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Escherichia albertii is an emerging member of the Enterobacteriaceae causing human
and animal enteric infections. Antimicrobial resistance among enteropathogens has
been reported to be increasing in the past years. The purpose of this study was
to investigate antibiotic resistance and resistance genes in E. albertii isolated from
Zigong city, Sichuan province, China. The susceptibility to 21 antimicrobial agents
was determined by Kirby–Bauer disk diffusion method. The highest prevalence was
tetracycline resistance with a rate of 62.7%, followed by resistance to nalidixic acid
and streptomycin with a rate of 56.9 and 51.0%, respectively. All isolates were
sensitive or intermediate susceptible to imipenem, meropenem, amoxicillin–clavulanic
acid, and levofloxacin. Among 51 E. albertii isolates, 15 were extended-spectrum
β-lactamase-producing as confirmed by the double disk test. The main β-lactamase
gene groups, i.e., blaTEM, blaSHV, and blaCTX−M, were detected in17, 20, and 22
isolates, respectively. Furthermore, four colistin-resistant isolates with minimum inhibitory
concentrations of 8 mg/L were identified. The colistin-resistant isolates all harbored
mcr-1 and blaCTX−M−55. Genome sequencing showed that E. albertii strain SP140150
carried mcr-1 and blaCTX−M−55 in two different plasmids. This study provided significant
information regarding antibiotic resistance profiles and identified the co-occurrence of
β-lactamase and MCR-1 encoding genes in E. albertii isolates.

Keywords: Escherichia albertii, β-lactam, β-lactamases, ESBL, mcr-1

INTRODUCTION

Escherichia albertii is a gram-negative facultative rod bacterium belonging to a member of the
Enterobacteriaceae. It was previously recovered from stool specimens of sick Bangladeshi children
and was preliminarily identified as atypical eae-positive Hafnia alvei (Albert et al., 1991, 1992).
In 2003, it was proposed as a new species, named E. albertii based on further genotypic and
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biochemical studies (Huys et al., 2003). E. albertii was reported
to be the probable cause of death for redpoll finches (Carduelis
flammea) in Alaska in 2004 (Oaks et al., 2010). In recent years,
E. albertii was reported to be an emerging human enteropathogen
associated with many sporadic infections and outbreaks in
humans (Konno et al., 2012; Ooka et al., 2012, 2013; Asoshima
et al., 2014; Murakami et al., 2014; Brandal et al., 2015; Inglis
et al., 2015). Besides, it has been detected in water and raw
meats of animal origin (Felfoldi et al., 2010; Maheux et al.,
2014; Asoshima et al., 2015; Lindsey et al., 2015; Maeda et al.,
2015; Wang et al., 2016), thus posing a high risk to public
health.

Antimicrobials are one of the most successful forms of
chemotherapy used in the treatment of infectious diseases by
killing or inhabiting the growth of microorganisms. The most
important and widely used antimicrobials are β-lactam drugs.
In recent years, antimicrobial resistance among Gram-negative
bacteria has been reported to be increasing (MacVane, 2017).
In Enterobacteriaceae, resistance to the β-lactam is mediated
by production of β-lactamase enzymes which inactivate the
drugs by hydrolyzing the β-lactam ring (Bush and Bradford,
2016). Some clinically most important enzymes are as follows:
(1) extended-spectrum β-lactamases (ESBLs), including SHV,
TEM and CTX-M types; (2) carbapenemases, including class A
(KPC types), class B metallo-β-lactamases (MBLs), and class D
oxacillinases; and (3) the AmpC cephalosporinases (Bonomo,
2017).

Colistin is an antibiotic of last resort for the treatment of
extensively drug-resistant Gram-negative bacteria (Kaye et al.,
2016). In a recent study, the emergence of plasmid-mediated
colistin resistance has been reported in E. coli, raising a
great concern around the world (Liu et al., 2016). Thereafter,
plasmid-mediated colistin resistance gene (mcr-1) has also been
identified in other members of the Enterobacteriaceae from
South America, Asia, Europe and Africa, suggesting that mcr-
1 might be widespread (Olaitan et al., 2016; Al-Tawfiq et al.,
2017).

To date, little is known about the antibiotic resistance of
E. albertii. This study investigated the antibiotic resistance,
identified the ESBL-producing and colistin-resistant isolates, and
determined the distribution of β-lactamase genes and mcr-1 gene
in E. albertii isolated from Zigong city, Sichuan province, China.

