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Defense against pathogens is one of many benefits that bacteria provide to animal
hosts. A clearer understanding of how changes in the environment affect the interactions
between animals and their microbial benefactors is needed in order to predict the impact
and dynamics of emerging animal diseases. Due to its dramatic effects on the physiology
of animals and their pathogens, temperature may be a key variable modulating the
level of protection that beneficial bacteria provide to their animal hosts. Here we
investigate how temperature and the makeup of the skin microbial community affect the
susceptibility of amphibian hosts to infection by Batrachochytrium dendrobatidis (Bd),
one of two fungal pathogens known to cause the disease chytridiomycosis. To do
this, we manipulated the skin bacterial communities of susceptible hosts, northern
cricket frogs (Acris crepitans), prior to exposing these animals to Bd under two
different ecologically relevant temperatures. Our manipulations included one treatment
where antibiotics were used to reduce the skin bacterial community, one where the
bacterial community was augmented with the antifungal bacterium, Stenotrophomonas
maltophilia, and one in which the frog’s skin bacterial community was left intact. We
predicted that frogs with reduced skin bacterial communities would be more susceptible
(i.e., less resistant to and/or tolerant of Bd infection), and frogs with skin bacterial
communities augmented with the known antifungal bacterium would be less susceptible
to Bd infection and chytridiomycosis. However, we also predicted that this interaction
would be temperature dependent. We found a strong effect of temperature but not of
skin microbial treatment on the probability and intensity of infection in Bd-exposed frogs.
Whether temperature affected survival; however, it differed among our skin microbial
treatment groups, with animals having more S. maltophilia on their skin surviving longer
at 14 but not at 26°C. Our results suggest that temperature was the predominant factor
influencing Bd’s ability to colonize the host (i.e., resistance) but that the composition
of the cutaneous bacterial community was important in modulating the host’s ability to
survive (i.e., tolerate) a heavy Bd infection.

Keywords: Acris crepitans, amphibian chytridiomycosis, antifungal, bioaugmentation, host-pathogen
interactions, skin microbes, Stenotrophomonas maltophilia
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INTRODUCTION

That there exist mutualistic and even symbiotic relationships
between animals and microbes has long been understood, yet it
is only recently that we have come to appreciate how common
and influential these relationships can be for ecological processes
that play out across taxa and environments (reviewed in McFall-
Ngai et al., 2013). While effects of temperature on microbial
growth and community structure in soil and other environmental
samples have been well-documented (e.g., Jansson and Tas, 2014;
Piquet et al., 2016), how temperature variation affects animal-
microbe interactions is less well-understood. Empirical data exist
for a few hosts and their bacterial symbionts (e.g., sponges:
Webster et al., 2008; Fan et al., 2013; sea anemone: Fraune et al.,
2016), yet the range of taxa and types of interactions under which
this relationship with temperature has been explored remains
small (Carey and Duddleston, 2014). Studies that broaden this
range of hosts and ecological contexts are needed to clarify how
temperature affects animal interactions with microbes, and how
these effects may impact wildlife responses to environmental
stressors such as climate change and habitat modification.

Defense against infection is one important service that
microbes can provide for their animal hosts (McFall-Ngai et al.,
2013; Clavel et al., 2017) and changes in temperature can affect
the potential of microbes to cause disease or help their hosts
resist infections (Daskin and Alford, 2012). For example, elevated
ocean temperatures increase the expression of virulence genes in
the bacterial pathogen Vibrio shiloi, which induces bleaching in
the coral Oculina patagonica (Rosenberg and Ben-Halm, 2002).
On the flip side, the ability of ascidians to defend themselves
against pathogens is likely impacted by effects of temperature on
their community of symbiotic microbes (Tianero et al., 2015);
bacterial symbionts provide these animals with their diverse
repertoire of defensive secondary metabolites, some of which
have antimicrobial and antiviral properties (Paul et al., 1990).
Temperature may be a key player in determining the health
benefits that symbiotic microbes bestow upon their animal
hosts, especially for ectotherms (Kohl and Yahn, 2016; Ferguson,
2017), though clear empirical examples appear to be limited
to handful of invertebrates (Tianero et al., 2015; Ferguson,
2017). Amphibians are another taxon useful for investigating
the effects of temperature on microbial symbioses, as several
aspects of the amphibian immune system are known to function
in a temperature-dependent manner (Maniero and Carey, 1997;
Rollins-Smith and Woodhams, 2012) and the cutaneous bacteria
of amphibians are known to be important to their defense against
other skin microbes, including pathogenic fungi in the genus
Batrachochytrium (Harris et al., 2009a).

Chytridiomycosis, the disease caused by the chytrid fungi
Batrachochytrium dendrobatidis (Bd) and Batrachochytrium
salamandrivorans, has been implicated in global amphibian
declines (Berger et al, 1998; Lips et al, 2006; Rachowicz
et al, 2006; Martel et al, 2013). Because Batrachochytrium
salamandrivorans has only recently been described (Martel et al.,
2013), less is known about its potential consequences for host
populations (but see Martel et al., 2014). Bd, however, is known
to disrupt electrolyte transport across frog skin, which can cause

cardiac arrest, the mechanism of mortality (Voyles et al., 2009).
Not all amphibians are equally at risk of infection. Hosts found
in consistently cool, wet habitats in both temperate and tropical
regions appear particularly vulnerable to Bd-related declines
(Berger et al., 2016). Bd infection dynamics have also been
correlated with climate and seasonality (Berger et al, 2004;
Woodhams and Alford, 2005; Bishop et al., 2009; Rohr and
Raffel, 2010), with infections often peaking in early spring (Kriger
and Hero, 2007; Longcore et al., 2007; Rothermel et al., 2008).
Variation in susceptibility to chytridiomycosis also exists within
and among host species (Tobler and Schmidt, 2010; Martel et al.,
2014), with some species requiring a higher pathogen load in
order to become sick than others (Berger et al., 2004). This could
be caused by differences among strains of Bd, as some are more
pathogenic than others (Retallick and Miera, 2007; Farrer et al.,
2011). Differences in susceptibility among hosts (Woodhams
et al., 2007a) and populations (Savage and Zamudio, 2011) could
also reflect intrinsic or temperature-driven differences in host
immunity (reviewed in Rowley and Alford, 2010; Rollins-Smith
and Woodhams, 2012).

