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It is increasingly acknowledged that climate change is influencing terrestrial ecosystems
by increased drought and rainfall intensities. Soil microbes are key drivers of many
processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and
functions. However, little is known on how drought and rainfall fluctuations, which affect
the composition and structure of microbial communities, persist once original moisture
conditions have been restored. Here, we study how simulated short-term drying and
re-wetting events shape the community composition of soil fungi and prokaryotes. In
a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted
to optimal moisture (50% WHC, water holding capacity) or to saturation level (100%
WHC). Composition, community structure and diversity of microbes were measured
by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture
content had been restored. Drying and extreme re-wetting decreased richness of
microbial communities, but not evenness. Abundance changes were observed in only
8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not
differ between drying and re-wetting treatments. Two specific legacy response groups
(LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG
decreased in relative abundance in soil with a history of drought, whereas OTUs that
increased in soil with a history of drought formed a second LRG. These microbial
responses were spread among different phyla. Drought appeared to be more important
for the microbial community composition than the following extreme re-wetting. 16S
profiles were correlated with both inorganic N concentration and basal respiration
and ITS profiles correlated with fungal biomass. We conclude that a drying and/or
an extreme re-wetting history can persist in soil microbial communities via specific
response groups composed of members with broad phylogenetic origins, with possible
functional consequences on soil processes and plant species. As a large fraction of
OTUs responding to drying and re-wetting belonged to the rare biosphere, our results
suggest that low abundant microbial species are potentially important for ecosystem
responses to extreme weather events.
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INTRODUCTION

Future climate is expected to include more variable drought and
rainfall events (IPCC, 2012; Fischer and Knutti, 2016). These
enhanced fluctuations will directly affect soil microbes that rely
on water to fulfill their life cycles and activities (Vos et al.,
2013). Fluctuations in soil moisture conditions influence the
regulation of microbial activities such as respiration and growth
(Manzoni et al., 2012; Meisner et al., 2015). For example, a
pulse of respiration often occurs when water is added to dry soil
(Birch, 1958; Kim et al., 2012). This is a general phenomenon
that occurs in many regions in the world, such as arctic (Clein
and Schimel, 1994; Meisner et al., 2017), temperate (Pulleman
and Tietema, 1999; Meisner et al., 2013a), and arid regions
(Miller et al., 2005; Chowdhury et al., 2011; Warren, 2014). The
amount of water that is added during re-wetting determines the
microbial response to the drying and re-wetting event (Orchard
and Cook, 1983; Evans et al., 2014; Lado-Monserrat et al.,
2014). Drying and re-wetting is considered a carbon loss from
the microbial community (Schimel et al., 2007), as the carbon
seems to be respired and not used for biomass incorporation via
microbial growth (Blazewicz et al., 2014; Meisner et al., 2015).
Whereas, the microbial growth, respiration rates and biomass
are recovered 1 week after re-wetting (Lundquist et al., 1999;
Meisner et al., 2013a), relatively little is known on how the
composition of the microbial community recovers within weeks
after re-wetting.

Drying and re-wetting can affect the composition of soil
communities (Fierer et al., 2003; Barnard et al., 2013; Evans
et al., 2014; Hartmann et al., 2017). Since terrestrial microbial
communities are important regulators of many ecosystem
services such as plant performance, bioremediation, and carbon
cycling (Vidali, 2001; Schimel and Schaeffer, 2012; Philippot et al.,
2013), soil moisture history may have important implications
for these “higher-order” processes (Hawkes et al., 2017). For
example, a past drought in the field can affect the bacterial
composition when soil is exposed to drying and re-wetting
events in the laboratory (Evans and Wallenstein, 2012). In
addition, N mineralization and inorganic N availability is
increased upon drying and re-wetting events (Meisner et al.,
2013b). These so-called “legacy effects” provide a source of
variation affecting microbes, but the extent and amplitude of
their contribution to soil microbiome composition remains
unclear.