MATERIALS AND METHODS

Bacterial Isolates
A total of 51 isolates of E. albertii were recovered from
various samples collected in Zigong city, Sichuan province
between 2013 and 2015, including diarrheal patient feces
(3), healthy carrier feces (3), duck intestine (19), chicken
intestine (18), chicken meat (3), duck meat (2), raw mutton
(1), raw pork (1), and egret excrement (1). All isolates
were confirmed to be E. albertii based on combination of
diagnostic multiplex PCR, 16S rDNA sequencing, and multi-
locus sequence typing (MLST) analysis as described previously
(Wang et al., 2016) and stored at −80◦C in Luria-Bertani

(LB) medium (Oxoid, United Kingdom) with 30% (vol/vol)
glycerol.

Antibiotic Susceptibility Testing
Susceptibility to antimicrobials was determined by Kirby–
Bauer disk diffusion method on Mueller Hinton agar (MHA).
The antibiotics used in the study included imipenem (IMP),
meropenem (MEM), piperacillin (PRL), ampicillin/sulbactam
(SAM), amoxicillin/clavulanic acid (AMC), cefepime (FEP),
cefuroxime (CXM), cephalothin (KF), ceftriaxone (CRO),
aztreonam (ATM), kanamycin (K), streptomycin (S), gentamicin
(CN), nalidixic acid (NA), levofloxacin (LEV), norfloxacin
(NOR), ciprofloxacin (CIP), trimethoprim/sulfamethoxazole
(SXT), tetracycline (TE), furadantin (F), and chloramphenicol
(C) (Oxoid, United Kingdom). The inoculated plates were
incubated for 24 h aerobically at 37◦C. The diameters of the zones
of inhibition was interpreted according to the Clinical Laboratory
Standards Institute (CLSI) guidelines (CLSI, 2016).

The minimum inhibitory concentration (MIC) of colistin
was determined by broth microdilution method recommended
by the joint CLSI-EUCAST Polymyxin Breakpoints Working
Group1.

Identification of the ESBL-Producing
Isolates
The double disk test was performed to confirm the ESBL
phenotype. It was carried out on MHA with two pairs of disks
(ceftazidime + ceftazidime/clavulanic acid and cefotaxime +
cefotaxime/clavulanic acid) (BD Diagnostics, United States). The
results were interpreted as recommended by the CLSI (CLSI,
2016). E. coli ATCC 25922 and Klebsiella pneumoniae ATCC
700603 were used as the quality control strains.

Detection of the β-Lactamase Gene
Groups
Escherichia albertii isolates were inoculated on LB agar and
incubated overnight at 37◦C. A colony was suspended in 50 µl
of sterilized distilled water and boiled for 10 min. The cell
suspension was centrifuged at 10,000 × g for 5 min, and the
supernatant was used as template DNA. PCR was performed to
screen the main β-lactamase gene groups, i.e., blaTEM, blaSHV,
blaCTX−M, blaKPC, and blaNDM genes. All primers and PCR
conditions used in this study were presented in Supplementary
Table S1. Each reaction tube contained 10 µl of master Mix
(Qiagen, Germany), 0.5 µM of forward and reverse primers, and
1 µl of template DNA, and was made up to a total volume of 20 µl
with sterile distilled water.

Detection and Sequencing of the mcr-1
Gene
All 51 isolates were subjected to PCR for the presence of
mcr-1 gene using primers described previously (Supplementary

1http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_
documents/Recommendations_for_MIC_determination_of_colistin_March_
2016.pdf
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FIGURE 1 | Frequency of antimicrobial resistance of 51 Escherichia albertii isolates. IMP, imipenem; MEM, meropenem; PRL, piperacillin; SAM, ampicillin/sulbactam;
AMC, amoxicillin/clavulanic acid; FEP, cefepime; CXM, cefuroxime; KF, cephalothin; CRO, ceftriaxone; ATM, aztreonam; K, kanamycin; S, streptomycin; CN,
gentamicin; NA, nalidixic acid; LEV, levofloxacin; NOR, norfloxacin; CIP, ciprofloxacin; SXT, trimethoprim/sulfamethoxazole; TE, tetracycline; F, furadantin; C,
chloramphenicol.

Table S1). The expected PCR products were sequenced using
the ABI 3730 Automated DNA Analyzer (Applied Biosystems,
United States).

The mcr-1 sequences obtained in this study have been
deposited in GenBank under accession numbers: KX765477–
KX765480.