Amphibian hosts have several potential lines of defense against
Batrachochytrium pathogens. Antimicrobial peptides (AMPs),
produced in the granular glands of the skin of some amphibians
and secreted in mucus, have been shown to inhibit the growth
of Bd in vitro (Rollins-Smith et al., 2006; Ramsey et al., 2010).
Antibody and lymphocyte production is also stimulated by Bd
exposure in some host species, suggesting the potential for an
acquired immune response to this pathogen (Ramsey et al., 2010;
McMahon et al., 2014). Variation in body temperature among
individuals has also been correlated with the probability of Bd
infection (Richards-Zawacki, 2010; Rowley and Alford, 2013;
Roznik et al., 2015). Amphibians may also elevate their body
temperature above normal by selecting warmer microhabitats,
thereby inducing a behavioral fever (Sherman and Stephens,
1998; Woodhams et al., 2003; Sherman, 2008; Richards-Zawacki,
2010). This elevated temperature presumably enhances the
immune response (Maniero and Carey, 1997; Rollins-Smith and
Woodhams, 2012) though the effectiveness of such a fever in
combatting Bd infection has not been demonstrated empirically.

Another component of amphibian defense against pathogens
is the skin microbiome. The mucus on frog skin is home to a
rich community of bacteria (McKenzie et al., 2012; Kueneman
et al,, 2013). While there is also variation within frog species
(Lauer et al., 2008), cutaneous bacterial communities have been
found to differ more among amphibian species than among
individuals and/or environments (McKenzie et al., 2012; Becker
etal., 2014). This suggests that innate differences in skin bacterial
communities among species could contribute to differences in
susceptibility to chytridiomycosis (McKenzie et al., 2012). Some
members of amphibian skin bacterial communities are known
to produce substances with antifungal capabilities. This was first
demonstrated in two North American salamander species by
Harris et al. (2006), who isolated skin bacteria and challenged Bd
to grow in the presence of those isolates in vitro. Since then, a
large and growing number of bacteria found on amphibian skin
have been shown to inhibit the growth of Bd (Woodhams et al.,
2015). It is believed to be metabolites produced by these bacteria
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that inhibit Bd growth and confer resistance and/or tolerance
to infection in amphibian hosts (Brucker et al., 2008a,b; Harris
et al., 2009a; Becker et al.,, 2015). Support for this idea comes
from in vitro studies where the metabolites produced by a variety
of bacteria isolated from frog mucus inhibit the growth of Bd
(Daskin et al., 2014; Woodhams et al., 2015).

Laboratory exposure studies provide further evidence that
bacteria found on frog skin can contribute to variation
in susceptibility to chytridiomycosis (Harris et al., 2009b;
Woodhams et al., 2014). For example, adding Janthinobacterium
lividum, a bacterium that produces the Bd-inhibitory metabolite
violacein, to the skin of R. muscosa decreased the risk of mortality
after Bd exposure (Harris et al., 2009a). Correlations between
skin bacterial communities and susceptibility to chytridiomycosis
have been documented in wild populations as well (Woodhams
et al., 2007b). Given this, efforts are underway to develop
probiotics that could be applied to frogs to protect them from
Bd in the wild (Bletz et al., 2013). Probiotic approaches may
prove to be the most plausible solution for in situ conservation
of species that are threatened with extinction due to Bd, but their
effectiveness may be dependent upon environmental conditions,
including temperature (Woodhams et al., 2014).

Temperature is known to affect the growth (Gaddad and
Rodgi, 1987; Pietikainen et al., 2005) and antifungal metabolite
production (Noaman et al., 2004; Ripa et al., 2009; Kariluoto
et al., 2010) of bacteria. There is also some evidence that
the bacteria found on frog skin produce anti-Bd metabolites
better at some temperatures than others. Daskin et al. (2014)
found that the cell free supernatants from frog skin bacteria
cultured at cooler temperatures were less effective at inhibiting
the growth of Bd in vitro. Robak (2016) also found that antifungal
metabolites produced by frog skin bacteria were more effective
at inhibiting Bd growth at higher temperatures, but in this
study, the temperature at which the metabolites were produced
was less important than the temperature at which the growth
challenge assay was performed. If this temperature dependence
of anti-Bd activity is a general phenomenon, it could contribute
to the observed correlations between frog body temperatures
and Bd infection (Richards-Zawacki, 2010; Rowley and Alford,
2013; Roznik et al.,, 2015) and between climatic variation and
chytridiomycosis (Berger et al., 2004; Woodhams and Alford,
2005; Rohr and Raffel, 2010). It also suggests that development
of a successful probiotic treatment for Bd infected animals will
require information on how the chosen bacteria would function
in natural environments, where conditions such as temperature
vary in space and time. In the Robak (2016) study, one bacterium
of interest, Stenotrophomonas maltophilia, was found to produce
metabolites that inhibit the growth of Bd in vitro at 14, 20, and
26°C, although the extent of inhibition was greatest at 20°C.
While its products effectively inhibit Bd growth across a range
of ecologically relevant temperatures in culture, it is not known
whether (1) S. maltophilia presence on the skin would protect
frogs from Bd infection and/or chytridiomycosis, or whether (2)
the relationship between temperature and protection on hosts
would mirror what was seen for Bd growth in vitro.

