to phylogenetic groups and sequence types (ST).

Virulene factorsa No. of isolates (%)

A B1 B2 D F ST131 ST648 ST405 ST69 ST10 ST73

fhuE 19 (95) 14 (100) 52 (100) 14 (100) 4 (100) 26 (100) 6 (100) 4 (100) 9 (100) 7 (100) 3 (75)

tonB 20 (100) 13 (92.85) 52 (100) 14 (100) 4 (100) 26 (100) 6 (100) 4 (100) 9 (100) 7 (100) 3 (75)

fepA 19 (95) 14 (100) 52 (100) 14 (100) 4 (100) 26 (100) 6 (100) 4 (100) 9 (100) 7 (100) 3 (75

fhuA 20 (100) 14 (100) 48 (92.30) 14 (100) 4 (100) 26 (100) 5 (83.33) 4 (100) 9 (100) 7 (100) 3 (75)

fyuA 6 (30) 5 (35.71) 51 (98.07) 14 (100) 2 (50) 26 (100) 6 (100) 4 (100) 9 (100) 3 (42.85) 3 (75)

iroN 4 (20) 5 (35.71) 11 (21.15) 1 (7.14) 2 (50) 3 (11.53) 0 (0) 0 (0) 0 (0) 2 (28.57) 3 (75)

iutA 6 (30) 2 (14.28) 34 (65.38) 10 (71.42) 2 (50) 23 (88.46) 6 (100) 0 (0) 7 (77.77) 3 (42.85) 0 (0)

papAH 2 (10) 1 (7.14) 38 (73.07) 8 (57.14) 1 (25) 21 (80.76) 3 (50) 0 (0) 6 (66.66) 2 (28.57) 4 (100)

papGII 0 (0) 0 (0) 11 (21.15) 2 (14.28) 0 (0) 5 (19.23) 3 (50) 0 (0) 2 (22.22) 0 (0) 0 (0)

iha 4 (20) 0 (0) 25 (48.07) 6 (42.85) 0 (0) 21 (80.76) 0 (0) 0 (0) 5 (55.55) 2 (28.57) 1 (25)

IpfA 0 (0) 14 (100) 7 (13.46) 7 (50) 4 (100) 0 (0) 4 (66.66) 0 (0) 5 (55.55) 0 (0) 0 (0)

hlyD 20 (100) 12 (85.71) 52 (100) 14 (100) 4 (100) 26 (100) 6 (100) 4 (100) 9 (100) 7 (100) 4 (100)

malX 19 (95) 14 (100) 50 (96.15) 14 (100) 4 (100) 23 (88.46) 6 (100) 4 (100) 9 (100) 7 (100) 4 (100)

ompT 19 (95) 14 (100) 47 (90.38) 13 (92.85) 4 (100) 23 (88.46) 6 (100) 4 (100) 9 (100) 7 (100) 4 (100)

kpsM 2 (10) 0 (0) 42 (80.76) 13 (92.85) 3 (75) 19 (73.07) 6 (100) 4 (100) 6 (66.66) 1 (14.28) 4 (100)

afa 1 (5) 0 (0) 7 (13.46) 0 (0) 0 (0) 7 (26.92) 0 (0) 0 (0) 0 (0) 1 (14.28) 0 (0)

cnf-1 1 (5) 0 (0) 8 (15.38) 0 (0) 0 (0) 4 (15.38) 0 (0) 0 (0) 0 (0) 0 (0) 1 (25)

sfaS 0 (0) 0 (0) 2 (3.84) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

traT 12 (60) 6 (42.85) 31 (59.61) 14 (100) 2 (50) 19 (73.07) 6 (100) 3 (75) 8 (88.88) 5 (71.42) 0 (0)

usp 0 (0) 0 (0) 41 (78.84) 1 (7.14) 3 (75) 25 (96.15) 0 (0) 0 (0) 0 (0) 0 (0) 4 (100)

P-values (PVS)b

ST73 vs. other STs S P < 0.0001 ST10 vs. other STs S P < 0.0001 Group 1vs. Group 2 NS P = 0.2190

ST131vs. ST69 NS P = 0.2444 ST405 vs. other STs S P < 0.0001

ST648 vs. ST69 NS P = 0.9993 Singletons STs vs. other STs NS S P = 0.0.439

aGenes most frequently found and/or associated with UTIs. bComparison of predictive virulence mean scores between different ST groups between phylogenetic group 1 (isolates that

belong to phylogenetic group A or B1) and group 2 (isolates that belong to phylogenetic group B2, D, or F). The statistical tests were performed using Mann-Whitney test and were

considerate significant if p < 0.05. Abbreviations used: vs, versus; S, significant and NS, not significant.