Soil microbes have different strategies to cope with fluctuating
moisture availability (Lennon et al., 2012). Bacteria have been
shown to respond sensitively, tolerant or opportunistically to
drying and re-wetting (Evans and Wallenstein, 2014). Bacterial
sensitivity can be due to increased injuries in viable cells (Mackey
and Derrick, 1984; Nocker et al., 2012), which may lead to a
decrease in microbial activity (Kieft et al., 1987). Cell damage is
difficult to repair during drought due to a decrease in microbial
activity (Potts, 1994). As such, the fraction of “dormant-over-
active” cells is likely to increase in drying soils (Manzoni
et al., 2014) and more free niches will become available upon
re-wetting. Microbes can tolerate drought when they produce
protective molecules (Schimel et al., 2007), such as osmolytes

(Warren, 2014). Opportunistic microbes can colonize free
niches that become available upon re-wetting. Fast responding
microbes (Placella et al., 2012) may affect the composition of
the slower responders in the microbial community via priority
effects (Fukami, 2015). Abundant microbes can take advantage
of niches that become available after drought, however, sub-
dominant and rare microbes may respond opportunistically
as well (Aanderud et al., 2015; Lynch and Neufeld, 2015),
so that growth rates of rare bacteria may not necessarily be
different from those that are abundant (Kurm et al., 2017). The
consequence of all these different response strategies is that
extreme drought may imprint a legacy signature in the soil
microbiome composition that can last for weeks after the end of
the drought event.

Unlike bacteria, soil fungi are often less affected by drought
due to their extended and exploratory hyphal structures (Bapiri
et al., 2010; Yuste et al., 2011; de Vries et al., 2012a; Barnard
et al., 2013). However, contrasting findings for the capacity
of soil fungi to resist alterations in moisture conditions
have been reported. The composition of fungal communities
can differ between dry and wet conditions (Hawkes et al.,
2011; Cregger et al., 2012; Acosta-Martínez et al., 2014;
Barnes et al., 2018) and their biomass may increase, decrease,
or remain unaffected by drought or irrigation (Scheu and
Parkinson, 1994; Gordon et al., 2008; Haugwitz et al., 2014;
Hartmann et al., 2017). Despite these contrasting findings,
some fungal species are sensitive bioindicators of changes
in soil moisture (Kaisermann et al., 2015). Therefore, fungal
species may not only tolerate drought stress, but may respond
sensitively or opportunistically (Crowther et al., 2014) just as
bacteria.

Our aim was to test how extreme fluctuations in soil
moisture content may result in a legacy in the composition
of soil microbial communities. We identified legacy effects by
applying high throughput molecular approaches. We tested
the overall hypothesis that extreme drought and re-wetting
events enact a legacy in soil via a changed composition of
the microbial community after soil moisture conditions have
been restored. More specifically, we predicted that: (1) an
extreme drying and re-wetting event will decrease the number
of abundant or sub-abundant OTUs, (2) fungal communities
will also respond to changed moisture conditions by tolerant,
opportunistic and sensitive response patterns, and (3) some rare
microbes will increase in relative abundance. We further tested
if the microbiome profiles were correlated to the previously
measured soil processes, such as inorganic N concentration, N
mineralization rates and respiration rates (see Meisner et al.,
2013b for details on soil processes and nutrients). In order to
test our hypotheses, we performed a mesocosm experiment and
exposed soil to a 4 weeks drying treatment after which soils
were either re-wetted to optimal (50% WHC, water holding
capacity), or to saturated moisture conditions (100% WHC).
The optimal soil moisture content is in between 50 and
70% WHC (Ilstedt et al., 2000; Setia et al., 2011). Soil was
left to recover for 18 days, after which we extracted DNA
and analyzed the composition of 16S rRNA gene and ITS
amplicons.
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MATERIALS AND METHODS

Soil Origin
At November 3, 2009, soil was collected from five locations in the
nature reserve Millingerwaard, which is located in the Gelderse
Poort region along the Rhine River delta in the Netherlands
(N51◦ 52.224′ E5◦ 59.494′). In the week before sampling, there
was in total 22 mm of rain spread among the different days
and the average air temperature was 11.5◦C1. Coarse fragments
and plant material were removed by sieving through a 10-mm
sieve, and the remaining soil was homogenized and placed in the
greenhouse where later on the experiment was carried out (see
Meisner et al., 2013b for details). The soil is considered a Sandy
soil (Meisner et al., 2011).