In this study, we examined the effect of temperature on
the ability of skin microbes to protect an amphibian host

against Bd infection and chytridiomycosis. To do this, we
manipulated the skin bacterial communities of northern cricket
frogs (Acris crepitans), a species known to be susceptible to
chytridiomycosis (Zippel and Tabaka, 2008; Sonn et al., 2017)
and either exposed them to Bd or sham-exposed them and
housed half of each group at 14°C and the other half at 26°C.
These temperatures were chosen as they are within the range
of body temperatures that this host experiences during times
of the year when they are infected with Bd in the wild (Sonn,
2016) and because susceptibility to chytridiomycosis in this
host has been shown to differ between these two temperatures
(Sonn et al., 2017). Within each temperature and exposure group
(Bd vs. sham), frog skin bacterial communities were either (1)
maintained intact, (2) reduced with antibiotics, or (3) augmented
by inoculation with S. maltophilia (family Xanthomonadaceae,
order Xanthomonadales). This Gram-negative bacterium found
on frog skin, as well as in water, soil, and plant samples
from a wide variety of environments and geographic regions
(Denton and Kerr, 1998), has been demonstrated to inhibit
Bd growth in vitro (Robak, 2016). We predicted that Bd-
exposed frogs at the lower temperature would be more
susceptible to chytridiomycosis, which we defined as having
a greater Bd load (Voyles et al., 2009), decreased survival
(Voyles et al., 2009), a higher prevalence of Bd infection
(Vredenburg et al., 2010), or a lower body condition (Retallick
and Miera, 2007; Murphy et al., 2011). We also predicted
that frogs with their bacterial communities reduced would be
more susceptible, and frogs with S. maltophilia added would
be less susceptible to chytridiomycosis than frogs with intact
skin microbial communities (Harris et al., 2009a), but that the
effect of S. maltophilia on Bd susceptibility would be temperature
dependent.

MATERIALS AND METHODS

Animal Husbandry

In February 2016, we collected 122 A. crepitans frogs from
Tulane University’s F. Edward Hebert Riverside Research Center
near Belle Chasse, LA, United States (WGS84: 29.8852489,
-89.9694904) and placed them individually into cylindrical plastic
enclosures (15 c¢cm tall, 11 cm diameter with ventilated lids)
containing a 2.5 cm depth of filtered tap water. While the
previous infection history of these individual frogs was not
known, Bd had been detected, sometimes at greater than 50%
prevalence, in this population (Brannelly et al., unpublished
data). To clear any potential Bd infections, we heat-treated the
animals by holding them at 30°C in an environmental chamber
(Conviron, Adaptis; 12 h light/dark cycle) for 10 days (Chatfield
and Richards-Zawacki, 2011). Given the high prevalence of
Bd in this population and our observation that individuals
frequently gain and lose infections in the wild (Brannelly et al.,
unpublished data), we assumed that most or all of these animals
were likely exposed to Bd prior to this study, and if any
immunoprotective effects of prior-exposure existed, they did
not preclude animals from becoming re-infected. However, our
study design did not permit us to control for immunoprotective

Frontiers in Microbiology | www.frontiersin.org

March 2018 | Volume 9 | Article 410


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Robak and Richards-Zawacki

Temperature Modulates Skin Microbe Benefits

effects of prior Bd-exposure explicitly. After heat treatment, we
tested the frogs for Bd following the swabbing and quantitative
polymerase chain reaction (qQPCR) assay protocols described
below. After heat-treatment and during bacterial manipulations,
we housed the frogs at 20°C. To get to this temperature,
we lowered the temperature gradually over a period of 28 h.
We assigned animals haphazardly to temperature, bacterial
manipulation, and exposure groups, with each combination of
temperature, bacterial manipulation, and exposure containing
either 9, 10, or 11 animals. After bacterial manipulation, frogs
were housed at either 14 or 26°C and were either inoculated
with Bd or sham inoculated (Table 1). We fed the frogs ad
libitum on 2 week-old crickets and provided them with a
clean enclosure and fresh water every 7 days. We cleaned the
enclosures with a 10% bleach solution and allowed them to
dry completely before reuse. We wore a clean pair of nitrile
gloves when handling each frog. We carried out this study in
accordance with the recommendations of Tulane University’s
Institutional Animal Care and Use Committee (IACUC, Protocol
No. 0391R2).

Animal Monitoring

We monitored frogs daily for the following clinical signs of
chytridiomycosis: lethargy, inappetence, loss of righting reflex,
excessive skin sloughing, abnormal posture, and cutaneous
erythema (Berger et al., 2005). To test for Bd infection and the
presence of S. maltophilia on frog skin, we rinsed the frogs in
filtered tap water and then swabbed the skin by rubbing a rayon
tipped swab (MWE 113, Medical Wire and Equipment, Co.,
United Kingdom) five times over the dorsum, venter, each side
of the body, and the bottom of each foot. This was done once
each week starting on day 6. Snout-vent length (SVL), measured
to the nearest 0.1 mm with a dial calipers, and mass, measured
with a scale to the nearest 0.01 g, were recorded weekly, starting
on day —1, the day prior to the first round of Bd inoculations
(Table 2). We used residual mass as our index of body condition
and we calculated this using the line of best fit from a linear

TABLE 1 | Treatment groups.

n Bacteria Inoculation Temperature (°C)
10 Reduced Sham 14
10 Reduced Sham 26
10 Reduced Bd 14
10 Reduced Bd 26
9 Intact Sham 14
10 Intact sham 26
10 Intact Bd 14
11 Intact Bd 26
10 Added sham 14
10 Added sham 26
iR Added Bd 14
iR Added Bd 26

n = number of frogs; bacteria = bacterial manipulation; inoculation = inoculated with
Bd or sham inoculated; and temperature = temperature frogs were housed at after
bacterial manipulations.

TABLE 2 | Summary timeline for bacterial manipulations.

