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Increasing the final titer of a multi-gene metabolic pathway can be viewed as a
multivariate optimization problem. While numerous multivariate optimization algorithms
exist, few are specifically designed to accommodate the constraints posed by genetic
engineering workflows. We present a strategy for optimizing expression levels across
an arbitrary number of genes that requires few design-build-test iterations. We compare
the performance of several optimization algorithms on a series of simulated expression
landscapes. We show that optimal experimental design parameters depend on the
degree of landscape ruggedness. This work provides a theoretical framework for
designing and executing numerical optimization on multi-gene systems.
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INTRODUCTION

Biotechnology applications that require the coordinated expression of dozens of genes have the
potential to meet current and future needs for energy generation, production of medicinal or
commodity chemicals, biosynthesis of functional biomaterials, and living biosensors (Fischbach
and Voigt, 2010). Moving these complex systems between alternative host species, for example
a microbial host amenable to industrial scale-up, is difficult (Galm and Shen, 2006). A major
challenge is optimizing the expression levels of each required gene to maximize final output
and minimize toxicity to the host cell (Lee et al., 2012; Smanski et al., 2014, 2016; Nielsen and
Keasling, 2016). Technical capabilities now exist for building and testing 1000s of unique genetic
constructs in parallel (Wang et al., 2009; Yuan et al., 2013; Smanski et al., 2014; Chao et al.,
2017). Further, numerous improvements have been made in our ability to quantitatively control
individual gene expression levels in the most commonly used organisms for industrial fermentation
(Salis et al., 2009; Khalil et al., 2012; Kosuri et al., 2013; Mutalik et al., 2013; Nielsen et al.,
2013; Siegl et al., 2013; Espah Borujeni et al., 2014; Bai et al., 2015; Redden and Alper, 2015;
Smanski et al., 2016; Diaz de Arce et al., 2017). Leveraging both of these capabilities will enable
high-throughput optimization strategies that rationally improve productivity and yield in less time
than low-throughput trial-and-error approaches (Smanski et al., 2014).

Several strategies have been proposed for genetic optimization (Figure 1). In the ‘multivariate
modular metabolic engineering’ approach, the combinatorial design space is reduced by grouping
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pathway genes into operons based on previous knowledge
(e.g., enzyme kinetics, branching of pathway, etc.) (Ajikumar
et al., 2010; Biggs et al., 2014). The reduced combinatorial
space can be elucidated empirically. For instance, this strategy
was used to improve taxadiene titers ∼15,000-fold in E. coli
(Ajikumar et al., 2010). In another example of modular
multivariate optimization, Xu et al. (2013) modified the
expression levels of three modules comprising nine genes
involved in fatty-acid synthesis to improve fatty-acid titers
20-fold. Recently combinatorial RBS libraries designed using
biophysical models (Salis et al., 2009) have been implemented in
high-throughput via multiplexed automated genome engineering
(Wang et al., 2009) to improve isopropanol titers 1.5-fold
(Liang et al., 2017), and NADPH regeneration rates 25-fold
(Salis et al., 2009; Ng et al., 2015). Alternatively, algorithmic
optimization is possible using a Design of Experiments (DOE)
approach. For example, the fractional factorial ‘Yates algorithm’
was used to co-optimize both gene expression and media
conditions in a single experiment, resulting in an approximately
fivefold improvement in 6-aminocaproic acid titer (9–48 mg/L)
in E. coli (Zhou et al., 2015). Lastly, linear regression is an
effective approach for predicting improved expression levels of
a multi-gene metabolic pathway, following a small sampling of
the combinatorial design space (Lee et al., 2013; Farasat et al.,
2014). Previously, linear regression was shown to be capable
of predicting relative titers of intermediates within engineered
variants of the violacein pathway (Lee et al., 2013), and more
recently regression modeling was used to increase violacein titers
3.2-fold (Xu et al., 2017).

The ability of any global search algorithm to predict optimal
expression levels depends on the ruggedness of the ‘fitness
landscape’ (Pitzer and Affenzeller, 2012; Lee et al., 2013).
Smooth landscapes arise when variables are independent of each
other and lend themselves well to linear regression approaches.
However, if the landscape is rugged, with multiple local optima
separated by valleys (Romero and Arnold, 2009), rational

optimization methods will not be as effective (Rios and Sahinidis,
2013). Fitness landscape analyses performed on a library of
nitrogen fixation gene clusters suggests that complex multi-gene
systems can be moderately rugged and will not lend themselves
to linear regression (Smanski, unpublished).