Plasmid Profiling
Plasmid DNA profiles of all 51 E. albertii isolates were analyzed
using the S1-nuclease pulsed-field gel electrophoresis (PFGE)
method. Briefly, the bacterial cells embedded in agarose were
lysed by SDS/proteinase K, and then were digested with 8 U
S1-nuclease at 37◦C for 30 min. Finally, each sample was
resolved by PFGE in a Chef-Mapper (Bio-Rad, United States)
at 14◦C, with a switch time 2.16 to 54.17 s at 6 V/cm for
18 h. Each DNA band visualized was considered as a unit
length of linear plasmid. The approximate size of each plasmid
was determined by comparing profiles with XbaI-digested DNA
from Salmonella serotype Braenderup strain H9812 (Bai et al.,
2017).

Mating Experiments
Four of the mcr-1-positive isolates were selected for conjugation
experiments. Filter conjugation was carried out using E. coli
J53 (sodium azide-resistant) as the recipient. The donor and
recipient were grown on LB medium to an optical density at
600 nm of 0.5, mixed equally, and then incubated on sterilized
filter paper for 4 h. The filter was then resuspended in LB
medium, and dilutions were plated on M-H agar containing
sodium azide (150 µg/mL and colistin (4 µg/mL) to select for
transconjugants. Mobilization efficiency was calculated as the
number of transconjugant colonies divided by the number of
donor colonies (Wang et al., 2011).

Whole-Genome Sequencing
Genomic DNA was isolated from an overnight culture using the
Wizard Genomic DNA purification kit (Promega, United States)
according to the manufacturer’s instructions. Total DNA
obtained was subjected to quality control by agarose gel
electrophoresis and quantified by Qubit (Life Technologies,
United States). The complete genome was sequenced by
single molecule real-time (SMRT) technology using the
Pacific Biosciences (PacBio) sequencing platform performed
at the Beijing Novogene Bioinformatics Technology, Co., Ltd.
(McCarthy, 2010). The filtered reads were assembled to generate
one contig without gaps using SMRT Analysis 2.3.0 (Berlin et al.,
2015). The protein-coding sequences (CDSs) were predicted
using GeneMarkS (Besemer et al., 2001). ARDB (Antibiotic
Resistance Genes Database)2 was used to search for antimicrobial
resistance genes (Liu and Pop, 2009).

The complete genome sequences of SP140150 isolate are
available at GenBank under the accession numbers: CP025676–
CP025679.

Ethics Statement
Samples were collected and detected as part of the infectious
disease surveillance program led by National Institute for
Communicable Disease Control and Prevention, China CDC
and implemented by Zigong Center for Disease Control and
Prevention. The study was approved by the ethics committee
of National Institute for Communicable Disease Control and
Prevention, China CDC, according to the medical research
regulations of National Health and Family Planning Commission
of the People’s Republic of China.

2http://ardb.cbcb.umd.edu/
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RESULTS

Antibiotic Resistance of E. albertii
Isolates
Antimicrobial resistance in E. albertii isolates was determined
against 21 antibiotics. The highest prevalence was tetracycline
resistance with a rate of 62.7% (32/51), followed by resistance
to nalidixic acid and streptomycin with a rate of 56.9%
(29/51) and 51.0% (26/51), respectively. Resistance rate to
cefuroxime, piperacillin, and chloramphenicol was 45.1, 43.1,
and 41.2%, respectively. Lower resistance was observed for
ampicillin/sulbactam, cefepime, cephalothin, ceftriaxone,
aztreonam, kanamycin, gentamicin, norfloxacin, ciprofloxacin,
trimethoprim/sulfamethoxazole, and furadantin with a rate
ranging from 17.6 to 39.2%. All isolates were sensitive
or intermediate susceptible to imipenem, meropenem,
amoxicillin–clavulanic acid, and levofloxacin (Figure 1).

Ten isolates (19.6%) were resistant to one antimicrobial
agent, while the majority exhibited resistance to two or
more antimicrobials tested. All isolates from diarrheal
patients and healthy carriers were susceptible to imipenem,
meropenem, piperacillin, cefepime, aztreonam, and levofloxacin
(Supplementary Table S2).

ESBL-Producing E. albertii Isolates
Among 51 E. albertii isolates, 15 isolates from four sources,
i.e., six isolates from duck intestine, six from chicken intestine,
two from chicken meat and one from raw mutton samples,
were ESBL-producing as confirmed by the double disk test. All
isolates recovered from diarrheal patients and healthy carriers
were non-ESBL-producing (Supplementary Table S2).