Day Treatment
-5 Provosoli bath
—4 Antibiotic (BCR* and SMA) or filtered water (BCI) bath
-3 Fresh antibiotic (BCR and SMA) or filtered water (BCI) bath
-2 Filtered water (BCR), Provosoli bath (BCI), or Provosoli bath with added
S. maltophilia (SMA)
—1 Returned to enclosure
0 Bd or sham exposures
1 Returned to enclosure

*Treatment groups: BCR, bacterial community reduced; SMA, S. maltophilia
added; and BCI, bacterial community intact.

regression between SVL and body mass for all frogs on day —1
(Supplementary Figure S1). The predicted mass of each frog,
based on this pre-experiment regression was then subtracted
from the actual mass each week to get a residual value, which
reflects body condition relative to the mean for a frog of that size
prior to Bd exposure (Jakob et al., 2011). Frogs were euthanized
by bath in tricaine methane sulfonate (MS-222, pH 7) at the
conclusion of the experiment.

Skin Microbe Quantification

We extracted genomic DNA from skin swabs using the Qiagen
DNeasy Blood and Tissue kit, following the protocol for animal
tissues with two modifications: (1) we incubated swabs for just
1 h, vortexing and spinning them in a centrifuge after 30 and
60 min of incubation; (2) we eluted samples twice with 100 pL
of elution buffer instead of once with 200 L. We then used a
qPCR assay, performed on an Applied Biosystems 7500 system,
to quantify the amount of Bd [in plasmid equivalents (PEs)]. We
followed the protocol of Boyle et al. (2004) with the following
modifications: (1) 0.7 pL of bovine serum albumin (Applied
Biosystems) was added to each well prior to amplification
(Garland et al., 2010) and (2) a sevenfold dilution series of Bd
plasmid standards (Pisces Molecular, Boulder, CO, United States)
was included in each run. For S. maltophilia, we quantified
colony forming units (cfus) per swab using the same qPCR
reaction cycling conditions and reagent concentrations as for Bd,
but with primers and probes from Rios-Licea et al. (2010). For
S. maltophilia, we generated a sevenfold dilution series of cfu
standards by making serial dilutions of DNA extracted from a
sample containing 5 x 10° cfus of S. maltophilia. We ran qPCRs
on all swab samples in singlicate and considered animals positive
for Bd if the qPCR result indicated that one or more copies of
Bd DNA (i.e., >1 PE) were present in the reaction. Animals were
considered to have become infected if they tested positive for
Bd on one or more weekly swab samples. We converted Bd and
S. maltophilialoads per 5 L reaction volume to whole swab loads
and then log-transformed these values prior to statistical analysis.

Bacterial Manipulations

Our skin bacterial community manipulations took place over
4 days and ended on the day prior to the first Bd (or sham)
exposure (see Table 2). On day —5, we placed frogs in a bath of
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30 mL modified Provosoli medium (Wyngaard and Chinnappa,
1982) for 24 h to collect native cutaneous bacteria. On day —4,
we removed the frogs from their Provosoli baths and placed
these baths in a refrigerator. Animals in the “reduced” bacterial
community and “S. maltophilia added” treatments were moved
directly into a second bath, this time containing 30 mL of an
antibiotic cocktail that targets both Gram-negative and Gram-
positive bacteria (24 mg/L cephalexin, 14.5 mg/L sulfamethazine,
2.9 mg/L trimethoprim, 100 mg/L streptomycin, and 10° LU./L
penicillin) for 24 h (following Holden et al., 2015). Frogs in
the “intact” bacterial community treatment were instead moved
into a bath containing 30 mL of filtered tap water for 24 h.
On day —3, we placed the frogs into either a fresh antibiotic
cocktail bath with the same composition as the first (“reduced”
and “S. maltophilia added” treatments) or into a filtered water
bath (“intact” treatment) for 24 h. On day —2, we rinsed all
frogs with filtered tap water and frogs in the “reduced” treatment
group were placed in a bath containing 30 mL of filtered water
for 24 h. Frogs in the “intact” treatment were placed back in
their Provosoli baths (from day —4). Frogs in the “S. maltophilia
added” treatment were placed back in their Provosoli baths
also, but only after adding 2 x 108 S. maltophilia to the bath.
We left the frogs in these baths for 24 h. On day —1, we
rinsed all frogs with filtered tap water and placed them in clean
enclosures.

Bd Exposure

To prepare inoculum for Bd exposures, we grew Bd (JEL412
isolated from a Sachatamia ilex frog in Panama in 2005 and
provided by Dr. Joyce Longcore) on 1% tryptone agar plates for
7 days, at which point we harvested zoospores by flooding plates
with 5 mL of deionized water. We then exposed frogs individually
by placing them in a bath of 2 x 10° zoospores suspended in
30 mL filtered tap water for 12 h. We carried out sham exposures
in the same way except that 1% tryptone plates without Bd were
flooded. We exposed frogs in this way weekly throughout the
experiment, starting on day 0.

Data Analysis

We used generalized linear mixed models (GLMMs) to test for
significant effects of bacterial manipulations, temperature, and an
interaction between temperature and bacterial manipulation on
the log-transformed Bd and S. maltophilia loads on Bd-exposed
frogs. Our model contained fixed effects of temperature, bacterial
community manipulation (“reduced,” “intact,” or “S. maltophilia
added”), and the interaction between those variables with day as
a repeated measure. For these and all following GLMMs, we used
a first-order autoregressive covariance type for repeated effects
and residuals, assumed a non-normal distribution, and used a
Satterthwaite approximation for degrees of freedom. A second
GLMM with these same fixed effect plus exposure group (Bd-
vs. sham-exposed) allowed us to test for significant main and
interactive effects of temperature, bacterial manipulation, and Bd
exposure on body condition. We used a third GLMM to test
whether temperature, bacterial treatment, or their interaction
affected the probability that Bd-exposed frogs became infected
(yes/no). This model used a binary logistic distribution and

the events/trials syntax, with infection as the event and day as
the trial. To test for significant differences in survival among
treatments (bacterial manipulations, temperatures, and exposure
groups), we used a Cox regression with log-transformed Bd
load included as a covariate. For significant effects, we used
a Kaplan-Meier survival analysis to compute Tarone-Ware
pairwise comparisons among groups.

