AUTHOR=Bagwell Christopher E. , Noble Peter A. , Milliken Charles E. , Li Dien , Kaplan Daniel I. TITLE=Amplicon Sequencing Reveals Microbiological Signatures in Spent Nuclear Fuel Storage Basins JOURNAL=Frontiers in Microbiology VOLUME=Volume 9 - 2018 YEAR=2018 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.00377 DOI=10.3389/fmicb.2018.00377 ISSN=1664-302X ABSTRACT=Water quality is an important determinant for the structural integrity of alloy cladded fuels and assemblies during long-term wet storage. Detailed characterization of a water filled storage basin for spent nuclear reactor fuel was performed following the formation and proliferation of an amorphous white flocculent. White precipitant was sampled throughout the storage basin for chemical and spectroscopic characterization, and environmental DNA was extracted for 454 pyrosequencing of bacterial rRNA gene diversity. Accordingly, spectroscopic analyses indicated the precipitant to be primarily amorphous to crystalline aluminum (oxy) hydroxides with minor associated elemental components including Fe, Si, Ti, and U. High levels of organic carbon were co-localized with the precipitant relative to bulk dissolved organic concentrations. Bacterial densities were highly variable between sampling locations and with depth within the water-filled storage basin; cell numbers (log scale) ranged from 5.6 to 4.7 cells / mL. Bacterial diversity that was physically associated with the aluminum (oxy) hydroxide complexes exceeded an estimated 4,000 OTUs / amplicon library (3% cutoff) and the majority of sequences were aligned to the families Burkholderiales (23%), Nitrospiraceae (23%), Hyphomicrobiaceae (17%), and Comamonadaceae (6%). We surmise that episodic changes in the physical and chemical properties of the basin contribute to the polymerization of aluminum (oxy) hydroxides, which in turn can chemisorb nutrients, carbon ligands and bacterial cells from the surrounding bulk aqueous phase. As such, these precipitants should establish favorable microhabitats for bacterial colonization and growth. Comparative analyses of 16S rRNA gene amplicon libraries across diverse environmental landscapes were performed and microbiological signatures unique to the spent nuclear fuel storage basin environment were revealed. These insights could spur the development of tractable bio-indicators that are specific of and diagnostic for water quality at discrete locations and finer scales of resolution, marking an important contribution for improved water quality and management of spent nuclear fuel storage facilities.