Numerical optimization refers to a set of techniques aimed
at identifying a local or global maximum (or minimum) in a
fitness landscape. A common goal for numerical optimization
methods is to find the maximum with the smallest amount
of computational resources, which normally correlate to the
number of sampled points. For metabolic engineering, this
corresponds to the number of alternative genetic designs that
would have to be designed, built, and tested. In a recent
comparison of numerical optimization algorithms, variations
of the DIRECT search algorithm performed well (Rios and
Sahinidis, 2013). The DIRECT method balances local and
global searching strategies. It was designed specifically with
engineering optimization in mind, where time or resource
costs associated with running experiments calls for methods
with efficient use of function evaluations (Jones, 2001).
Unfortunately, methods that seek to optimize the efficiency of
function evaluations do not distinguish between the number
of iterations and the number of function evaluations per
iteration. This distinction is important for genetic engineering
projects. Increasing the throughput of a single design-build-test
cycle can typically be done at a small fraction of the cost
compared to increasing the number of design-build-test cycle
iterations.

Here, we describe and model an approach to genetic
optimization that combines (i) the quantification of fitness
landscape ruggedness with (ii) a high-throughput, low-iteration
optimization algorithm for improving genetic design. We show
that the optimization parameters should be tailored for each
system based on fitness landscape ruggedness. Finally, we
compare the performance of this approach to several alternative
hill-climbing algorithms.

FIGURE 1 | Select optimization strategies for multi-gene biological systems.

Frontiers in Microbiology | www.frontiersin.org 2 February 2018 | Volume 9 | Article 313

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00313 February 26, 2018 Time: 16:33 # 3

Heinsch et al. Optimization Strategy for Metabolic Engineering

MATERIALS AND METHODS

Creation of Model Multivariate
Landscapes
We created three model multivariate landscapes on which to
test the optimization algorithms in this study. The landscapes
were made by summing multiple three-dimensional Gaussian
surfaces, the equations for which are given in Supplementary
Files ‘surface_matrix-low.py,’ ‘surface_matrix-med.py,’ and
‘surface_matrix-high.py’ for the smooth, medium, and
rugged landscapes, respectively. Each model landscape was
designed with different levels of ruggedness by varying
the X- and Y-dimensional spread of each sub-peak. The
height and location in the X–Y coordinate plane of each
sub-peak were maintained in each model landscape.
Three-dimensional graphics of each landscape are shown
in Figure 2.

Quantification of Model Landscapes
Forty thousand coordinate (X,Y) points were sampled from each
model landscape in a square-grid pattern (200 × 200 points)
and evaluated to determine the Z-value at each location. For
all possible pairwise combination of points, two values were
recorded: (i) the Euclidian distance between the pairs of points
in the X–Y plane, and (ii) the squared difference between the two
Z-values. Next, all pairwise comparisons were binned based on
Euclidian distance into bins from 0–100, 100–200, . . .600–700.
The average variance for each bin was calculated by taking
the mean of the squared differences for pairs of points in that
bin. For the landscape autocorrelation analysis (LAA), we plot:

LA = (1−
σ2
d=bin(x)

σ2
landscape

)

where σ2landscape is the random variance for the landscape.
This was approximated using the pairs of points for which
the Euclidian distance is between 600 and 700, as distances

greater than 700 are constrained by the size of the search space
(1000 × 1000 grid), leading to less pairs sampled at greater
distances. Landscape ruggedness was quantified by plotting lines
from the function:

f (x) =
(

1−
x
N

) (
1−

k
N

)x

for N = 700 and determining the best-fit value of k by
the non-linear least squares method in R (Version 3.3.3,
R Core Team, 2017).

