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The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors

that share structural and functional similarities and possess potent superantigenic activity

causing disruptions in adaptive immunity. The enterotoxins can be separated into two

groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin

groups. Many members from both these groups contribute to the pathogenesis of

several serious human diseases, including toxic shock syndrome, pneumonia, and

sepsis-related infections. Additionally, many members demonstrate emetic activity and

are frequently responsible for food poisoning outbreaks. Due to their robust tolerance

to denaturing, the enterotoxins retain activity in food contaminated previously with

S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different

mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among

different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple,

and often overlapping, regulatory pathways, which are influenced by environmental

factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY),

which matter for the role of S. aureus as an enteropathogen, and summarize our

current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we

will review the current literature regarding the key elements that govern the complex

regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic,

superantigenic, and immunomodulatory functions, and discuss how these activities may

collectively contribute to the overall manifestation of staphylococcal food poisoning.

Keywords: Staphylococcus aureus, superantigen, enterotoxins, food poisoning, regulation, virulence, emesis

INTRODUCTION

Staphylococcus aureus is a dangerous human pathogen whose virulence potential
predominantly relies on the production of an impressive catalog of protein toxins. These can
work separately or in concert to cause a multitude of human diseases. Pneumonia, sepsis-related
infections, toxic shock syndrome, and food poisoning are diseases that have traditionally been
associated in particular with the production of enterotoxins (Lowy, 2003). However, recent studies
suggest that the staphylococcal enterotoxins (SEs) have a broader role in the manifestation of a
number of other human illnesses, including those associated with the respiratory tract (Pastacaldi
et al., 2011; Huvenne et al., 2013) and the development of autoimmune diseases (Principato and
Qian, 2014; Li et al., 2015). The SEs are powerful non-specific T-cell stimulators (superantigens)
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that cause unregulated activation of the immune response
(for detailed reviews see Fraser and Proft, 2008; Spaulding
et al., 2013). If this stimulation is sustained, a massive
cytokine overload is produced preluding the clinical hallmarks
of toxic shock syndrome, which is characterized by the fast
onset of fever, organ failure and significant mortality (Lappin
and Ferguson, 2009). Unlike the majority of other secreted
toxins produced by S. aureus, the SEs require only minute
quantities to be toxic in humans. Additionally, the SEs have
a remarkable tolerance to extreme denaturing conditions, such
as low pH (Schantz et al., 1965; Bergdoll, 1983), heating
(Evenson et al., 1988; Asao et al., 2003) and proteolytic digestion
(Humber et al., 1975; Regenthal et al., 2017). These combined
qualities make the SEs, especially SEB, potential bioterrorism
agents (Madsen, 2001). Notably, SEB is also classified as
a Category B select agent by various United States federal
agencies.

In addition to the toxic effects they have on the host, the SEs
are potent emesis-inducing toxins. Reports of the involvement
of enterotoxin-producing S. aureus in staphylococcal food
poisoning (SFP) can be dated as far back as the 1900s. However,
it was not until the 1930s that a link between the two
were made (Dack, 1937). In healthy human individuals, SFP
is an acute disease depicted by symptoms including nausea,
vomiting, abdominal cramping, diarrhea, typically in the absence
of fever, appearing within 3–9 h after the ingestion of food
contaminated previously with enterotoxin-producing S. aureus.
SFP is often self-limiting with recovery occurring 1–3 days
after the onset of symptoms (Le Loir et al., 2003). However,
symptoms may be more severe in the young, elderly and
immunocompromised (Murray, 2005; Argudin et al., 2010). The
SEs’ ability to traverse the harsh acidic conditions within the
gut to reach the intestine means that the advancement of SFP
can also occur in the absence of live bacteria. Typically, only
high nanogram to low microgram quantities of enterotoxins
are needed to induce the symptoms of SFP (Larkin et al.,
2009).

Next to E. coli, Shigella, Bacillus spp., and Clostridium
spp., S. aureus is among the leading toxin-producing bacterial
causative agents of food poisoning. S. aureus is also frequently
mentioned in national foodborne illness estimates (Gkogka
et al., 2011; Bennett et al., 2013; Thomas et al., 2013; Kirk
et al., 2014; Mangen et al., 2015; Park et al., 2015; Van
Cauteren et al., 2017), and is identified as a main player
in major food poisoning outbreaks worldwide (Asao et al.,
2003; Do Carmo et al., 2004; Chiang et al., 2008; Ostyn
et al., 2010; Sato’o et al., 2014; Ercoli et al., 2017). In the
US alone, it is estimated that S. aureus accounts for more
than 240,000 foodborne illnesses per year (Scallan et al., 2011).
However, considering that SFP can be resolved in individuals
without hospitalization, it is not unusual for many cases to go
unreported. While SFP rarely develops into a life-threatening
disease, its frequency has a significant impact on the economy,
resulting in a loss in productivity. It also represents a serious
financial burden, especially for the food industry, catering
businesses, and public healthcare systems. The implementation
of traditional hygiene practices and proper food safety measures

are key to preventing foodborne illness (Hussain and Dawson,
2013).