All ESBL-producing E. albertii isolates were resistant to
piperacillin, cefuroxime, cephalothin, ceftriaxone, aztreonam,
tetracycline and chloramphenicol, whereas resistance to
streptomycin and nalidixic acid were observed in 14 of the 15
ESBL-producing isolates. ESBL-producing E. albertii isolates
have higher resistance rate than non-ESBL-producing isolates, as
expected (Table 1).

Distribution of β-Lactamase Genes
The main β-lactamase gene groups (blaTEM, blaSHV, blaCTX−M,
blaKPC, and blaNDM) were screened by PCR. Eight E. albertii
isolates did not contained any β-lactamase from gene groups
tested and none was positive for blaKPC and blaNDM. The blaTEM,
blaSHV, and blaCTX−M were detected in 17 (33.3%), 20 (39.2%),
and 22 (43.1%) isolates, respectively. All 15 ESBL-producing
isolates contained 1–3 β-lactamase genes (Supplementary
Table S2).

mcr-1-Positive and Colistin-Resistant
E. albertii Isolates
Four out of 51 isolates (one from raw mutton, one from raw
chicken meat, and two from chicken intestine) were positive for
MCR-1 encoding gene by PCR. Sequencing analysis showed that
the four nucleotide sequences are identical to the first reported

TABLE 1 | Comparison of the resistance rates of ESBL-producing and of
non-ESBL-producing E. albertii isolates.

Antibiotic Non-ESBL-producing
(N = 36) Resistant
[n (%)]

ESBL-producing
(N = 15) Resistant
[n (%)]

Imipenem 0 (0) 0 (0)

Meropenem 0 (0) 0 (0)

Piperacillin 7 (19.4) 15 (100)

Ampicillin/sulbactam 6 (16.7) 7 (46.7)

Amoxycillin/clavulanic acid 0 (0) 0 (0)

Cefepime 0 (0) 13 (86.7)

Cefuroxime 8 (22.3) 15 (100)

Cephalothin 0 (0) 15 (100)

Ceftriaxone 2 (5.6) 15 (100)

Aztreonam 0 (0) 15 (100)

Kanamycin 6 (16.7) 11 (73.3)

Streptomycin 12 (33.3) 14 (93.3)

Gentamicin 7 (19.4) 5 (33.3)

Nalidixic acid 15 (41.7) 14 (93.3)

Levofloxacin 0 (0) 0 (0)

Norfloxacin 6 (16.7) 10 (66.7)

Ciprofloxacin 4 (11.1) 11 (73.3)

Sulfamethoxazole 12 (33.3) 8 (53.3)

Tetracycline 17 (47.2) 15 (100)

Furadantin 0 (0) 9 (60.0)

Chloramphenicol 6 (16.7) 15 (100)

mcr-1 sequence in plasmid pHNSHP45 (GenBank accession
number KP347127).

The MICs of colistin of all 51 E. albertii isolates were
determined by broth microdilution method. The four mcr-1-
positive isolates were colistin-resistant with MIC of 8 mg/L. The
MICs of colistin of all mcr-1-negative isolates were less than
4 mg/L.

The colistin resistance genes of all four mcr-1-positive isolates
were successfully transferred by conjugation into sodium azide
resistant E. coli J53. The transfer frequencies of isolates SP140128,
SP140089, SP140149, and SP140150 were similar (4.2 × 10−3,
8.8× 10−4, 3.8× 10−4, and 1.3× 10−3, respectively).

Co-occurrence of blaCTX−M and mcr-1
Genes in E. albertii Isolates
Except one isolate T150248 from healthy carrier, plasmids
ranging in size from 36 to 283 kbp were identified by S1-nuclease-
based PFGE in 50 E. albertii isolates. Among which, 23 isolates
harbored one plasmid; 13 harbored two plasmids; 10 harbored
three plasmids; three harbored four plasmids; and one isolate
harbored five plasmids (Supplementary Table S2). Two different
size plasmids (56 and 113 kbp) were identified in all four colistin-
resistant isolates, and an additional 45 kbp plasmid was present
in three out of four colistin-resistant isolates (Table 2).