FIGURE 4 | Antibiotic resistance profiles. (A) Percentage of isolates resistant to the indicated antibiotics grouped by phylogenetic groups (A, B1, B2, D, or F). (B)

Percentage of isolates resistant to the indicated antibiotic classes grouped by sequence type (ST). Only the six most prevalent STs are indicated.

Gonçalves et al., 2016; Hertz et al., 2016; Matsumura et al., 2016).
Interestingly, in contrast to other studies performed in the UK
and Denmark, the high virulent lineage ST73 was found less
frequently than ST10, i.e., only in 3.7 and 6.7% of the collected
isolates, respectively (Gibreel et al., 2012; Hertz et al., 2016).

ESBL-producing bacterial isolates are of greatmedical concern
in Latin American countries such as Brazil (Bonelli et al., 2014;
Sampaio and Gales, 2016). The majority of ESBL-producing
isolates in this study carried the blaCTX−M−15 gene, different

from previous studies, in which blaCTX−M−2 and blaCTX−M−8

were found most frequently (Bonelli et al., 2014; Guzmán-
Blanco et al., 2014). The majority of ESBL-producing isolates in
O25:H4/ST131 clonal group were CTX-M-15 producing. The E.
coli O25:H4/ST131 CTX-M-15 producing isolates were detected
in other countries worldwide (Yumuk et al., 2008; Merino
et al., 2016) and are known to be associated with increased
capacity of plasmid uptake which results in high plasmid diversity
despite showing a similar phenotype (Petty et al., 2014). In
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addition, the O25:H4/ST131 CTX-M-producing isolates in this
study were also found to be resistant to gentamicin, tobramycin,
and ciprofloxacin. This is similar to data presented in studies
worldwide that showed that CTX-M-producing isolates are often
MDR (Pitout and Laupland, 2008; Ewers et al., 2014; Ciesielczuk
et al., 2015).

In general, higher resistance rates for more than three
antibiotic classes were found in isolates belonging to ST131,
ST648, and ST405. These results are in agreement with previous
studies in the UK and Denmark that showed a broad-spectrum
resistance of ST131 E. coli (Ferjani et al., 2014; Hertz et al., 2016)
and that ST648 and ST405 have mobile elements containing
genes that confer resistance to aminoglycosides, sulfonamides,
and trimethoprim (Matsumura et al., 2013; Zhang et al.,
2016). In addition, the successful spread of the high-risk clone
O25:H4/ST131 is largely responsible for the increased prevalence
of ESBL-producing isolates. Other examples of E. coli high-risk
clones include isolates that belong to ST405 and ST648 (Johnson
et al., 2013; Mathers et al., 2015). Our results showed that all
ST131 isolates belong to phylogenetic group B2 and that all
ST405 isolates belong to phylogenetic group D. These groups,
often CTX-M-ESBL producing, have been reported as high-risk
pandemic clones (Wang et al., 2016; Shaik et al., 2017). Patients
carrying such a high-risk isolate that easily spreads can be the
cause of outbreaks in hospital settings and should be put into
isolation upon admission.

In contrast to findings of others who reported that ST648
isolates belong to phylogenetic group D (Gonçalves et al., 2016;
Müller et al., 2016), we found that the ST648 isolates in this
study belong to phylogenetic group B2. This classification was
based on the observation that in the whole genomes of our
ST648 isolates the yjaA and arpA genes were absent, whereas
the tspE4.C2 and chuA genes were present. Therefore, they
belong to phylogenetic group B2 based on the phylo-typing
method described by Clermont et al. (2013). In addition, our
ST648 isolates contained a mutation (G → C) in the primer
binding site of primer TspE4C2.1b at the position where the
most 3’ nucleotide of this primer should anneal. This may lead
to misclassification of the isolate as belonging to phylogenetic
group F instead of B2 when using the PCR-based method for
phylo-typing described by Clermont et al. (2013).