THE SUPERFAMILY OF
STAPHYLOCOCCAL ENTEROTOXINS;
PROTEINS AND OVERVIEW

The superfamily of SEs and enterotoxin-like (SEls) proteins
(Table 1) share many common features; they are non-
glycosylated, antigenically distinct, low molecular weight
(19–29 kDa) single-chain proteins that all fold into homologous
globular structures (Thomas et al., 2007). Since the first
characterization of the classical SEs (SEA to SEE) in S. aureus
(Bergdoll et al., 1965, 1971, 1973; Casman et al., 1967; Marrack
and Kappler, 1990), advancements in the area of molecular
biology during the 1980s led to the identification of a new set
of genes encoding closely-related proteins with superantigenic
and emetic activities (Table 1). This sudden increase in the
number of described SEs spurred a move to standardize their
nomenclature (Lina et al., 2004). Only enterotoxins with
demonstrated emetic potential in monkeys were designated
“SE,” whereas enterotoxins that failed to do so or have not
been evaluated in non-human primate models of emesis are
designated enterotoxin like (SEl-) toxins (Table 1). The only
exception to this rule is Toxic Shock Syndrome Toxin-1 (TSST-
1), which was originally designated SEF (Bergdoll et al., 1981;
Reiser et al., 1983). This toxin’s apparent lack of emetic activity,
possibly due it being less stable than other SEs (Edwin and
Kass, 1989), prompted the name change to TSST-1, which
has remained in place ever since. Joining TSST-1, SElJ is
the only other tested SE that is non-emetic (Munson et al.,
1998; Orwin et al., 2001, 2002). SElX, SElU, SElW, SElV, and
SElY have yet to be tested for emetic activity in non-human
primates.

THE SE GENES ARE DISTRIBUTED
ACROSS A VARIETY OF DIFFERENT
GENOMIC LOCATIONS

When considering the locations of the enterotoxin genes, selx
(Wilson et al., 2011) and sely (Ono et al., 2015) are unique as
they are found exclusively on the genome. The selx gene can be
found in ∼95% of S. aureus strains, whereas sely appears less
frequently and has only been detected in a handful of strains thus
far. In contrast, the other enterotoxin genes are sometimes found
alone, but more commonly in groups, on a variety of large mobile
segments of DNA called mobile genetic elements (MGEs) (Fraser
and Proft, 2008; Argudin et al., 2010). These MGEs include
prophages, plasmids, transposons, S. aureus pathogenicity islands
(SaPIs), and the enterotoxin gene clusters (egc) (Table 1) (for
a review on staphylococcal MGEs see, Malachowa and DeLeo,
2010). The egc locus is home to an operon of genes encoding
SEG, SEI, SEM, SEN, SEO, and two pseudogenes, ϕent1 and
ϕent2 (Jarraud et al., 2001; Monday and Bohach, 2001). Deletion,
duplication and recombination events within this cluster make
it a major hub for the generation of new types of SEs and
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TABLE 1 | Emetic and superantigenic activities of staphylococcal enterotoxins.

Enterotoxin Genetic element Superantigenic

activity

Emetic activity Type Phylogenetic

group

Monkey Shrew

SEA Prophage Yes Yes (Bergdoll et al.,

1965)

Yes (Hu et al., 2003) Classical SEA

SEB Chromosome, SaPI,

plasmid (pZA10)

Yes Yes (Bergdoll et al.,

1965)

Yes (Hu et al., 2003) Classical SEB

SEC1 SaPI Yes Yes (Schlievert et al.,

2000)

nd1 Classical SEB

SEC2 SaPI Yes Yes (Bergdoll et al.,

1965)

Yes (Hu et al., 2003) Classical SEB

SEC3 SaPI Yes Yes (Reiser et al., 1984) nd Classical SEB

SED Plasmid (pIB485) Yes Yes (Igarashi, 1972) Yes (Hu et al., 2003) Classical SEA

SEE Prophage Yes Yes (Bergdoll et al.,

1971)

Yes (Hu et al., 2003) Classical SEA

SEG egc1, egc2, egc3,

egc4

Yes Yes (Munson et al.,

1998)

Yes (Hu et al., 2003) New SEB

SEH Transposon

(MGEmw2/mssa476

seh/Dseo)

Yes Yes (Su and Wong,

1995)

Yes (Hu et al., 2003) New SEA

SEI egc1, egc2, egc3 Yes <100 µg/kg (Munson

et al., 1998)

Yes (Hu et al., 2003) New SEI

SElJ Plasmid (pIB485, pF5) Yes nd nd New SEA

SEK Prophages, SaPI1,

SaPI3, SaPI5,

SAPIbov1

Yes Yes (Omoe et al., 2013) Yes (Ono et al., 2017) New SEI

SEL Prophages, SaPIn1,

SaPIm1, SaPImw2,

SAPIbov1

Yes Yes (Omoe et al., 2013) Yes (Ono et al., 2017) New SEI

SEM egc1, egc2 Yes Yes (Omoe et al., 2013) Yes (Ono et al., 2017) New SEI

SEN egc1, egc2, egc3,

egc4

Yes Yes (Omoe et al., 2013) Yes (Ono et al., 2017) New SEA

SEO egc1, egc2, egc3,

egc4, transposon

Yes Yes (Omoe et al., 2013) Yes (Ono et al., 2017) New SEA

SEP Prophage (Sa3n) Yes Yes (Omoe et al., 2013) Yes (Omoe et al., 2005) New SEA

SEQ Prophage, SaPI1,

SaPI3, SaPI5

Yes Yes (Omoe et al., 2013) Yes (Hu et al., 2017) New SEI

SER Plasmid (pIB485, pF5) Yes <100 µg/kg (Ono

et al., 2008)

<100 µg/kg (Ono

et al., 2008)

New SEB

SES Plasmid (pF5) Yes <100 µg/kg (Ono

et al., 2008)

<100 µg/kg (Ono

et al., 2008)

New SEA

SET Plasmid (pF5) Yes <100 µg/kg (Ono

et al., 2008)