All four isolates harboring mcr-1 were positive for blaCTX−M
group gene (blaCTX−M−55 type) and were ESBL-producing.
The four colistin-resistant isolates showed indistinguishable
PFGE patterns and they were all typed as sequence type (ST)
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TABLE 2 | Antimicrobial resistance profiles, β-lactamase genes, and plasmid content of colistin-resistant E. albertii isolates.

Isolate Origin Antibiotic resistance profile β-Lactamase gene∗∗ Plasmids (kb)∗∗∗

SP140128 Mutton PRL, SAM∗, FEP, CXM, KF, CRO, ATM, K, S, NA, NOR, CIP, SXT∗, TE, F∗, C blaCTX−M−55 113, 56

SP140089 Chicken meat PRL, SAM∗, FEP, CXM, KF, CRO, ATM, K, S, NA, NOR, CIP∗, SXT∗, TE, F, C blaCTX−M−55 113, 56, 45

SP140149 Chicken intestine PRL, SAM∗, FEP, CXM, KF, CRO, ATM, K, S, NA, LEV∗, NOR, CIP, SXT∗, TE, F∗, C blaCTX−M−55 113, 56, 45

SP140150 Chicken intestine PRL, SAM∗, FEP, CXM, KF, CRO, ATM, K, S, NA, NOR, CIP, SXT∗, TE, F, C blaCTX−M−55 113, 56, 45

PRL, piperacillin; SAM, ampicillin/sulbactam; FEP, cefepime; CXM, cefuroxime; KF, cephalothin; CRO, ceftriaxone; ATM, aztreonam; K, kanamycin; S, streptomycin; NA,
nalidixic acid; LEV, levofloxacin; NOR, norfloxacin; CIP, ciprofloxacin; SXT, trimethoprim/sulfamethoxazole; TE, tetracycline; F, furadantin; C, chloramphenicol. ∗ Intermediate
sensitivity to antibiotics. ∗∗blaCTX−M−55 type was determined by sequencing. ∗∗∗Plasmid sizes were estimated by S1-nuclease PFGE method.

4479 (Supplementary Figure S1). They exhibited multi-drug
resistance. All four isolates were resistant to 12 antibiotics
tested in this study, i.e., piperacillin, cefepime, cefuroxime,
cephalothin, ceftriaxone, aztreonam, kanamycin, streptomycin,
nalidixic acid, norfloxacin, tetracycline, and chloramphenicol
(Table 2).

Genome Features of E. albertii Strain
SP140150 Harboring mcr-1
The completed genome sequence of SP140150 consists of a
circular chromosome of 4,881,553 bp with an average GC content
of 49.8% and three circular plasmids. Antimicrobial resistance
genes were searched against these three plasmids. blaCTX−M−55
was identified in pEA-1, a plasmid of 129,356 bp in size with an
average GC content of 51.9%. In addition, pEA-1 also carried
chloramphenicol resistance gene cml, tetracycline resistance
determinant tetA, streptomycin resistance genes aph6id and
aph33ib, sulfonamide-resistant dihydropteroate synthase gene
sul2, and multidrug efflux RND transporter OqxA and OqxB.
None of any antimicrobial resistance genes was identified in
pEA-2, the second plasmid of 57,110 bp in size with an average
GC content of 46.1%. A 1626 bp CDS encoding MCR-1 was
found located downstream of an insertion sequence ISApl1 in
the third plasmid pEA-3. pEA-3 is 68,747 bp in size with an
average GC content of 42.5%. pEA-3 possesses an IncFII-type
backbone and contains 90 predicted CDSs encoding plasmid
replication, maintenance and stability functions, and a type IV
protein secretion system (Figure 2).

DISCUSSION

Antimicrobial resistance is an increasingly encountered
phenomenon among the Enterobacteriaceae and an alarming
threat to global health (Laxminarayan et al., 2013). Resistance
to β-lactams is primarily because of bacterially produced
β-lactamases that are able to hydrolyze the β-lactam ring
(Bush and Bradford, 2016). There are several reports of
porin-mediated resistance in clinical isolates of enterobacteria,
mainly affecting susceptibility to β-lactams (Martinez-Martinez
et al., 1996; Poirel et al., 2004; Pavez et al., 2008; Perez et al.,
2013).

Some E. albertii isolates in this study demonstrated
resistance to four antimicrobials identified by the World
Health Organization (WHO) as being of critical importance

in the treatment of human infectious diseases, including
piperacillin, ampicillin, cefotaxime, and cefepime (WHO, 2012).
Furthermore, 29.4% of isolates demonstrated resistance to
cephalothin that was identified by the WHO as highly important
in human disease treatment (WHO, 2012).