Experimental Design
We tested how a history of an extreme drying and/or a re-
wetting affected the composition of the microbial community
18 days after the soil was re-wetted to original conditions or re-
wetted to saturation. Thereto, 32 microcosms were filled with
7L of soil (equivalent to 6000 g of dry soil) and left to settle
for 2 weeks before the experiments started in a greenhouse
with a temperature of 21◦C (±2◦C) for 16 h (±2◦C) and 16◦C
(±2◦C) for 8 h. The mesocosms were exposed to one of the four
treatments: constant moisture content (Moist or “C”), drought
stress for 28 days with re-wetting to 50% WHC (drought or
“D”), extreme re-wetting to 100% WHC (extreme re-wetting or
“ER”), or a combination of the drying and extreme re-wetting
(drought and extreme re-wetting or “DR”). Soil samples were
collected 18 days after the drought stress had stopped, at day
46 of the experiment. Soil was sampled with a small auger by
taking ca. 100 gram (based on dry soil) from 5 to 7 places in
the 7L mesocosms. Then, this soil sample was homogenized,
after which a subsample was taken, put on ice and stored in
the −80◦C freezer as soon as possible after sampling. The non-
frozen soil samples were used for the following measurements:
Inorganic Nitrogen, Arginine Ammonification, basal respiration,
substrate induced respiration, pH, ergosterol as fungal biomass
indicator and total microbial biomass. The data have been
published in a previous study (see Meisner et al., 2013b for
details).

DNA Extraction and Amplification
To characterize the bacterial and fungal soil communities we used
barcode sequencing. Soil samples previously stored at −80◦C
were defrosted and from 250 mg of dried soil, total DNA was
extracted for each sample using the PowerSoil DNA isolation
kit (MO BIO Laboratories, Inc., Carlsbad, CA, United States)
according to the manufacturer’s instructions. The composition
of the prokaryotic community was determined by targeting a
fragment of the 16S rRNA gene with amplicon sequencing.
The PCR mixture contained 10 µl of 5 Prime Hot mastermix
(QuantaBio), 1.25 µl BSA, 11.75 µl molecular grade water, 0.5 µl
of 10 µm of the 515F, 0.5 µl of 10 µm 806R primers for
amplification (Bates et al., 2011) and 1 µl template. The PCR

1www.knmi.nl

conditions were the following: 94◦C for 5 min, followed by 35
cycles of 94◦C for 45 s, 50◦C for 60 s, and 72◦C for 1.30 min,
followed by a final elongation of 10 min at 72◦C. The composition
of the fungal community was determined by targeting the ITS
region. The PCR master mix contained 17.1 µl molecular grade
water, 1 µl 5 µM DNtPs, 1 µl 25 mM MgCl2, 2.5 µl 10× PCR
reaction buffer with MgCl2 (Roche), 1.25 BSA, 0.5 µl of 10 µm
ITS4 (Ihrmark et al., 2012) primer and 0.5 µl of 10 µm fITS9
primer (Ihrmark et al., 2012), 0.15 µl of Taq DNA Polymerase
(Roche) and 1 µl of template. PCR conditions were composed
of an initial denaturation at 95◦C for 10 min, followed by 35
cycles of denaturation at 94◦C for 45 s, annealing at 54◦C for
60 s and elongation at 72◦C for 1.3 min followed with a final
elongation at 72◦C for 10 min. Both 16S and ITS PCR products
were purified using the Agencourt AMPure XP PCR Purification
kit (Beckman Coulter, Inc., Danvers, MA, United States). A PCR
product/AMPure bead ratio of 1:0.7 was used. Elution is done
with 25 µl preheated (55◦C) Milli-Q water with an incubation
time of 5 min. All other steps were performed according to
the manufacturer’s protocol. After purification both amplicons
were sequenced using the Illumina MiSeq platform for 300 bp
paired-end reads.

Annotation Pipeline
The raw paired-end Miseq data was processed into an annotated
OTU table using the following pipeline. The RDP extension
to PANDASeq (Masella et al., 2012) Assembler (Cole et al.,
2014) was used to merge the raw reads using a minimum
overlap of 150 bp and a minimum PHRED score of 25. Primer
sequences were removed from the FASTQ files using Flexbar
version 2.5 (Dodt et al., 2012). Sequences were converted
to FASTA format and concatenated into one file. Sequence
clustering was done using VSEARCH version 1.0.10 (Rognes
et al., 2016) at 97% identity and using usearch_global with
the default settings to map quality controlled reads against
the OTU centroids. The strategy used for this was de-
replication, sorting by abundance (at least 2 sequences) and
clustering using the UCLUST smallmem algorithm (Edgar, 2010).
Thereafter, chimeric sequences were detected and removed using
the UCHIME algorithm (Edgar et al., 2011) implemented in
VSEARCH. Lastly, taxonomic classification for each OTU was
obtained by using the RDP Classifier version 2.10 using the
bootstrap value of 80% and classification was done on full-
length entries (Cole et al., 2014). The pipeline was made
with Snakemake (Koster and Rahmann, 2012) as available
at DOI: https://doi.org/10.5281/zenodo.597131 (de Hollander,
2016). This pipeline was also used for ITS with the following
adjustments: (1) ITS2 regions where extracted using ITSx 1.0.11
(Bengtsson-Palme et al., 2013). (2) Using the UNITE database
(Kõljalg et al., 2013) provided by RDP the sequences were
classified. OTUs without affiliation to at least kingdom level were
excluded from the downstream beta-diversity analysis as the
carry little information.