<100 µg/kg (Ono

et al., 2008)

New SElX

SEU egc2, egc3 Yes nd nd New SEB

SElW (SElU2) egc4 Yes nd nd New SEB

SEV egc4 Yes nd nd New SEI

SElX Chromosome Yes nd nd New SElX

SElY Chromosome Test

cell-dependent

nd Yes (Ono et al., 2015) New SElX

nd, not demonstrated.

variants (Letertre et al., 2003b; Thomas et al., 2006). The
acquisition of MGEs generally has a significant impact on core
genomes by causing striking differences in genome size and
structure. In S. aureus, a comparison of the presence of SE genes
from several major lineages shows that SE gene composition

is strongly linked to specific genetic backgrounds, emphasizing
the importance of vertical transmission, rather than horizontal
transmission, of SE-encoding MGEs (Goerke et al., 2009).
Around 80% of S. aureus isolates, including commensal, clinical,
and food-poisoning isolates, carry an average of 5–6 SE genes
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(Jarraud et al., 2001; Baba et al., 2002; Becker et al., 2003;
Holtfreter et al., 2004, 2007; Hait et al., 2014; Lv et al., 2014;
Umeda et al., 2017).

THE ENTEROTOXINS CAN BE FURTHER
SEPARATED BASED ON NUCLEOTIDE
AND AMINO ACID SEQUENCES

The 24 currently identified SEs and SEls, can be further separated
into several evolutionary groups based on a comparison of
their nucleotide and amino acid sequences; the SEA group
(SEA, SED, SEE, SElJ, SEH, SEN, SEO, SEP, SES), the
SEB group (SEB, SECs, SEG, SER, SElU, SElW, previously
known as SElU2), the SEI group (SEI, SEK, SEL, SEQ,
SEM, SElV), and the SElX group (TSST-1, SET, SElX,
SElY and members of another group of staphylococcal
exotoxins called superantigen-like (SSL) toxins) (for reviews,
see Fraser and Proft, 2008; Ono et al., 2015) (Table 1). A
fifth group, which is not produced by staphylococci, but only
represented by a group of functionally and structurally similar
superantigenic toxins produced by streptococci, will not be
discussed further.

The presence or absence of two specific structural features
predominantly defines the superantigenic and enterotoxigenic
properties of the SEs and explains differences in activity between
the evolutionary groups. First, enterotoxins belonging to the SElX
and SEB groups only possess one low affinity α-chain major
histocompatibility complex (MHC) II binding site, whereas
enterotoxins from the SEA and SEI groups contain one low
affinity α-chain MHC II and a second, high affinity β-chain
MHC II binding site, which generally equates to superior
superantigenic activity (Kozono et al., 1995). Additionally,
differences in amino acid composition have given rise to variants
of SEB (Kohler et al., 2012), SEC (Bohach and Schlievert, 1987;
Couch and Betley, 1989; Marr et al., 1993), SED (Johler et al.,
2016), SEG, SEI (Abe et al., 2000; Blaiotta et al., 2004), SEK
(Aguilar et al., 2014), SEM, SEN, SEO, SElU, and SElV (Letertre
et al., 2003b; Collery et al., 2009). Compared to the parent
toxins, variants of SEB (Kohler et al., 2012) and SEC (Deringer
et al., 1997) demonstrate altered species tropism or reduced
superantigenic activities. The production of these mutations in
SEs may be part of a broader strategy of S. aureus to adapt to
different host species (Marr et al., 1993; Edwards et al., 1997;
Johler et al., 2016).

Second, a separate and distinct loop comprising 9–19 varying
amino acids flanked by 2 cysteine residues creating a disulfide
bridge, was originally thought to be an essential feature of emesis-
inducing SE members from the SEA and SEB evolutionary
groups. However, mutational analyses of that loop demonstrated
that only the disulfide bond between the two cysteine residues,
rather than the loop itself, was required for emesis (Hovde
et al., 1994). These data are consistent with experiments
demonstrating that SEs that lack the loop can still induce emesis
in primates (Omoe et al., 2013), leading to the conclusion that
there are additional unidentified emesis-associated structural
determinant(s) in the SEs.

S. AUREUS HAS A COMPLEX NETWORK
OF REGULATORY PATHWAYS TO
CONTROL TOXIN PRODUCTION

S. aureus responds to changes in the environment using a
combination of quorum-sensing (QS) (Waters and Bassler,
2005) and other two-component systems (TCS), of which at
least 16 have been discovered in S. aureus to date (Haag
and Bagnoli, 2016), as well as many trans-acting regulatory
proteins (Bronner et al., 2004). S. aureus relies on these
systems to quickly make changes in the regulation of genes
associated with important physiological features, including drug
resistance, metabolism, immune evasion, and virulence. Each
system can directly or indirectly control the transcription of
specific sets of genes. However, the regulation of one gene may
be influenced by multiple systems, leading to additional layers of
regulation.

The accessory gene regulator (Agr) QS system, which is
activated at high cell densities, is comprised of two transcriptional
units transcribed in opposing directions; RNAII, which codes
for four genes (agrA, agrB, agrC, and agrD) (Novick et al.,
1995) and RNAIII, a regulatory RNA. These transcripts are
controlled by the promoters P2 and P3, respectively. AgrD, which
contains the sequence for the autoinducing peptide (AIP), is
processed and exported out of the cell by the combined actions
of the membrane-associated export protein, AgrB (Ji et al., 1995,
1997; Mayville et al., 1999) and a type I signal peptidase, SpsB
(Kavanaugh et al., 2007). AIP acts as the ligand for the membrane
bound histidine kinase, AgrC, leading to the phosphorylation of
AgrA (Ji et al., 1995; Lina et al., 1998). ActivatedArgA binds to the
P2 and P3 promoters, resulting in the perpetuation of a positive
feedback loop (Koenig et al., 2004).