The results of this study, show that the majority of
O25:H4/ST131 isolates belong to subclone H30-R, whereas part
of these isolates belong to subclone H30-Rx (classified as virotype
C or A). The rise in fluoroquinolone resistance in the last
years is associated with the rapid emergence of this latter
subclone that is often MDR (Peirano et al., 2014). It has also
been associated with upper UTIs and primary sepsis, and often
contains the aac(6’)-Ib-cr gene (responsible for fluoroquinolone
resistance) (Peirano et al., 2014). The evolutionary history of sub-
clone H30-Rx is unclear. The most accepted theory to explain
the success of its emergence is that it has, as other high-risk
bacterial clones, acquired certain adaptive traits and survival
skills while acquiring antibiotic resistance and virulence genes
located onmobile elements (Woodford et al., 2011;Mathers et al.,
2015). Therefore, detailed molecular characterization studies are
required to increase the knowledge about the evolution of this

subclone (Petty et al., 2014; Matsumura et al., 2016) and to
identify specificmolecular markers (including resistant/virulence
genes and/or specific plasmids) to optimize diagnostics and
subsequent antibiotic therapy.

The pathogenicity of UPEC is based on virulence and fitness
factors that allow the bacteria to entry, adhere, acquire essential
nutrients such as iron, multiply, cause tissue damage, and
disseminate in the urinary tract (Subashchandrabose et al., 2014).
The most frequently found virulence genes in our isolates were
associated with the iron uptake system and adhesins, whereas
fimbriae and toxins were less frequently found. These results
differ from previous studies where a high frequency of adhesins
and toxins genes among UPEC isolates were found (Alizade
et al., 2014). Whereas, several studies showed the association
between the presence of adhesins and toxins with more complex
UTIs (Wiles et al., 2008; Tarchouna et al., 2013), others could
not correlate the presence of these virulence genes with the
complexity of UTIs (Kudinha et al., 2013; Firoozeh et al., 2014).
Most likely, the complexity of a UTI is defined by a combination
of virulence genes, including those associated to the iron uptake
system and adhesins. Indeed, efficient iron uptake is essential for
the bacteria to survive and colonize in a poor iron environment
as the urinary tract (Lee et al., 2016). In addition, the presence
of adhesins such as afa, pap, sfa has been described to be
important for invading urinary epithelial cells and in our isolates
identified virulence genes cnf-1 and hlyA are essential subsequent
dissemination (Lee et al., 2016). Other genes frequently found in
our isolates were ompT, malX, kpsM, and traT. These genes are
common virulence genes found in isolates associated with cystitis
and pyelonephritis (Firoozeh et al., 2014; Derakhshandeh et al.,
2015).

Overall, in our study, virulence genes were most prevalent
among B2 isolates, followed by group D and F. In addition,
their prevalence among sequence types ST131, ST69, ST1703,
ST405, and ST648 was similar. ST73 isolates had a higher
PVS compared to the other investigated groups. This is in
agreement with findings of others that described E. coli ST73
to be a high virulent clone (Alhashash et al., 2016). In addition,
ST131-B2 strains have emerged globally causing MDR resistant
extraintestinal infections (Johnson et al., 2013). Therefore, MDR
isolates belonging to phylogenetic group B2 and clonal group
O25:H4/ST131 are considered to form a double threat, because of
their high resistance rate and substantial extraintestinal virulence
capacity (Ferjani et al., 2014).

In conclusion, a large diversity of E. coli isolates causing UTIs
was found in urine samples obtained from patients in Rio de
Janeiro. The identified STs belonged to the most prevalent clonal
groups reported worldwide. Among the investigated isolates
the antibiotic resistance rate was high, as was the prevalence
of ESBL-producing isolates. This result is associated with the
presence of high-risk clones, often MDR, that mainly belong
to phylogenetic group B2 D and F, containing a high number
of virulence genes. The presence of highly virulent and MDR
E. coli in Brazilian hospitals is of high concern for health
care institutions and requires more attention from the health
authorities. Clearly, it has consequences for the treatment of the
patients and the outcome of the disease. Therefore, standard
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implementation of molecular methods to characterize E. coli
isolates from urine in hospitalized patients is required to optimize
diagnostic stewardship, patient treatment and infection control
measures.
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