As an alternative analytical approach, since S. maltophilia
loads did not always differ among our bacterial community
manipulation groups (see section “Results”), we repeated the
analyses for Bd load, body condition, probability of infection
(yes/no), and survival described above, but this time replacing
the fixed effect of bacterial community manipulation (“reduced;
“intact, or “S. maltophilia added”) with the covariate log-
transformed S. maltophilia load (as determined by qPCR).
These models included only Bd-exposed animals. When we had
significant interaction effects with temperature in our survival
analysis, we used separate Cox regressions for each experimental
temperature (with Bonferroni-corrected p-values) for post hoc
comparisons since Kaplan-Meier survival analyses cannot handle
continuous factors like S. maltophilia load. All analyses were
performed in IBM SPSS Statistics (v 23).

RESULTS

Stenotrophomonas maltophilia was detected on all frogs from
all three bacterial manipulation groups and both temperatures
throughout the experiment, with the exception of two frogs at
26°C that each tested negative in one weekly sample: one frog
from the “S. maltophilia added” group tested negative on day
41 and one from the “intact” bacteria group tested negative
on day 55 (Supplementary Figures S2A,B). The amount of
S. maltophilia on the skin differed among temperature (GLMM:
F1,239 = 30.608, P < 0.001) and bacterial manipulation (GLMM:
F».239 = 5.538, P = 0.004) groups, but the interaction between
temperature and bacterial manipulation was not significant
(GLMM: F; 39 = 1.618, P = 0.200). Frogs at 14°C had greater
S. maltophilia loads than frogs at 26°C and frogs in the “intact”
bacterial treatment had lower S. maltophilia loads than frogs in
the “reduced” and “S. maltophilia added” groups (Tukey LSD:
239 > 2.960, P < 0.003, Supplementary Figure S3). There was
no significant difference in S. maltophilia load between frogs in
the “reduced” and “S. maltophilia added” treatments (Tukey LSD:
t239 = 0.047, P = 0.962), suggesting that our cocktail of antibiotics
did not reduce S. maltophilia abundance on frog skin.

All animals in Bd-exposed treatment groups had a positive
qPCR result for Bd on at least one week of the experiment
(Supplementary Figures S2C,D) and were therefore considered to
have become infected. However, at 26°C, our Bd-exposed frogs
tended to test positive for Bd only once or twice during the
initial weeks of the experiment and then clear their infections.
None of the sham-exposed animals ever tested positive for Bd.
Bd-exposed frogs at 14°C had a greater probability of testing
positive for Bd on any given swab than did Bd-exposed frogs at
26°C (GLMM: Fj 106 = 90.731, P < 0.001; Figure 1A). There
was no significant effect of bacterial manipulation (GLMM:
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F>.106 = 0.097, P = 0.908) and no significant interaction between
temperature and bacterial manipulation (GLMM: F; 106 = 0.151,
P = 0.860) on the weekly probability of Bd infection. When
S. maltophilia load replaced bacterial manipulation in our
model, the result was similar: neither S. maltophilia load
(GLMM: F 184 = 1.174, P = 0.280) nor the interaction between
S. maltophilia load and temperature (GLMM: F; 193 = 1.528,
P = 0.218) was significant predictors of Bd infection in weekly
swab samples.

For pathogen load, we found a significant effect of temperature
(GLMM: Fy,175 = 446.463, P < 0.001) but not of bacterial
manipulation (GLMM: F; 199 = 1.521, P = 0.221) and the
interaction between temperature and bacterial manipulation
was not significant (GLMM: F 199 = 0.254, P = 0.776). Bd-
exposed animals at 14°C had greater Bd loads than those at
26°C (Figure 1B and Supplementary Figures S2C,D). When
S. maltophilia load replaced bacterial manipulation in our
model, the effect of temperature remained significant (GLMM:
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FIGURE 1 | Mean (+ SE) of (A) probability of infection and (B) Bd load,
measured as log1g of plasmid equivalents (PEs) for Bd-exposed frogs at two
treatment temperatures and three bacterial manipulations (BCR, bacterial
community reduced; BCI, bacterial community intact; and SMA, S. maltophilia
added) over the 9 weeks of the experiment.

F1.197 =4.659, P = 0.032) but the main effect of S. maltophilia load
(GLMM: F; 183 = 4.559, P = 0.034) and the interaction between
S. maltophilia load and temperature (GLMM: F; 136 = 6.924,
P = 0.009) were also significant. Post hoc linear regressions
(Figure 2) showed that the relationship between S. maltophilia
load and Bd load on swabs was positive at 14°C (R? = 0.171,
B =0.572, Fj 99 = 20.466, P < 0.001) but non-significant at 26°C
(R* =0.003, Fy_100 = 0.350, P = 0.555).

Neither temperature (GLMM: F; g7, = 2.827, P = 0.093),
bacterial manipulation (GLMM: F;¢7;, = 0.212, P = 0.809),
nor exposure group (Bd vs. sham, GLMM: F;¢7;; = 0.083,
P = 0.773) had a significant effect on body condition and
there were no significant two- or three-way interactions
between temperature, bacterial manipulation, and exposure
group (GLMM: F; 672 < 2.483, P > 0.084). Results were similar
when S. maltophilia load replaced bacterial manipulation in our
model (GLMM: all F; 501 < 1.702, all P > 0.194). Body condition
did change over the course of the experiment, though (GLMM,
day: Fg 72 = 1.950, P = 0.043; Supplementary Figure S4), with
frogs increasing in body condition during the initial 3 weeks of
the experiment (Tukey HSD: all pairwise t¢72 < 1.834, P > 0.05
except for day —1 vs. days 6, 13, and 20, which had t¢7, > 2.464,
P <0.014).