Expression of agr is affected by various trans-activing
regulators, such as the Sar family of regulatory proteins, (SarR,
SarS, SarT, SarU, SarX, SarZ, SarV, MgrA, and Rot) (Cheung and
Projan, 1994; Heinrichs et al., 1996; Cheung et al., 2008), σB
(Lauderdale et al., 2009), and SrrAB (Staphylococcal respiratory
response AB) (Yarwood et al., 2001; Pragman et al., 2004).
Additionally, σB and Rot can affect another important two-
component system called SaeRS (Li and Cheung, 2008; Kusch
et al., 2011). Importantly, all these regulatory elements respond to
various environmental stresses and stimuli; the SaeRS (S. aureus
exoprotein expression) system responds to membrane attack by
antimicrobial molecules produced by the innate host defense
(Novick and Jiang, 2003; Kuroda et al., 2007; Geiger et al.,
2008; Cho et al., 2015), SarA largely responds to changes
in microenvironments (Cheung et al., 2004), σB responds to
high temperature, catabolites, alkaline pH, high salinity (Betley
et al., 1992; Wu et al., 1996; Kullik and Giachino, 1997;
Kullik et al., 1998; Pané-Farré et al., 2006), whereas the SrrAB
system has been shown to be particularly crucial for bacterial
growth under anaerobic and hypoxic conditions (Yarwood et al.,
2001; Pragman et al., 2007; Kinkel et al., 2013; Mashruwala
and Boyd, 2017). Lastly, Rot, the global gene regulator (Saïd-
Salim et al., 2003) is negatively regulated by RNAIII through
an antisense mechanism (Geisinger et al., 2006; Boisset et al.,
2007).
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REGULATION OF THE CLASSICAL
ENTEROTOXINS

It has been described early that there is unequal distribution
of SE-associated MGEs among S. aureus isolates, and that thus,
the host background has profound influences on enterotoxin
production (Gaskill and Khan, 1988; Compagnone-Post et al.,
1991). Surprisingly, our understanding of how the enterotoxins
are regulated is still rather incomplete, but we do know that
enterotoxin regulation is strongly dependent on the regulatory
systems described above (Figure 1). Several Agr-controlled
staphylococcal toxins, such as alpha-toxin (Morfeldt et al., 1995)
and the family of phenol-soluble modulins (PSMs) (Queck et al.,
2008) are produced between the early logarithmic and stationary
phases. Early observations showing that the production of SEB
(Czop and Bergdoll, 1974; Gaskill and Khan, 1988; Derzelle
et al., 2009), SEC (Otero et al., 1990; Regassa et al., 1991),
and SED (Bayles and Iandolo, 1989) also occurred between the
exponential to stationary phases of bacterial growth (Gaskill
and Khan, 1988; Regassa et al., 1991; Zhang and Stewart, 2000)
suggested that they could be regulated by Agr. Indeed, isogenic
S. aureus agr mutants showed significant decreases in SEC
and SED production compared to the wild-type strain (Regassa
et al., 1991). However, it was later shown that SEB, SEC, and
SED is regulated indirectly by other factors. For instance, Agr-
dependent regulation of SEB, SEC, and SED occurs via RNAIII-
dependent inhibition of Rot (Regassa and Betley, 1993; Tseng
et al., 2004; Tseng and Stewart, 2005). In addition to Rot, SEB
is also negatively regulated by σB (Ziebandt et al., 2001, 2004;
Pané-Farré et al., 2006; Rogasch et al., 2006).

In contrast, the production of bacteriophage-associated SEA
is generally constitutive (Thomas et al., 2007), although S. aureus
strains with distinct high and low SEA expression patterns have
been described (Borst and Betley, 1994; Wallin-Carlquist et al.,
2010). Since the expression pattern of SEA was found to be
different from that of SEB, SEC and SED, it was postulated and
confirmed that SEA is regulated independently of Agr (Tremaine
et al., 1993). The production of SEA was later discovered to be
closely tied to the phage’s life cycle (Cao et al., 2012) and to be
inducible by bacterial stress (Zeaki et al., 2015).

REGULATION OF THE NEWER
ENTEROTOXINS

Information surrounding the regulation of the newer
enterotoxins is only beginning to emerge. Unlike most of
the classical enterotoxins, it appears that the regulation of several
newer enterotoxins including SElJ (Zhang et al., 1998) and
SEH (Lis et al., 2012), is Agr-independent. The expression of
SFP-associated SEH, which is produced predominantly in the late
exponential phase of bacterial growth (Sakai et al., 2008; Lis et al.,
2012), was recently shown to be positively regulated by Rot, via
direct binding to the seh promoter (Sato’o et al., 2015), σB (Kusch
et al., 2011), several Sar homologs, and SaeR (Sato’o et al., 2015).
Moreover, SaeRS appears to have a positive impact on SElX
(Langley et al., 2017) and TSST-1 (Baroja et al., 2016) expression.