Sequences
Summary tables describing each sample are presented in
Supplementary Tables S1, S2. The raw sequencing counts
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were used directly to estimate the sequencing depth
completeness via rarefaction curves using the package vegan
in R (Supplementary Figure S1). Although amplicon profiles
didn’t achieved asymptotic approximation (Supplementary
Figure S1), sequencing depth was sufficient to analyze the core
majority of this soil microbial diversity with a satisfactory
rarefaction threshold (Schöler et al., 2017). There were on
average 23808 OTUs per sample for 16S (Supplementary
Table S1) of which three were excluded from further analysis
due to too few counts or too low richness. For ITS, there
were on average 4106 OTUs per sample (Supplementary
Table S2) of which one sample was excluded from further
analysis due to too few counts. The R software (R Core
Team, 2017) and PAST software were used (Hammer
et al., 2001). Raw fastq files are available on the European
Nucleotide Archive (ENA) and have accession number
PRJEB23318.

Biostatistics
Richness and Evenness Analysis
Diversity indices were analyzed as described in previous work
(Jacquiod et al., 2016; Nunes et al., 2016). The Shannon diversity
index (H) was calculated as H = −

∑
pi ln

(
pi
)
, where pi is the

proportional abundance of OTU i in the mesocosms. Shannon
diversity indices (H, Gaussian glm model fit) and sample richness
(R, Poisson glm model fit) were calculated on rarefied data at
50,000 counts per sample for 16S rRNA gene profiles and 12,000
counts per sample for ITS profiles in order to avoid biases that
may come from uneven numbers. Univariate statistical analysis
was done in R version 3.1.1. We used the multcomp package
version 1.3.6 (Hothorn et al., 2008) for the ANOVA corrected
with Tukey post hoc test.

Multivariate Analysis and Constrained Ordination
The multivariate analysis was done with the raw and non-
rarefied contingency tables using the R software version 3.0.2
with the functions vegdist, hclust, rda, Adonis in package vegan
and function dudi.pca, bca, randtest, s.class, in package ade4.
A log10 transformation was needed to improve normality of
data. Principal Component Analysis (PCA) was performed after
center-scaling normalization. A pattern search was applied to the
original PCAs by grouping replicates together in order to perform
a Between Group Analysis (BGA). The statistical significance
of the selected grouping factor was tested with a Monte-Carlo
simulation involving 10,000 permutations. Complementing
PERMANOVA tests were performed on the Euclidean distance
profiles using 10,000 permutations in order to assess differences
across the four legacies. An ANOVA was performed with phyla
as response variables and treatment as explanatory variable.
Differences between the four treatments were identified using
a post hoc Tukey–Kramer test and false discovery rate multiple
correction test (functions glm, cld, gltht in package multcomp,
FDR, P < 0.05). Redundancy analysis (RDA) were performed
as described before (Nunes et al., 2016) using function rda
in vegan package, after center-scaling normalization for both
ITS and 16S rRNA gene amplicon profiles using the following
explanatory variables: four moisture legacies as well as the

soil measurements, inorganic nitrogen, arginine ammonification,
basal respiration, substrate induced respiration, pH, ergosterol,
total microbial biomass (see for details: Meisner et al., 2013b).
A permutation test was performed using 999 permutations to
test the robustness of the model for discrimination of 16S or ITS
profiles.