Clinical signs of chytridiomycosis and mortality were
observed in Bd-exposed animals beginning 8 days after the
initial Bd exposure. By the end of the experiment, 62 days after
the first exposure, only five Bd-exposed frogs survived. Four
of these were from 26°C treatments (one from each of the
“intact” and “reduced” bacterial treatments and two from the
“S. maltophilia added” treatment). The only surviving frog at
14°C was from the “reduced” bacterial community treatment
(Supplementary Figures S2E,F). Mortality was low in sham-
infected frogs (<2 deaths per group), no clinical signs of
chytridiomycosis were observed, and there were no significant
differences in survival with respect to temperature or bacterial
treatment (Tarone-Ware: X; < 1.108, P > 0.293).
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FIGURE 2 | Relationship between Bd load, measured as logyg of PEs and
S. maltophilia load, measured as log1g of colony forming units (cfus) for
Bd-exposed frogs. Line is the least-squares line of best fit (v = 0.5722x +
2.0977; R? = 0.171) for frogs at 14°C. The relationship was non-significant at
26°C.
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Our final Cox regression model (overall model: x? = 143.135,
P < 0.001) included the effect of exposure group (Wald; =71.712,
P < 0.001), with Bd-exposed frogs having lower survival than
sham-exposed animals, and the interaction between bacterial
manipulation and temperature (Wald, = 7.453, P = 0.024)
but not the main effects of temperature (Wald; = 0.122,
P =0.727) or bacterial manipulation (Wald, = 3.393, P = 0.183)
as significant predictors of survival. Considering only the Bd-
exposed animals, Bd load was not a significant predictor of
survival (Wald; = 0.153, P = 0.695). Frogs in the “S. maltophilia
added” treatment survived longer than frogs with either “intact”
or “reduced” bacterial communities at 26°C (Tarone-Ware:
x> > 5123, P < 0.023). At 14°C, Bd-exposed frogs in the
“S. maltophilia added” treatment survived longer than those
in the “intact” bacterial community treatment (Tarone-Ware:
¥? = 11.392, P < 0.001), but not significantly longer than frogs
in the “reduced” bacteria treatment (Tarone-Ware: x> = 0.017,
P < 0.896; Figure 3). When S. maltophilia load replaced bacterial
manipulation in our Cox regression model, only the interaction
between S. maltophilia load and temperature was significant
(Wald; =5.852, P =0.016). Separate Cox regressions for animals
at 14 versus 26°C showed that odds of mortality in Bd-exposed
frogs decreased with increasing S. maltophilia load at 14°C
(B = —0.547, Wald; = 5.731, corrected P = 0.034) but at 26°C,
S. maltophilia load was not a significant predictor of mortality
(Wald; =2.128, corrected P = 0.290).

DISCUSSION

We examined temperature’s effect on the ability of skin microbes
to protect a susceptible frog species against Bd infection and
chytridiomycosis. Given that amphibian immune function is
reduced at low temperatures (Rollins-Smith and Woodhams,
2012), and that Bd infections and chytridiomycosis are more
prevalent in animals with cooler body temperatures (Rowley and
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FIGURE 3 | Mean (& SE) survival time for Bd-exposed frogs in three bacterial
manipulation groups (BCR, bacterial community reduced; BCI, bacterial
community intact; and SMA, S. maltophilia added) at 14 and 26°C.

Alford, 2013) and in cool climates (Berger et al., 2004; Woodhams
and Alford, 2005; Rohr and Raffel, 2010), we predicted that
temperature would affect the susceptibility of A. crepitans to Bd
infection and chytridiomycosis in this experiment. Specifically,
we predicted that, as in a previous study (Sonn et al., 2017),
Bd-exposed frogs housed under colder conditions would have
higher pathogen loads, a greater likelihood of becoming infected,
lower body condition, and/or lower survival. We also predicted
that frogs treated with antibiotics prior to Bd exposure would
be more susceptible, and frogs with the anti-Bd bacterium
S. maltophilia added to their skin would be less susceptible to
infection and/or disease than animals with an un-manipulated
bacterial community. And finally, we predicted that the effects
of S. maltophilia on Bd susceptibility would be temperature
dependent. Some, but not all, of these predictions were upheld.

Temperature had an effect on the susceptibility of Bd-exposed
frogs, with animals housed at 14°C having a greater likelihood
of infection (Figure 1A) and also having greater pathogen loads
(Figure 1B and Supplementary Figures S2C,D) than frogs housed
at 26°C. This is consistent with idea that amphibian immune
responses are often improved at higher temperatures (Maniero
and Carey, 1997; Rollins-Smith and Woodhams, 2012). It is also
consistent with the observations that in nature, (1) individual
frogs with higher body temperatures are less likely to be infected
with Bd (Richards-Zawacki, 2010; Rowley and Alford, 2013)
and (2) disease variables and risk of Bd-related declines often
reach a peak in cool seasons and climates (Berger et al., 2004;
Woodhams and Alford, 2005; Kriger and Hero, 2006; Longcore
et al., 2007; Rohr and Raffel, 2010). This result is also consistent
with a recent laboratory exposure study where the susceptibility
of A. crepitans to chytridiomycosis was found to be inversely
related to temperature (Sonn et al., 2017). In contrast to that
study, however, the present study showed no significant main
effect of temperature on the body condition or survival of Bd-
exposed animals. There were, however, significant interactions
between temperature and bacterial manipulation and between
temperature and S. maltophilia load for survival, suggesting that
the effect of temperature on the survival of Bd-exposed frogs
depended on their cutaneous bacterial community.