In contrast, the production of enterotoxins encoded in the egc
operon (SEG, SEI, SEM, SEN, SEO, and SElU) is highest in the
earliest stages of exponential growth (Grumann et al., 2008) and
dependent on σB (Kusch et al., 2011). Interestingly, one study
showed that SEK production is dependent on the presence of
SEB (Aguilar et al., 2014), whereas SEK and SEQ, which are also
found on sea-associated phages, can be transcriptionally induced
by mitomycin C (Sumby and Waldor, 2003). Taken together,
the SEs are regulated by multiple regulatory elements that
respond to a variety of different environmental signals. Likely,
the delicate balance in enterotoxin expression facilitated by these
regulatory elements has a profound impact on the commensal
and pathogenic lifestyles of S. aureus.

WHICH STAPHYLOCOCCAL
ENTEROTOXINS CONTRIBUTE TO SFP?

To control staphylococcal food poisoning and ensure food safety,
the roles of both new and classical SEs must be considered.
Although a wide variety of SE detection methods have been
developed (Table 2), molecular detection of SE genes remains
the most common method used for investigating the possible
contribution of SEs toward SFP. Molecular studies spanning the
last two decades have shown that egc-encoded genes (seg, seh, sei,
or selj) are readily detected in S. aureus food poisoning isolates
around the world (Blaiotta et al., 2004; Grumann et al., 2008;
Yan et al., 2012; Viçosa et al., 2013; Chao et al., 2015; Johler
et al., 2015; Cheng et al., 2016; Song et al., 2016; Shen et al.,
2017; Umeda et al., 2017). Additionally, the detection of non
egc-encoded enterotoxin genes, such as transposon associated-
seh (McLauchlin et al., 2000; Ikeda et al., 2005; Jørgensen et al.,
2005), plasmid-associated ser (Wattinger et al., 2012) and SaPI-
associated seq (Chiang et al., 2008; Alibayov et al., 2014; Lv et al.,
2014; Hu et al., 2017) suggest a role of these newer SEs in SFP.

While PCR is an invaluable tool, confirmation of the physical
presence of toxin in food products suspected of contamination
is needed to clearly verify their contribution to SFP. The
immunological detection of the 5 classical SEs has helped to
establish SEA as the top contributor (∼80%) to SFP outbreaks
(Pinchuk et al., 2010; Hennekinne et al., 2012), followed by SED,
SEB, SEC, and SEE (Hu and Nakane, 2014). In contrast, due to
the lack of sensitive detection methods, it has been impossible
to draw such conclusions for the newer SEs. However, a steadily
increasing number of immunological assays for the non-classical
enterotoxins, such as SEG (Nagaraj et al., 2016), SEH (Su and
Wong, 1996), SEI (Zhao et al., 2016b), SEK (Aguilar et al., 2014),
SEM (Zhao et al., 2017), and SEQ (Hu et al., 2017) have been
developed within the last decade. They indicated that one or
more of the newer enterotoxins are potential causes of SFP
outbreaks. Although few studies have examined the physical
presence of multiple enterotoxins, it is most likely that multiple
SEs contribute to SFP. The expansion of existing multiplex assays
(Liang et al., 2015; Adhikari et al., 2016) would be the most
efficient strategy to detect all SEs simultaneously. However, each
platform has its advantages and disadvantages (Table 2; Wu et al.,
2016 for review). An ideal platform to detect all SEs would have
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FIGURE 1 | Regulation of staphylococcal enterotoxins. Harsh bacterial growth conditions, changes in the bacterial microenvironment, high cell density, hypoxia, and

membrane changes direct enterotoxin expression through the alternative sigma factor, SarA protein family, Agr quorum sensing system, SrrAB protein, and SaeRS

two-component system, respectively. The excitatory and inhibitory action of these systems on the other regulators and enterotoxins are summarized. Arrowheads

represent upregulation and bars downregulation.

high sensitivity, low cross-reactivity, and universal adaptability.
Although creating such a system is not impossible, it would be
an extremely difficult task, requiring considerable resources, and
vigorous testing.

HUMANS AND LIVESTOCK ARE MAJOR
RESERVOIRS FOR THE TRANSMISSION
OF ENTEROTOXIN-PRODUCING
S. AUREUS

S. aureus, a natural colonizer of humans, can be found on the skin
(primarily on the hands, chest, and abdomen), gastrointestinal
(GI) tract (Ridley, 1959; Armstrong-Esther, 1976; Wertheim
et al., 2005), and nasopharyngeal cavities (Williams, 1963). All
these sites represent possible reservoirs for the distribution of
S. aureus causing human disease. Persistent colonization of the
anterior nares with S. aureus, which currently is estimated to
be around 20–30% of the population (Verhoeven et al., 2014),
is believed to be the most important risk factor for infection,
especially regarding health-care associated diseases (Von Eiff
et al., 2001). While colonization of the GI tract by S. aureus has
received significantly less attention, recent studies emphasize its
underappreciated role in the association with and transmission of
S. aureus disease (Nowrouzian et al., 2011, 2017; Senn et al., 2016;
Gagnaire et al., 2017). With regards to SFP, studies investigating
the presence of enterotoxin genes in S. aureus isolates sampled
from the nose (Nashev et al., 2007; Collery et al., 2009; Wattinger
et al., 2012; Ho et al., 2015) and gut (Lis et al., 2009; Shin
et al., 2016) indicate that these two sites are important sources
of enterotoxin-producing S. aureus.