Definition and Validation of Legacy Response
Groups (LRGs)
We classified microbial OTUs into Legacy Response groups
(LRGs), which are defined as groups of organisms with similar
response to a change in their environment. Here, we apply
this concept to define groups of OTUs that may respond
differently to a legacy effect of drought. LRGs were extracted
from microbiomes as described previously (Nunes et al., 2016;
Jacquiod et al., 2018). Fine changes in the soil microbiomes
at the OTU level were extracted using negative binomial
distribution and generalized linear model (nbGLM) (Robinson
et al., 2010; Schöler et al., 2017). Significance of OTU changes
was inferred with a quasi-likelihood F-test (QLF) under post hoc
false discovery rate multiple correction test with the package
edgeR in R (FDR, p < 0.05) (Robinson et al., 2010). This
method has been suggested recently as one of the most accurate
ways to extract significantly responding OTUs by minimizing
the risk of error (Thorsen et al., 2016). LRGs aggregating
OTUs based on similar response patterns were identified using
hierarchical clustering and heatmaps representation, followed by
Monte-Carlo simulation for statistical validation. Enrichment of
phylogenetic groups in LRGs was tested using a hypergeometric
test. We asked for each phylogenetic level and each phylogenetic
group if we found more of that specific group in the LRG
than expected by chance depending on the size of the LRG
and on the occurrence of that group in the total sample.
We determined the proportion of OTUs in LRGs belonging
to rare microbes. Thereto, we considered the OTUs that had
a relative abundance below 0.01% as rare (Galand et al.,
2009).

RESULTS

Evenness and Richness
The legacy of drying and/or extreme re-wetting appeared as
decreased OTU richness for both ITS and 16S-based profiles,
but not the evenness (Figure 1). In both profiles, the lowest
richness was observed when soils were exposed to drying and
extreme re-wetting, while the highest richness was obtained in the
moist control soil. The 16S rRNA gene profiles showed a gradual
decrease in richness, in descending order with the following soil
history: moist control, extreme re-wetting, drying, drying and
extreme re-wetting.

Constrained Ordination and Redundancy
Analysis
The ITS and 16S profiles were separated in soil with a history of
drying and/or extreme re-wetting (Figure 2). However, there was
also variation within the different treatments as demonstrated
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FIGURE 1 | Richness and evenness of ITS and 16S rRNA gene amplicon profiles according to drying and re-wetting treatments (Average ± SEM). The chart
displays the richness (A) and the Shannon indices (B) for 16S rRNA gene profiles and the richness (C) and Shannon indices (D) for ITS. Letters denote differences at
P < 0.05 for a post hoc Tukey HSD correction test. ANOVA was run with the Poisson distribution for the richness.

FIGURE 2 | Between Group Analysis (BGA) of the soil microbial communities. The figure shows constrained principal component analysis (PCA) of the microbiome
profiles after applying sample grouping, according to replicates for four different moisture treatments for 16S rRNA gene profiles (A) and ITS profiles (B). Non-random
distribution of the BGA grouping was tested using a Monte-Carlo simulation with 10.000 permutations (ITS: p = 2.5E–03∗∗; 16S: p = 0.02∗).

by the spread in the replicates of the control and extreme re-
wetting for 16S, and drying and extreme re-wetting for the ITS.
Drought legacy explained 8.4% of the PERMANOVA variation
in 16S profiles and 6.1% of the variation in ITS profiles, whereas
the legacy of extreme re-wetting only explained 4.3% of the

variation in ITS and none in 16S (Table 1). Redundancy analysis
revealed that the microbiome profiles of 16S correlated with
inorganic N content and soil respiration (Figure 3A). In addition,
the microbiome profiles for ITS correlated with the amount of
ergosterol (Figure 3B).
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TABLE 1 | PERMANOVA on Euclidean distance matrix of the microbiomes.

PERMANOVA (Euclidean distance, 10000 permutations)

16S rRNA gene profiles ITS profiles

Factor r2 p Signif. Factor r2 p Signif.

1: Legacy 0.084 10E−05 ∗∗∗ 1: Legacy 0.061 10E−05 ∗∗∗

2: Re-wetting 0.040 0.13 – 2: Re-wetting 0.043 0.041 ∗

1:2 0.035 0.44 – 1:2 0.039 0.27 –

Residual 0.83 – – Residual 0.85 – –

The respective effects of legacy, re-wetting and their interaction were assessed. Statistical significance was inferred based on 10,000 permutations (∗∗∗p < 0.001;
∗p < 0.05).