Simulation Algorithm for Optimizing on
Model Landscapes
A series of python scripts were created to sample a quasi-random
distribution of points around a defined starting coordinate,
evaluate the fitness (Z-value) for each sampled point, and
determine the center point for the next round of sampling, and
iterate this process. These are included as Supplementary Files
‘SobolHillClimb.py,’ ‘SobolHillClimbWithProjection.py,’ and
‘SobolHillClimb-CMA-ES.py.’ For each algorithm, parameters
that must be specified include the starting coordinates, the
Sobol range radius (a measure for how broad of an area is
sampled with each iteration), the number of dimensions, the
number of designs to evaluate per iteration, and the fraction
of top-performing designs to use in calculating the center
point for the subsequent iteration. The three algorithms differ
in how each iteration of sampled points is generated. In the
most basic algorithm, the center point is the geometric center
of top-performing designs. In the ‘projection’ algorithm,
the new center point is projected twofold along a vector
connecting the previous center point and the center of the
top-performing designs. In the CMA-ES strategy (Hansen and
Hansen, 2006), the center point is generated as described for the
basic algorithm, but the subsequent quasi-random sampling is
perturbed to preference sampling in the same direction as the
vector connecting the previous center point to the next center
point.

FIGURE 2 | Model landscapes and ruggedness analysis. (A) Three model landscapes described in the text as ‘smooth’ (left), ‘medium’ (center), and ‘rugged’ (right)
are shown as three-dimensional wire surfaces (top) and two-dimensional contour maps (bottom). X- and Y-axes represent hypothetical expression levels of two
genes in a multi-gene system, and Z-axis represents system performance. (B) Autocorrelation function plotted for smooth (white circles), medium (gray circles), and
rugged (black circles) landscapes compared to hypothetical traces based on NK-model, where N = 700 and K = 0, 1, 2, 4, 8, and 16 (gray lines, from right to left).
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RESULTS

Assessing the Ruggedness of a
Multivariate Expression Landscape
We began by creating three model landscapes for testing
optimization algorithms (Figure 2A). The 3D landscapes
simulate a two-gene system, where the X- and Y-dimensions
represent the expression levels of the two genes, and the
Z-dimension represents the measured performance of the system
(e.g., the product titer for a metabolic system). Most metabolic
pathways are more complex than this, but we chose to model
a two-gene system because the progress and results of the
algorithm are easily visualized. The algorithms described in this
study can be easily adapted to higher-dimensional space.

We first aimed to establish a metric for determining the
ruggedness of a gene expression landscape based on Kauffman’s
N–K method (Weinberger, 1991; Kaufmann, 1993). In the N–K
method, N refers to the number of component parts and K
is the order of interaction. When K = 0, the system variables
behave independently, and the landscape is expected to be
smooth. The maximal value of K is N-1, which would represent
a system where the optimal level of any variable depends on
the setting of all other variables. This would produce a rugged
landscape. A LAA allows one to estimate the average ruggedness
of a landscape using sampled data points (Weinberger, 1990;
Fontana et al., 1993). LAAs have been performed in biology
to problems of RNA folding and protein structure/function,
but not to multi-gene expression analyses. A key difference
in these types of problems is that the permutable variables in
macromolecular optimization problems are discrete, whereas
gene expression level is a continuous variable. We have slightly
modified previous LAAs to account for this difference. For
each model landscape, we sampled 40,000 points in the X,Y
coordinate space to evaluate f(x,y). The autocorrelation compares
the average variance for pairs of data points within a given
Euclidian distance on the (X,Y) plane to the average variance
for the landscape as a whole. On smooth landscapes, the
variance of f(x,y) for two points located near each other in
the (x,y) plane is expected to be small. The variance will
approach the average landscape variance as distance between
two points increases. The plotted landscape autocorrelation,
(1− σ2d=bin(x)

σ2landscape ), is approximately 1 for very close points and
approaches 0 as the distance between compared datapoints
increases. The rate at which this landscape autocorrelation value
decreases is related to landscape ruggedness, with more rugged
landscapes dropping off more rapidly (Figure 2B). We quantify
landscape ruggedness by comparing landscape autocorrelation
plots to the equation: f (x) = (1− x

N ) (1− k
N )x and solving

for k. The model smooth, medium, and rugged landscapes
generated for testing optimization algorithms have k values of
0.832, 1.07, and 2.07, respectively. For empirical optimization
of metabolic pathways, we envision that the actual landscape
ruggedness would be measured with a seed library of diverse
expression cassettes. Our model landscapes are in the same
range of ruggedness as seen in multigene metabolic pathways
for which pathway productivity is measured under combinatorial

expression levels (Ajikumar et al., 2010; Lee et al., 2013; Smanski
et al., 2014).