S. aureus is particularly renowned for its ability to acquire
and develop resistance to multiple antibiotics, which is a key
factor contributing to the difficultly of treating infections caused

by this pathogen. A majority of S. aureus infections are caused
by methicillin-resistant strains (MRSA), which, historically, have
been associated with disease in hospitalized patients in a variety
of public healthcare settings [hospital-associated (HA)-MRSA].
However, in the early 1990s, a new breed of genetically distinct
MRSA strains started to appear in the community [community-
associated (CA)-MRSA] (Otto, 2010). Compared to the HA-
MRSA strains, CA-MRSA strains are exceptionally pathogenic
(Chambers, 2001; Cameron et al., 2011) because of the enhanced
production and acquisition of a broad set of virulence factors
that contribute to fitness, colonization and virulence (Otto,
2012). Additionally, MRSA infections in the community can be
caused by strains initially associated with livestock [livestock-
associated MRSA (LA-MRSA)] (Huijsdens et al., 2006; Lewis
et al., 2008; Nemati et al., 2008). For instance, carriage, or
infections caused by S. aureus in dairy cattle (e.g., mastitis)
can lead to the contamination of dairy products and raw meat.
In particular, unprocessed foods hold a substantial risk for the
introduction of resistant microbes into the food chain, which can
have a considerable economic impact, especially in countries with
industrialized dairy sectors (Le Loir et al., 2003). Interestingly,
epidemiological studies have indicated that LA-MRSA isolates
belong to genetic lineages different from their HA- and CA-
MRSA counterparts (for detailed reviews, see Fluit, 2012; Cuny
et al., 2015; Smith, 2015) and harbor unique genes that are
essential for host adaptation (Lowder et al., 2009; Guinane et al.,
2010; Price et al., 2012).

Unsurprisingly, several recent studies reported high levels of
multiple antibiotic resistance in LA-MRSA (Kérouanton et al.,
2007; Ge et al., 2017; Sahibzada et al., 2017; Abdi et al., 2018;
Suleiman et al., 2018), but unlike other enteric pathogens, such
as Salmonella and E. coli, for which antimicrobial resistance can
impose serious health risks in humans (Doyle, 2015), antibiotic
resistance in HA-, CA-, or LA-MRSA isolates had little influence
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TABLE 2 | A summary of detection strategies for staphylococcal enterotoxins.

Method of detection Description Comments References

Animals Emesis in kittens Fulton, 1943

Emesis in house musk shrews Animal testing is generally labor intensive and

expensive

Hu et al., 1999

Emesis in dogs Inter-animal and species differences can affect

results

Kocandrle et al., 1966

Emesis in pigs and piglets Low sensitivity in some species Taylor et al., 1982; Van Gessel

et al., 2004

Emesis in ferrets Wright et al., 2000

Emesis in monkeys Bergdoll et al., 1965; Sugiyama

and Hayama, 1965

Skin test in guinea pigs Scheuber et al., 1983

Mouse, rat, and rabbitsa Horn et al., 2013

Serological testing Gel diffusion/agglutination tests Semi-quantitative. Lack in specificity and sensitivity

have prevented these assays from being employed

for routine detection of SEs

Read et al., 1965; Salomon and

Tew, 1968

Immunoassays Colorometric Colorometric method is most commonly used for

SE protein detection

Saunders and Bartlett, 1977

Fluorescent (including Quantum dots and

Lanthanide ion chelate-doped nanoparticles)

Tempelman et al., 1996;

Goldman et al., 2002

Chemiluminescent All methods are highly sensitive and specific and

provide low background signals

Luo et al., 2006

Coupled

immunoassays

Electrochemiluminescent Easy and rapid to operate, low costs Can detect

presence of over a wide linear range and in complex

samples

Kijek et al., 2000; Sun et al.,

2010

Surface plasmon resonance Rasooly and Rasooly, 1999;

Nedelkov et al., 2000

Surface-Enhanced Raman Scattering Pekdemir et al., 2012

Electrochemical mass Harteveld et al., 1997

Molecular Colony blot hybridization Simultaneous detection of several SE genes with

different primers

Neill et al., 1990

Polymerase chain reaction (PCR) Wilson et al., 1991

Multiplex PCR Fast and can be applied to detect SE genes in most

kinds of food

Shylaja et al., 2010

Real-time PCR Methods do not detect the presence of protein

toxins

Letertre et al., 2003a

Reverse-transcriptase PCR Matsui et al., 1997

Loop-mediate isothermal amplification (LAMP) Nkouawa et al., 2009

Chromatography Liquid chromatography tandem-mass

spectrometry (LC-MS/MS

Does not require the isolation of toxins from food.

Highly sensitive.

However, samples with high protein levels may

suppress electrospray.

Kientz et al., 1997

Liquid chromatography Electrospray ionization

mass spectrometry (LC-ESI/MS)

Callahan et al., 2006

Aptamer-based

bioassays

DNA and RNA Highly specific, comparable to antibodies. Easily

produced by chemical synthesis, high purity and

easily modified with chemical tags.

Can be coupled with other techniques.

Bruno and Kiel, 2002

Peptide Soykut et al., 2008

Molecularly imprinted polymers Gupta et al., 2011

aNo emetic reflexes observed in these species.
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on the ability of S. aureus to cause SFP (Sergelidis and Angelidis,
2017). These observations are consistent with the notion that SFP
is not a disease that is typically treated with antibiotics, since
the enterotoxin-driven manifestation of SFP can progress in the
absence of bacteria.