Legacy Response Groups – 16S rRNA
Genes
Two LRGs were identified for 428 prokaryote OTUs, representing
5–8% of the total number of sequences, and 1.8% of the total
number of OTUs in this study (428/23880). Prokaryote OTUs
were either decreased in relative abundance in soil with a history
of drought (LRG wet) or increased in relative abundance in soil
with a history of drought (LRG dry; Figure 4; see heat maps
in Supplementary Figure S2). OTUs belonging to the phylum
Cyanobacteria, Chloroflexi, and Verrucomicrobia were enriched
in LRG wet (Supplementary Table S3 and Figure 4) and OTUs
belonging to the phylum Thaumarchaeota, and Proteobacteria
were enriched in LRG dry (Supplementary Table S4 and
Figure 4). OTUs belonging to Bacteroidetes were enriched in
both LRG dry and LRG wet. This is mostly driven by the
response of Sphingobacteriaceae and Flavobacteriaceae in LRG
wet and by the response of Chitinophagaceae and Cytophagaceae
in LRG dry. Responding OTUs were less rare than the total
amount of rare OTUs in the community, which was 92% of

the OTUs. For LRG wet, ca. 80% of the OTUs belonged to
the rare biosphere in the non-drought soil and ca. 92% in
the dried soil (Supplementary Figure S3A). For LRG dry, ca.
80% belonged to the rare biosphere in the non-drought soil
and this decreased to ca. 70% in the dried soil (Supplementary
Figure S3B). As such, some OTUs that were more abundant
decreased in relative abundance when exposed to drought in
LRG wet whereas rare OTUs become more abundant in LRG dry
(Supplementary Figure S3). Although the initial drought had the
most structuring effect on OTUs belonging to the two responding
groups, the extreme re-wetting also affected some OTUs when
further analyzing if there were LRG within soils with or without
a history of drought (see Supplementary Figure S4).

Legacy Response Groups – ITS
Two LRGs were also identified for 113 fungal OTUs, accounting
for ∼20% of ITS sequences, and 12.3% of the total number of
OTUs (Figure 5, see heat maps in Supplementary Figure S5).
Fungal OTUs were either decreased in relative abundance

FIGURE 3 | Redundancy analysis of prokaryotes (A) and fungi (B) with as explanatory variables: Moist, Extreme Re-wetting, Drought or Drought and Extreme
re-wetting. In addition, we have used the following continues explanatory variables: Ninorg (N inorganic), resp (Basal Respiration), SIR (Substrate Induced
respiration), erg (ergosterol content, which is a measure of fungal biomass), Fum (total biomass measured with fumigation extraction), arg (arginine ammonification).
The R2 indicated the fit of the model and the P-value the significance of all axis (tested with a permutation test, n = 999).
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FIGURE 4 | The relative abundance of the Legacy Response Groups (LRGs) for 16S amplicons (A) and the taxonomic affiliation of each group (B). Letters denote
differences among the four treatments within one LRG at P < 0.05 (ANOVA, Tukey HSD post hoc test).

in soils with a history of drought (LRG wet) or increased
in relative abundance by drought legacy (LRG dry). OTU
belonging to the Ascomycota were enriched in the LRG
dry group (Supplementary Table S5) although there were
also responding OTUs that belonged to the Ascomycota
that decreased in relative abundance due to drought history.
Sordariomycetes, Diaporthales, unclassified Sordariomycetes,
Sordariales, Eurotiomycetes and Dothideomycetes were the most
responsive Ascomycota within LRG dry as OTUs belonging to
these orders were increased in relative abundance by drought
legacy. Sordariomycetes and Leotiomycetes were orders that were
decreased in relative abundance by drought legacy. There was
no clear linkage between others OTUs and their phylogenetic
origins. About half the OTUs can be considered rare in the
moist control soils, and a higher number of these rare OTUs
were observed in the soil exposed to drought for LRG wet
(Supplementary Figure S6). However, these responding OTUs
were less rare than the total amount of rare OTUs in the
community, which was 77%. As previously seen for prokaryotes,
the extreme re-wetting had an effect within the overruling legacy
effect of drought (Supplementary Figure S7).