High-Throughput, Low-Iteration
Optimization Algorithms
We next developed a set of numerical optimization algorithms
that are designed with the technical aspects of metabolic
engineering in mind. Namely, the algorithms search the
multivariate expression space with very large sampling libraries,
but low numbers of iterations. As a comparison, a 20-gene
synthetic nitrogen fixation pathway was recently improved using
five iterations, each with approximately 100 alternative genetic
designs.

Each optimization algorithm follows a similar order of
operations. An initial set of (x,y) coordinate points are sampled
and their fitness is evaluated using the landscape function, f(x,y).
The subset of points with the greatest fitness (i.e., the ‘parents’)
are used to determine the center point and shape of the next
set of samples (Figure 3). The algorithm parameters are listed
in Figure 3 and include the number of samples taken in each
generation, the area of the multidimensional expression space
sampled, and the fraction of sampled points carried forward
as parents for the next iteration. In each case, we sample a
defined area using Sobol sequences. Sobol sequences provide
a quasi-random distribution of a search space and provide
more even coverage of the space than a random Gaussian
sampling.

Three unique optimization algorithms were tested that differ
in how the new sampling space is determined for each iteration
(Figure 3). The most simple method, which we call ‘Sobol Hill
Climbing,’ takes the geometric center of the high-fitness parent
points in the (x,y) plane and uses that as the center point for
the next iteration of Sobol sampling (Figure 3A). The ‘Sobol
Projection’ algorithm draws a vector from the center of the
sampled space through the geometric center of the high-fitness
parent points. If the distance [in the (x,y) plane] between
those two points is d, the center of the next generation of
sampled points is along that vector 2×d away from the previous
center (Figure 3B). The Sobol Projection algorithm has the
advantage of moving faster in an uphill direction with each
generation, but it will also over-shoot the global maximum more
easily than the Sobol Hill Climbing algorithm. The last and
most complex algorithm uses the covariance matrix adaptation
evolution strategy (CMA-ES; Figure 3B) (Hansen and Hansen,
2006). This algorithm differs from Sobol Hill Climbing in two
important ways. First, the center point for the next iteration is
determined by the weighted average of the high-fitness parent
points, with weights determined by fitness value. Second, the
shape of the sampling space is adjusted with each iteration. While
the first two algorithms always search with a Sobol sequence
following an N-dimensional standard normal distribution, the
CMA-ES algorithm adjusts both the size and shape of the sampled
area, according to the size and shape of the distribution of
high-fitness parent points.

We evaluate the performance of an algorithm by tracking
the fitness of the center point for each of the first five
iterations (Figure 3C). The area under this curve represents
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FIGURE 3 | Illustration of optimization algorithms used in this study. (A) Illustration and table of parameters in Sobol Hill Climbing algorithm. The vector and dashed
circle denote the spread of sample points (σ) from the starting coordinates (SC). Gray and black dots show the sampled points per iteration (N). Black dots represent
the fraction of points selected as parents for the next generation (F ). Parameters are listed in the table with approximate ranges of parameter values explored in the
current study. (B) Top panels show results from a single simulation experiment with the following parameter values: L = smooth; SC = [300,700]; σ = x; N = xx; I = 5;
F = 0.x. Each iteration is shown from left to right. Bottom panel shows the route taken by the optimization algorithm, with black line tracing location of center-points
for Sobol sampling. Insets show increase of fitness (z-axis) through each iteration. (C) Summaries of triplicate simulations on three distinct parameter sets. Graphs
represent optimization routes as described in (B), with triplicate simulations represented as black, red, and blue lines. Parameters are given below each graph in the
format of [L; SC; σ; N; I; F ].

the performance of the algorithm. In this way, the performance
reflects both the fitness value attained and how quickly
the algorithm arrived at that fitness value. We run each
algorithm five times with identical parameters and record the
standard deviation of the performance metric. This gives a
measure for how reliably the algorithm can be expected to
perform.