MECHANISMS UNDERLYING
ENTEROTOXIN-INDUCED EMETIC AND
DIARRHEAL ACTIVITY

Progress in understanding themolecular mechanisms underlying
the enterotoxigenic effects of the SEs has been hampered by
a lack of relevant animal models. Small rodents, such as mice
and rats, are non-emetic and generally less susceptible to the
enterotoxigenic effects of the SEs (Bergdoll, 1988) whereas non-
human primates, which are considered the gold standard for
testing the emetic activity of enterotoxins, are costly and riddled
with complex requirements in animal care and husbandry.
However, the house musk shrew, Suncus murinus, was recently
identified as a suitable animal model and an alternative to using
monkeys (Hu et al., 2003). Studies in the shrew confirmed
that a network of branched connections linking multiple organs
of the body with the brain, called the vagus nerve, was an
essential element for SE-induced emesis, recapitulating earlier
observations from monkeys (Sugiyama and Hayama, 1965).
Further studies in shrews revealed that the MHC II-independent
release of 5-hydroxytryptamine (5-HT/Serotonin) frommast cell
granules by SEs was crucial for SE-induced emesis (Ono et al.,
2012). Other agonists involved in the emetic response have also
been reported (Scheuber et al., 1987; Alber et al., 1989; Jett
et al., 1990). In addition to mast cells, the SEs appear to have an
affinity for epithelial cells (Hamad et al., 1997; Shupp et al., 2002;
Danielsen et al., 2013; Zhao et al., 2016a) and goblet cells (Hirose
et al., 2016). Unlike mast cells, SEs use epithelial cells (Danielsen
et al., 2013) and mucus-producing goblet cells (Hirose et al.,
2016) as gateways in order to traffic across the intestinal epithelia
to reach other final targets. Importantly, the movement of
enterotoxins through epithelial cells is thought to be a glycolipid-
dependent transcytosis process that may be facilitated in the
presence of other S. aureus virulence determinants (Edwards
et al., 2012). Interestingly, a conserved stretch of 10-amino-acid
peptides, located within the longest alpha-helical chain between
the A and B domains of the enterotoxins, is an important
structural determinant that promotes translocation (Shupp et al.,
2002; Figure 2).

In contrast to strong induction of emesis, the clinical
symptoms of diarrhea are oftentimes less apparent in SFP,
which may be in part due to the inability of some SEs, such
as SEA and SEC, to cause fluid exudation and dilation of the
intestinal segments (Maina et al., 2012). However, the symptoms
of diarrhea sometimes observed with SEB intoxication may be
due to the inhibition of water and electrolyte reabsorption in the
small intestine (Sullivan, 1969; Sheahan et al., 1970). To this date,
exactly how the SEs cause diarrhea is still far from understood.
For a detailed review on other aspects of SE-induced emesis, see
(Hu and Nakane, 2014).

THE SUPERANTIGENIC ACTIVITIES OF
THE ENTEROTOXINS

The molecular details underlying the superantigenic activity of
the SEs have been dissected by numerous X-ray crystallography,
structural and mutational analyses. Unlike with conventional
antigens, the non-specific activation of T cells by SEs occurs
independently of antigen processing and presentation to the T
cells by antigen-presenting cells (APCs). Instead, SEs act as a
bridge between APCs and T cells. In the majority of cases, SEs
first bind to the MHC class II molecules found on APCs and
coordinate binding to one or more variable beta (Vβ) chain(s)
of T-cell receptors (TCRs) (Kappler et al., 1989; White et al.,
1989; Choi et al., 1990; Jarraud et al., 2001). However, these
molecular interactions are not exclusive and other receptors
have been described to be involved. For instance, the variable
alpha (Vα) chain can be targeted by SEH (Saline et al., 2010).
Moreover, maximal superantigenic activity of SEB is dependent
on additional co-stimulatory receptors, CD28 and B7-2, on T
cells and APCs, respectively (Arad et al., 2011; Levy et al., 2016).
Interestingly, the same CD28 binding site can be found on other
SEs, such as SEA and TSST-1 (Arad et al., 2011). Regardless of
the mechanism of cross-linking, characteristic for SE activity is
a polyclonal activation of a large pool of CD4+ and CD8+ T
cells (∼20% of the total T cells) (Marrack et al., 1990; Miethke
et al., 1992; Leder et al., 1998) followed by a massive release of an
assortment of T helper 1 (Th1) cytokines, such as tumor necrosis
factor (TNF) α, interleukin 1 (IL-1), IL-2, and interferon (IFN) γ

(Carlsson et al., 1988; Tiedemann and Fraser, 1996), all of which
contribute to the SE superantigenic effect (for a detailed reviews,
see Krakauer, 2013; Krakauer et al., 2016).

THE ENTEROTOXINS ARE
IMMUNOMODULATORS OF MULTIPLE
IMMUNE CELL TYPES

The superantigenic and enterotoxigenic activities of the SEs are
the best studied mechanisms underlying their pathogenicity.
However, recent studies show that the SEs possess functions
in addition to these conventional activities. For example, both
TSST-1 and SElX (Wilson et al., 2011) show similarity to another
family of staphylococcal exotoxins, called the staphylococcal
superantigen-like (SSL) toxins (reviewed in Fraser and Proft,
2008). Although the SSL toxins lack the ability to induce Vβ-
specific T-cell proliferation, they have diverse roles in immune
evasion, including the ability to interfere with complement
activation and neutrophil function (reviewed in Langley et al.,
2010). Recently, it was discovered that SElX has a unique
sialic acid-binding motif. This motif allows SElX to interact
with adhesion molecules on neutrophils involved in immune
recognition and cell activation (Langley et al., 2017; Tuffs et al.,
2017). Importantly, the ability of SElX to bind neutrophils, which
are considered the first line of defense against S. aureus (Spaan
et al., 2013), was crucial for disease progression in a rabbit model
of necrotizing pneumonia. Together, these studies describe an
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FIGURE 2 | Proposed mechanism of enterotoxin-induced emesis. The enterotoxins transit through mucus-expelling goblet cells and epithelial cells in the intestinal

epithelium to reach the lamina propria. Here, the enterotoxins can interact with mast cells to induce the release of 5-hydroxytryptamine (5-HT/serotonin precursor),

which interacts with the vagus nerve to cause an emetic response. Additional cellular targets that may have possible roles in the induction of enterotoxigenic disease

include different types of T cells and neutrophils.

unusual member of the SE family that has both superantigenic
and SSL functions.