DISCUSSION

Responses Are Spread Among Phyla
Our results supported our overall hypothesis that extreme
simulated drying and/or extreme re-wetting leave a legacy
in the composition of the soil microbial community after
abiotic conditions have been restored. We found that soils
with a history of drying and/or extreme re-wetting differed in
composition of prokaryotic and fungal communities. Fungi and
prokaryotes responded not only sensitively, but also resistant
and opportunistically to a history of drought, which has also
been shown for soils exposed to multiple drying and re-wetting
cycles (Evans and Wallenstein, 2014). OTUs were grouped in

distinct LRGs, regardless of their phylogenetic origin, as the
responses of bacteria and fungi were spread among different
phyla, classes, and orders. For example, Bacteroides OTUs
decreased and increased in relative abundance in soil with
a history of drought, which is similar as observed in other
studies that measured the response directly to drought (Evans
and Wallenstein, 2014). In addition, Chloroflexi can decrease
in relative abundance under drought conditions (our study),
increase in relative abundance under aridity (Maestre et al.,
2015), or has a mixed response to altered moisture conditions
(Hartmann et al., 2017). This would suggest that adaptation
to extreme moisture fluctuation in soils is likely to have
evolved independently in different microbial phyla, leading to
the parallel selection and development of similar responders in
separated phyla. One possible explanation for responses being
spread among phyla is that microbes with oligotrophic and
copiotrophic strategies have been suggested to be widespread
among phylogenetic groups (Ho et al., 2017). This suggests
that resources becoming available for the microbial communities
upon re-wetting can be used by a wide range of species with a
copiotrophic strategy that belong to different phyla. The initial
fast responding species may be important for the composition
of slower responding species (Fukami, 2015). As such, the initial
copiotrophic strategy may be important for the successional
outcome of the microbial re-colonization of empty niches that
became available after the drought event.

Prokaryotes Responses to Drought
Legacy
Our results partly support our first hypothesis that the
history of drying and/or extreme re-wetting event decreases
the relative abundance of sub-dominant taxa, as this was
only the case for bacteria and fungi belonging to the first
response group (LRG wet). Cyanobacteria seem to have
responded sensitive to drought, because they decreased in
soil with this legacy, which is in line with studies on
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FIGURE 5 | The relative abundance of the Legacy Response Groups for ITS amplicons (A) and the taxonomic affiliation of each group (B). Letters in the left panel
denote differences among the four treatments within one LRG at P < 0.05 (ANOVA, Tukey HSD post hoc test).

Cyanobacteria in soil crusts (Williams et al., 2008; Hagemann
et al., 2017). As Cyanobacteria might have a slow recovery
upon re-wetting (Williams et al., 2008), they will most likely
not have recovered 3 weeks after the drought period had
stopped.

Certain bacterial groups increased in abundance in soils
with a history of drought. There are three reasons why some
OTUs increased in relative abundance in soil with a history of
drought (LRG dry). First, OTUs belonging to certain Prokaryotes
may have resisted the drought stress. For example, the most
abundant group of Archaea, Thaumarchaeota, increased in
relative abundance in soil with a history of drought. This
group has been found in extreme environments (Stieglmeier
et al., 2014) and can be highly abundant in dessert soil (Shi
et al., 2016). Second, bacteria with an opportunistic strategy
have likely belonged to the fast responders that increased their
abundance after re-wetting (Placella et al., 2012). For example,
OTUs that belonged to Alpha-, Beta- and Gammaproteobacteria
increased in relative abundance in soil with a history of
drought (Figure 3). These classes have been identified as
typical copiotrophs with high growth rates (Philippot et al.,
2010). Third, some groups of bacteria may have responded via
microbial facilitation mechanisms. For example Cyanobacteria
and Acidobacteria can produce extracellular polysaccharides
that can create moist micro-niches that may benefit other
bacteria during drought conditions (Kielak et al., 2016). As there
were some OTUs from both groups present in soil that have
experienced a drought legacy (Figure 3), these moist micro-
niches may have helped other bacteria to survive the drought
period.

Response of Fungi to Drought Legacy
Our results contrast previous reports showing that fungi are
more resistant to drought than bacteria (Barnard et al., 2013;
Meisner et al., 2013a). Instead, a short-term history of drought
remained in the soil as a legacy effect in the composition of

the fungal community. The fungi responded sensitive, tolerant
or opportunistic to drying and re-wetting. Long-term drought
treatments have been observed to affect the composition of
fungi (Sayer et al., 2017). In addition, the composition of
fungal community is shaped by rainfall amounts (Hawkes
et al., 2011), and can differ between wet and dry seasons
(Cregger et al., 2012; Acosta-Martínez et al., 2014). As such,
the fungal communities differ from wet to drought conditions
and remain present when soil has a short-term drought
history. Responding fungal OTUs occurred in Ascomycota; in
particular the Sordariomycetes and Dothideomycetes appeared
to be major responders to drought history (Figure 4). Some
fungi can likely respond to small moisture fluctuations, because
they can use an opportunistic strategy thereby changing the
composition of the fungal community (Kaisermann et al.,
2015).