Parameter Optimization for Each
Algorithm
Parameters such as number of points sampled per iteration or
the number of iterations are likely to be determined by the
time and resources available for expression optimization efforts.
Parameters affecting the distribution of sampled points and the
fraction of sampled points used as parents for the next iteration
do not change the cost of a given design-build-test iteration,
but can greatly influence the optimization results. We simulated
each optimization algorithm using a range of parameter values
for σ and F. For each combination of parameters, we simulated
five optimizations and score both the average fitness and the
standard deviation, as measures of performance and reliability,
respectively.

Results from the survey of parameter combinations for the
three search algorithms are shown in Figure 4. Not surprisingly,
each algorithm performed best on the smoothest landscape, both
in terms of the gain in fitness and in the reliability. The Sobol
Hill Climbing algorithm (Figure 4A) generally worked best when

each iteration sampled a disperse set of points (large σ value) and
only a small fraction of sampled points (small F-value) were used
to seed the next generation. For medium and rugged landscapes,
the algorithm was less reliable at values of F < 0.2. This was not
observed for the smoothest landscape.

The Sobol Projection algorithm (Figure 4B) performed
slightly better that the Sobol Hill Climbing method, particularly
on more rugged landscapes. Notably, this algorithm was more
sensitive to the fraction of kept values (F). Low F-values
resulted in a substantial decrease in fitness as well as an
increase in noise. Both the Sobol Projection and Sobol Hill
Climbing algorithms showed a prominent loss of reliability
(high standard deviation) on the medium-ruggedness landscape
when the sampling range was approximately 100 units, even
at intermediate F-values. At these parameter values, the
optimization algorithm tended to get trapped in one local
optimum, which was determined stochastically at an early
iteration.

The CMA-ES optimization strategy (Figure 4C) performed
substantially worse than the others in the conditions tested,
both in terms of fitness values attained and in the reliability. It
routinely found the global maximum in the smoothest landscape,
but not as quickly as the other two algorithms. For the medium
and rugged landscape, it rarely found the global maximum in the
first five iterations. When the CMA-ES algorithm was allowed to
run for more iterations, it routinely found the global maximum
(data not shown).
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FIGURE 4 | Performance and reliability of numerical optimization algorithms across parameter space. The Sobol hill climbing algorithm (A), Sobol projection
algorithm (B), and CMA-ES algorithm (C) are compared. For each algorithm, left plots show mean performance from five independent simulations at each parameter
combination for optimizations run on a smooth landscape (top), medium landscape (middle), and rugged landscape (bottom). Right plots show reliability of algorithm
for each parameter combination, measured as the standard deviation of performance over the five independent simulations.

DISCUSSION

The topology of landscapes connecting sequence space to
biological phenotypes impacts the evolution of biological systems
(Kaufmann, 1993). This has been shown through a combination
of theoretical and experimental work, but primarily at the level
of single proteins or RNA molecules (Fontana et al., 1993;
Perelson and Macken, 1995). Smooth landscapes occur when
the variables behave independently. Systems with smooth Mt.
Fuji-like landscapes lend themselves to simple optimization
approaches (Romero and Arnold, 2009). In a system comprising
perfectly independent variables, each variable could be optimized
separately and the optimum of each variable combined to locate
the global maximum. However, in rugged or partially rugged
landscapes, interactions among variables can create several
local maxima or minima that will confuse optimization efforts
(Romero and Arnold, 2009). In a recent comparison, problem
dimensionality and non-smoothness decreased the performance
of all optimization algorithms (Rios and Sahinidis, 2013) tested.