While we predicted we would see significant main effects
of bacterial manipulation on several indices of susceptibility
to Bd infection and chytridiomycosis, the only variable we
measured that appears to have been affected by our bacterial
manipulations was survival, which differed in a temperature-
dependent manner across our bacterial manipulation groups. On
average, Bd-exposed frogs in the “reduced” bacterial treatment
survived equally well at 14 and 26°C whereas frogs with “intact”
or “S. maltophilia added” bacterial communities survived longer
at the higher temperature (Figure 3). Frogs in the “S. maltophilia
added” treatment at 26°C had the greatest mean survival time of
all Bd-exposed groups.

Stenotrophomonas maltophilia has been found not only on
frog skin, but also in water, soil, and plant samples from a wide
variety of environments and geographic regions (Denton and
Kerr, 1998). It is known to inhibit the growth of a broad range
of plant (e.g., Elad et al., 1994; Kobayashi et al., 1995; Berg et al.,
1996), and even some human (e.g., Candida spp., Aspergillus

Frontiers in Microbiology | www.frontiersin.org

March 2018 | Volume 9 | Article 410


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Robak and Richards-Zawacki

Temperature Modulates Skin Microbe Benefits

fumigatus; Kerr, 1996) fungal pathogens. Stenotrophomonas
species have been isolated from amphibian skin on several
continents (North America: Woodhams et al., 2007b; South
America: Flechas et al., 2012; Australia: Woodhams et al., 2015)
and S. maltophilia (Flechas et al., 2012; Robak, 2016) and some
of its congeners (Woodhams et al., 2015) have been shown to
inhibit Bd growth in vitro. We chose S. maltophilia for use in this
study because our previous work suggested that S. maltophilia
inhibits Bd growth in vitro across a range of temperatures (Robak,
2016). However, despite having higher average S. maltophilia
loads on their skin during this experiment, we did not see a lower
probability of infection or lower pathogen load on Bd-exposed
animals in our “S. maltophilia added” treatment, compared
with animals in our “intact” bacterial treatment. Importantly
though, we did see greater survival in the “S. maltophilia added”
treatment, compared to our “intact” treatment animals at both
14 and 26°C. This suggests that augmentation of the cutaneous
S. maltophilia population may yield benefits for Bd-exposed frogs
across a range of temperatures.

We attempted to reduce the number and diversity of bacteria
present on the skins of frogs in our “reduced” bacterial treatment
via bath in a cocktail of antibiotics. However, our qPCR assays
suggest that animals in our “reduced” treatments maintained
as much S. maltophilia on their skins as animals in our
“S. maltophilia added” treatments. It is possible that our antibiotic
baths failed to reduce the bacterial communities on the frogs
that received them. However, S. maltophilia is known to be
naturally resistant to many broad-spectrum antibiotics (Denton
and Kerr, 1998), so the large populations of this bacterial species
on the skins of frogs in our “reduced” treatments could also
be explained by the growth of S. maltophilia (and potentially
other antibiotic-resistant bacteria) after the removal of their more
antibiotic-susceptible competitors. The lower concentrations of
S. maltophilia maintained by frogs with putatively more diverse
skin communities in our “intact” treatments are consistent
with this explanation. If S. maltophilia does indeed augment
the host’s ability to tolerate a heavy Bd infection, this could
explain why frogs in our “reduced” treatment, which maintained
high S. maltophilia loads on their skin, especially at 14°C,
survived as long as frogs in our “S. maltophilia added”
treatment at that temperature. However, in that case, it is
not clear why our “reduced” treatment frogs did not receive
the same survival benefit as our “S. maltophilia added” frogs
at 26°C.

At 14°C, but not at 26°C, frogs with abundant S. maltophilia
on their skin survived repeated exposures to Bd longer than frogs
with “intact” skin bacterial communities where S. maltophilia was
present, but less abundant. Interestingly, though S. maltophilia
(Denton and Kerr, 1998) and other bacteria isolated from
A. crepitans grow faster in vitro at 26 than at 14°C (Robak,
2016), frogs in all three of our bacterial treatment groups
maintained more S. maltophilia on their skin at 14 than at
26°C (Supplementary Figure S3). It is not clear what caused this
difference between in vitro and in vivo growth of S. maltophilia
or whether the pattern holds for other members of the microbial
community on amphibian skin. Interestingly, the temperature
optimal for Bd growth on A. crepitans (Sonn et al., 2017) and

other amphibian hosts (Cohen et al., 2017) also commonly differs
from that of growth in culture.

While augmentation with a known anti-Bd bacterium was
associated with longer survival in Bd-exposed animals at both 14
and 26°C, our results also support our prediction of temperature-
dependent effects of beneficial skin microbes. For example, at
14°C, there was a positive relationship between S. maltophilia
load and the odds of survival in Bd-exposed frogs. At this
temperature, frogs in the “S. maltophilia added” and “reduced”
bacterial community treatments, which had greater S. maltophilia
loads (Supplementary Figure S3), survived Bd infections longer
than did animals in the “intact” bacterial community treatment
(Figure 3 and Supplementary Figure S2E). We observed this
difference in survival, despite the fact that Bd loads were
similarly high among animals in all three bacterial treatment
groups, suggesting that at 14°C, the load of S. maltophilia
on the skin affected the animals’ ability to survive with
(i.e., tolerate) a heavy Bd infection. In contrast, at 26°C, the
relationship between S. maltophilia load and survival was not
significant.