Drought and Microbiome Response to
Extreme Re-wetting
The history of extreme re-wetting could be identified for
fungi and prokaryotes when soils with a history of drought
were analyzed separately from the other soils (Supplementary
Figures S4, S7). This suggests that drought has a major
contribution to overall changes in the composition of the
microbial community. As a consequence, a second dichotomy
was identified between OTUs reacting to extreme re-wetting,
leading to the identification of two additional sub-response
groups. Gamma- and Betaproteobacteria were increasing or
decreasing in relative abundance when re-wetting to maximum
moisture. This is consistent with an earlier study where
Proteobacteria have been identified as a group that clearly
responded to re-wetting (Evans et al., 2014). The increase in
relative abundance of Cyanobacteria and decrease in Firmicutes
was clearly linked to the maximum water addition in soils
without a history of drought. The same trends were observed
for fungi, although the phylogenetic linkage was not as
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obvious as for bacteria since a wide diversity of lineages were
always affected positively and negatively by the extreme re-
wetting.

Rare Microbes Belong to Responding
OTUs
Our work supports the third hypothesis that some rare microbes
will increase in relative abundance due to drought legacy.
This supports the view that there are a high number of
rare taxa in the microbial community, which is common
in soil (Lynch and Neufeld, 2015). Members of the rare
biosphere can be highly active and contribute to processes
in soil even if they have low-ranked abundance (Pester
et al., 2010; Pedrós-Alió, 2012). A large fraction of the rare
bacteria can respond within days after re-wetting (Aanderud
et al., 2015). In addition, the growth rates of low-abundant
microbes are not necessarily different from abundant ones
(Kurm et al., 2017). As such, the history of drought may
potentially lead to altered composition of the microbial
community through effects on rare members of the soil microbial
community, without obvious consequences on the overall
evenness indices.

Ecosystem Consequences of Drought
Legacies
Our results suggest that drying and re-wetting events can cause
a legacy effect in the microbial communities due to a direct
effect of moisture. The consequences of altered composition
of microbial community due to a history of drought can
modify the performance of plant species in communities when
other abiotic conditions were kept constant (Meisner et al.,
2013b). In addition, changes in soil microbial communities
due to drying and/or extreme re-wetting influenced fitness of
a rapidly reproducing plant species (Lau and Lennon, 2012).
Moreover, changes in soil microbial communities due to drought
legacies can affect plant-soil feedbacks (Kaisermann et al.,
2017). As such, extreme weather effects on composition of the
microbial community may also have the potential to influence
the composition and functioning of plant species in terrestrial
ecosystems.

Fluctuations between drying and re-wetting do not only
affect the composition of soil microbial communities, but can
also boost soil fertility by increasing nitrogen availability for
plants (Birch, 1958; Jarvis et al., 2007; Meisner et al., 2013b).
Previous work showed that drought legacy effects resulted
into increased available nitrogen and soil respiration rates
(Meisner et al., 2013b), which also seems to be correlated
with composition of the prokaryotes (Figure 3). On the one
hand, this indicates that the abiotic changes during drought
affected nitrogen availability and soil functions and therewith
the composition of the microbial community. On the other
hand, one of the major changes during drought is a decrease
in microbial activity (Meisner et al., 2017) and biomass (Kieft
et al., 1987), which increases the number of niches available
for microbes to recolonize upon re-wetting. Increased nitrogen
availability has also been suggested to positively correlate

with plant growth performance following a period of drought
(Lebedjantzev, 1924; de Vries et al., 2012b). For example,
pre-season drought effects may increase invasiveness of non-
native plants that shift range as a consequence of climate
warming (Meisner et al., 2013b). Drought can also affect the
composition of plant species directly (Kardol et al., 2010).
Fluctuations in drying and extreme re-wetting events and
magnitudes have also been suggested to affect soil microbial
communities via changes in plant composition (de Vries et al.,
2012b; Evans et al., 2014). Future research is needed in order to
reveal how drought legacies can affect the interactions between
plants and soil microbes at different temporal, for example
successional, stages of ecosystem development. Therefore, we
conclude that effects of extreme drying and re-wetting may
remain in the soil as a legacy effect in the composition of
the microbial community. These legacy effects may explain
why the composition of terrestrial plant communities change
even once the extreme weather event ends (Meisner et al.,
2013b).
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