Modern DNA synthesis and assembly capabilities allow for
the design, construction, and evaluation of large libraries of
multi-gene systems (Smanski et al., 2014; Freestone and Zhao,
2015; Zhou et al., 2015). This enables evolution-landscape
analyses that connect expression levels over each gene in the
system with overall system performance. The ruggedness of
multi-gene expression landscapes has never been rigorously
analyzed, but is important for the performance of optimization
algorithms. Linear regression optimizations require that the
landscape is smooth and devoid of sub-optima (Lee et al.,
2013). However, we have observed moderate ruggedness in

the multivariate expression landscape of the nitrogen fixation
gene cluster (Smanski et al., 2014). Landscape ruggedness in
multi-gene systems can arise from several scenarios. It is possible
that the landscape is rugged because of interactions between
the final protein products. For example, for multi-protein
complexes, optimal system performance might occur at a
particular stoichiometry of component parts (Smanski et al.,
2014). In this case the optimal level of each component is not
fixed, but depends on the expression levels of other components
in the system. A second mechanism for landscape ruggedness
in multi-gene systems, which can be considered an ‘apparent
ruggedness’ arises from genetic context effects (Cardinale and
Arkin, 2012). These genetic context effects are often unintended
consequences that arise from manipulating expression levels
of different genes that are in close proximity in the DNA
sequence. For example, strong transcription of one gene can
attenuate the expression of a neighboring, reverse-oriented
transcript via several possible mechanisms (Brophy and Voigt,
2016). Apparent ruggedness caused by genetic context effects
will diminish the efficacy of linear regression and other methods
that assume a smooth landscape. Whether the ruggedness
of a gene expression landscape comes from interactions of
gene products, or genetic context effects that produce a
lot of noise when sampling a multidimensional expression
space, the impact on optimization strategies is similar. The
global optimum on smooth landscapes can be found through
conservative searches that continuously walk uphill. Rough
landscapes require a less conservative approach where a fraction
of the sampling resources are used to search for other local
maxima.
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We have presented a set of analyses that first assess
landscape ruggedness and then optimize the landscape using a
limited number of high-throughput iterations. We show that
landscape ruggedness affects optimal parameter settings during
a multigene optimization strategy. As the landscape topology is a
characteristic of the system being optimized, it will not be tunable
(as it was with our model landscapes). However, knowledge
of the ruggedness can guide the engineer to select appropriate
parameters values such as the sampling range and the fraction
of sampled points used to guide the next iteration. Smooth
landscapes tolerate optimization strategies that cast a broad net
over the sampling space and use information from only a small
number of sampled points to direct the next round of sampling.
Conversely, optimization of more rugged landscapes benefits,
both in terms of performance and reliability, from sampling
less broadly and using information from roughly 40% of the
sampled space to direct the next round of sampling. We did not
assess whether the benefit of improved optimization parameters
outweighs the cost of performing an initial sampling of variable
space to quantify ruggedness. Such a cost/benefit analysis would
be highly specific to the system being optimized.

Landscape ruggedness assessments are likely only valid in the
local neighborhood of variable space. Rugged fitness landscapes
can appear smooth across small search spaces, and empirically
derived fitness landscapes tend to be asymmetric (DeWitt and
Yoshimura, 1998). Because of this, it is important to reassess
local ruggedness in optimizations that drift far from the original
starting point. While not included in the models tested here,
it would be useful to continuously update the ruggedness
quantification with each round of sampling. This could be done
using points sampled during optimization efforts and would not
require any additional experimental steps.

The modeling we have performed in this study optimizes
over a landscape with two independent variables (X and Y axes;
representing the gene expression from two different genes), and
one dependent variable (Z axis; representing system fitness).
We chose a simple system for ease of visualization of how the
algorithm functions to climb in three-dimensional space. Each of
the components of our work flow will work equally well for any
N-dimensional optimization. For example, a 10-gene metabolic
pathway would contain 10 independent variables representing

expression levels of each gene and an 11th dependent variable
corresponding to the final titer of the molecule of interest.
Because we ran our simulation experiments on a relatively
low-dimensional space, we decreased the number of sampled
points per iteration accordingly. For an 8–12 gene metabolic
pathway, an analogous experiment would require 100–200
sampled points per iteration. This scale is in line with recently
demonstrated capabilities (Smanski et al., 2014).

CONCLUSION

We propose an integrated strategy for metabolic pathway
engineering that combines landscape analysis with a multivariate
optimization algorithm. An initial autocorrelation analysis
provides a quantitative measure of the ruggedness of the adaptive
landscape. This ruggedness metric is used to guide an appropriate
selection of parameters during the iterative optimization process.
Of the three optimization strategies simulated in this study, the
Sobol Projection method gave the best performance on several
model landscapes. Further work is needed to validate this strategy
using an experimental system.
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