The mechanism by which tolerance of Bd infection is
modulated by S. maltophilia remains unclear. This bacterium’s
inhibition of phytopathogenic fungal growth has been linked to
its production the antifungal secondary metabolites pyrrolnitrin
(Kerr, 1996) and maltophilin (Jakobi et al., 1996). Interestingly,
S. maltophilia also exhibits chitinolytic activity (Kobayashi et al.,
1995). Chitin is an important part of cell wall structure stability
for Bd and other chytrid fungi, and drugs that interfere with
chitin synthesis have been shown to inhibit Bd growth in vitro
(Holden et al., 2014). It seems likely that this chytinolytic activity
plays a role in the effect that heavy loads of S. maltophilia
on the skin had on the survival of our Bd-exposed hosts.
At 14°C, S. maltophilia load was positively associated with
survival in our Bd-exposed frogs. However, at 26°C, we saw
no significant relationship between S. maltophilia load and
survival. This could be because the S. maltophilia loads on our
26°C frogs never reached the levels that they did on animals
at 14°C. Perhaps some threshold load of S. maltophilia is
needed before the benefits of this microbe can be seen and
the higher temperature prevented frogs in our 26°C treatments
from reaching this threshold? It could also be that heavy
Bd infections facilitate frogs sustaining large populations of
S. maltophilia on the skin, as we found a positive relationship
between Bd load and S. maltophilia load at 14°C (Figure 2).
In this case, the lack of an effect of S. maltophilia on the
survival of Bd-exposed animals at 26°C could be explained
by the lower average Bd loads these animals experienced
(Figure 1B).

All but one of the Bd-exposed frogs in our 14°C treatments
became heavily infected with Bd during our experiment and
most died after exhibiting clinical signs of chytridiomycosis.
Manipulation of the bacterial community appears to have affected
the survival time of heavily infected frogs (i.e., tolerance) but
not the likelihood of infection (i.e., resistance). However, the
infections we observed in Bd-exposed frogs at 26°C were
generally light and often transient. In many cases, death at this
temperature was preceded by one or more weekly skin swabs
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that tested negative for the presence of Bd. It seems unlikely that
these animals at 26°C were dying of chytridiomycosis, though
they exhibited similar clinical signs to animals that died with
high Bd loads in the 14°C treatments. However, survival of
the Bd-exposed frogs was significantly lower than sham-exposed
animals at both temperatures, suggesting that mortality was due
to Bd exposure and not another pathogen or husbandry-related
cause.

While it is not uncommon in Bd exposure studies for hosts
to remain uninfected or clear Bd infections (e.g., Ramsey et al.,
2010; Brannelly et al., 2012), we are not aware of other published
studies where high mortality was seen in animals with transient
and generally low-intensity Bd infections. We can think of two
plausible explanations for the mortality experienced by our Bd-
exposed animals at 26°C, both of which are related to our having
exposed these animals repeatedly to high concentrations of this
pathogen.

First, resisting infection can be costly (Dallas et al., 2016),
especially if it involves activation of the immune system and/or
stress response. Given that amphibian immune function is often
temperature dependent (Rollins-Smith and Woodhams, 2012),
the cost of resisting infection may depend upon temperature as
well. Though this topic remains understudied, evidence for a
cost of resisting Bd infection exists for newts (Cheatsazan et al.,
2013) and tadpoles (Gabor et al., 2017). If such a cost exists for
A. crepitans, it could explain the mortality we saw in Bd-exposed
frogs at 26°C, though in that case, it is perhaps surprising that
we did not see a decline in body condition in these animals.
On the contrary, both Bd- and sham-exposed frogs at 26°C
gained body condition over the course of the study and at no
point in the experiment, there was a difference in body condition
between these two exposure groups (Tukey HSD: t57, < 1.895,
P > 0.058).

Second, Bd is known to produce and release toxic factors that
cause pathology and mortality in crayfish, even in the absence of
infection (McMahon et al., 2013). Bd is also known to produce
a toxic factor or factors that inhibit immune responses to Bd
in vitro (Fites et al., 2014) and possibly also in vivo (Ellison
et al., 2014). While it is not clear whether the pathology and
mortality in crayfish and immune inhibition in amphibians are
generated by the same or different toxic factors, it seems likely
that this fungus, like many others (Bondy and Pestka, 2000),
produces toxins capable of affecting the fitness of amphibian
hosts, perhaps even in the absence of an active infection in the
skin (e.g., in tadpoles: Blaustein et al., 2005). While we cannot
definitively attribute the mortality seen in our 26°C treatment
to a toxin, if Bd does produce a substance capable of causing
mortality in amphibians, our methods may have been more
likely to produce this effect than the methods of other similar
studies. We exposed frogs weekly by bath to small volumes of
water containing millions of zoospores whereas other studies
have tended to use fewer exposures and lower concentrations
of Bd (e.g., reviewed in Kilpatrick et al., 2009). Not much is
known about the frequency of exposure or the concentration
of Bd in natural environments, so it is unclear whether our
results would be expected to hold in the wild. However, a

mark-recapture study of Louisiana A. crepitans suggests that
repeated exposure and cycles of clearance and re-infection are
common (Brannelly et al., unpublished data). We suggest that
the potential for mortality due to toxin exposure rather than
skin infection in amphibians exposed to Bd deserves further
study.

Our results demonstrate that both temperature and
the makeup of the skin bacterial community can impact
the susceptibility of amphibian hosts to chytridiomycosis.
Temperature’s main effects were on the likelihood (i.e., resistance)
and magnitude of infection whereas the skin microbial
community affected the host’s ability to survive a heavy infection
(i.e., tolerance). Frogs at 14°C survived longer, despite large Bd
burdens, when they harbored large populations of the antifungal
bacterium S. maltophilia on their skin. Survival of frogs with
S. maltophilia-enhanced skin communities was also longer at
26°C, though at this temperature, survival was not correlated
with S. maltophilia load and exposure to, rather than infection
with, Bd seems to have been the main cause of mortality. Whether
this sort of interaction between temperature and the protection
that bacteria provide against animal pathogens is common
remains to be seen. Given its importance to the physiology of
all three players, we predict that temperature may have especially
strong impacts on the interactions of ectotherm hosts and their
bacterial communities with fungal pathogens (Fisher et al., 2012;
Carey and Duddleston, 2014; Daskin et al., 2014).
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