Extended-spectrum β-lactamases are defined as enzymes
produced by certain bacteria that are able to hydrolyze
extended spectrum cephalosporin. TEM-group (exception
of TEM-1 and TEM-2), SHV-group, and CTX-M-group
β-lactamases are important types of ESBLs (Ghafourian
et al., 2015). Among the three types, the prevalence of CTX-
M is increasing in Enterobacteriaceae and predominates
as a cause of extended spectrum cephalosporin resistance
(Falagas and Karageorgopoulos, 2009). In the current
study, the prevalence of blaCTX−M gene in E. albertii was
in agreement with those reported in the other studies
(Bora et al., 2014). Besides, blaCTX−M gene was mostly
detected in isolates resistant to cefotaxime. Nineteen
(37.3%) of E. albertii isolates carried two or three different
β-lactamase gene groups, demonstrating the co-occurrence
of these genes in various combinations (Shahid et al.,
2011).

Carbapenem-resistant Enterobacteriaceae have been
increasingly reported worldwide. The carbapenemases include
NDMs, KPCs, OXA-48, and others (Tzouvelekis et al., 2012).
KPCs are currently the most common cause of carbapenem
resistance worldwide. The emergence of New Delhi metallo-
β-lactamase (NDM-1) and its variants had raised a major public
health concern. NDM-1 can hydrolyze a wide range of β-lactam
antibiotics, including carbapenems (Khan et al., 2017). In
China, Wang et al. (2015) has reported that Enterobacteriaceae
remained susceptible to carbapenems. In the present study,
none of the isolate was positive for blaKPC or blaNDM and
all isolates demonstrated susceptibility to meropenem and
imipenem.

Polymyxins are active against most members of the
Enterobacteriaceae family, however, some are naturally resistant
to polymyxins, like Proteus, Brucella, Legionella, Campylobacter,
and Vibrio (Poirel et al., 2017). In additional to intrinsic
resistance, mechanisms responsible for acquired resistance to
polymyxins in Enterobacteriaceae have been identified, including
genes encoding LPS-modifying enzymes; regulators of the
PmrAB and PhoPQ two-component systems; the intrinsic
regulator RamA (Poirel et al., 2017). Recently, Liu et al. (2016)
had reported plasmid-mediated colistin resistance in E. coli.
Thereafter, plasmid-mediated colistin resistance gene (mcr-1)
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FIGURE 2 | Structure of plasmid pEA-3 carrying mcr-1 from E. albertii strain SP140150. From outer circle to inner circle, each represents CDS, GC content and GC
skew, respectively. The functions of corresponding CDSs are colored as indicated.

has been proved to be widespread in other members of the
Enterobacteriaceae (Olaitan et al., 2016). In this study, four
genetically related E. albertii isolates were positive for mcr-1
and were colistin-resistant. When the mcr-1 harboring plasmid
pEA-3 sequence was compared using BLASTn to the nucleotide
database at NCBI (accessed 26.01.2018), several highly similar
(99% identities with query coverage over 90%) mcr-1 harboring
plasmids from E. coli, Cronobacter sakazakii or Salmonella
enterica were identified, suggesting that mcr-1 has also spread to
E. albertii.

CONCLUSION

The present study provides significant information regarding
antibiotic resistance of E. albertii from human, animal, and raw
retail meats for the first time. Co-occurrence of β-lactamase and
MCR-1 encoding genes in E. albertii isolates were identified.
Further epidemiological assessments on the drug resistance
patterns of E. albertii and determination of the molecular

resistance mechanisms are needed in the treatment and
prevention of both human and animal infections.
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FIGURE S1 | Pulsed-field gel electrophoresis (PFGE) profiles of four
mcr-1-positive E. albertii isolates. Genomes of E. albertii isolates were digested
with Xba I and fragments separated on a 1% agarose gel using a CHEF-DR III

PFGE apparatus, according to the protocol for E. coli O157:H7 from PulseNet,
United States (http://www.cdc.gov/pulsenet/pathogens/index.html). Multi-locus
sequence typing (MLST) was done according to the E. coli MLST website
(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).

TABLE S1 | PCR primers used to screen the β-lactamase and MCR-1 encoding
genes.

TABLE S2 | Antibiotic resistance patterns and prevalence of β-lactamase and
MCR-1 encoding genes in E. albertii isolates.
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