Neutrophils are the latest among a growing list of immune
cell types recognized to be targeted directly or indirectly by the
SEs. Others include γδ T cells (Maeurer et al., 1995; Morita
et al., 2001), invariant natural killer T (iNKT) cells (Rieder
et al., 2011; Hayworth et al., 2012), B cells (Stohl et al.,
1994), mast cells (Scheuber et al., 1987; Lotfi-Emran et al.,
2017), and mucosa-associated invariant T (MAIT) cells (Shaler
et al., 2017). Activation of these cell types by SEs can have a
considerable impact on the immune system, which may lead
to non-conventional overstimulation of the immune system, as
exemplified by B cell proliferation and differentiation into plasma
cells (Stohl et al., 1994). Additionally, excessive inflammation,
as a result of the direct activation of iNKT cells and γδ T cells,
can cause the production of SE-associated inflammatory disease
in the lungs (Rieder et al., 2011) and systemic infection, as
demonstrated in mouse infection models (Szabo et al., 2017).

In contrast to the overstimulation of the immune response by
SEs, the activation of MAIT cells appears to have the opposite
effect (Shaler et al., 2017). MAIT cells have significant roles in
innate host defense against a variety of pathogens (Napier et al.,

2015). Notably, the activation of MAIT cells by SEs was shown to
be induced in a TCR-independent manner (Shaler et al., 2017).
While direct activation of the MAIT cells by SEs could not be
excluded, MAIT cell activation was mediated mostly by IL-12
and IL-18 released from the direct activation of conventional T
cells by SEs (Shaler et al., 2017). Following a period of hyper-
activation, these MAIT cells rapidly undergo exhaustion and
are unable to respond further, leaving behind a suppressed and
severely crippled arc of innate host defense.

COULD ENTEROTOXICITY BE
DEPENDENT ON T-CELL
IMMUNOMODULATION?

Whether the superantigenic function is needed for the
enterotoxigenic activity of the SEs is an interesting question.
Shock and fever, hallmarks of superantigen-induced disease,
is generally low or absent in patients with SFP (Dinges et al.,
2000), arguing against the activation of a systemic immune
response. However, it was shown that 5 times more of an SEA
protein derivative, which lacked superantigenic but retained
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emetic activity, was required to induce emesis in a monkey
model compared to unaltered SEA (Hoffman et al., 1996). This
observation implies that both superantigenic and enterotoxicity
activities are likely needed for a maximal emetic response.

Another aspect of immune interaction that may need to
be further investigated is the potential role of T cells in SE
enterotoxic activities. MAIT cells for example, which have been
shown to have a protective role against GI bacterial disease
(Powell and Macdonald, 2017; Salerno-Goncalves et al., 2017),
represent ∼10% of intestinal T cells (Treiner et al., 2003;
Dusseaux et al., 2011) and ∼50% of T cells in the intestines
express γδ TCRs (Carding and Egan, 2002). Furthermore, γδ

T cells that are present in the gut mucosa play an important
role in mucosal immunity (Agace, 2008). Additionally, given
that the SEs are highly potent at very low concentrations,
enhanced expression of SEs may not be essential for the
advancement of SE-mediated disease. In fact, when regulatory
T cells (Tregs) are stimulated with lower concentrations of
SEC, an immunosuppressed phenotype can be induced that may
directly benefit S. aureus colonization and disease progression
(Lee et al., 2017). In the healthy gut, Tregs play a crucial role
in the maintenance of intestinal homeostasis by controlling
inappropriate immune responses (Luu et al., 2017). Therefore,
it is tempting to speculate that the combined targeting of MAIT
cells, γδ T cells and Tregs in the gut by SEs may promote the
pathogenesis of SFP. Whether MAIT, γδ T cells, and Tregs play
any roles in SFP requires much more detailed investigation.

CONCLUSIONS

Although the classical enterotoxins have historically been
considered the predominant contributors to SFP, a number
of molecular studies suggest that many of the newer SEs
also have a prominent role. However, in order to better
determine which SEs are responsible for SFP, it is best for
studies investigating SFP outbreaks to employ methods that can
detect all SE genes as well as the physical presence of toxin
in suspected contaminated foods. The ability to culture and
accurately characterize SFP-causing S. aureus will significantly
help understand true incidence and prevalence of SFP. It should

also be noted that the inability to detect SEs in contaminated
foods does not exclude that they contribute to SFP. Therefore,
it is just as vital that we have a deeper understanding of what
promotes SE production, especially in food environments. While
it is accepted that multiple regulatory networks can have a
significant impact on enterotoxin expression, it remains poorly
understood how specific enterotoxins, especially the newer
enterotoxins, are regulated.

In this review, we also provided an overview of the molecular
mechanisms that contribute to SFP. Yet, compared to what
we know about staphylococcal superantigen-associated disease,
our comprehension of the structural elements and mechanisms
by which SEs induce SFP has remained limited, especially
considering that SFP is a common disease that continues to affect
millions worldwide. A key gap in our knowledge is whether
the superantigenicity of the SEs plays a pathogenic role in
SFP. There is evidence that suggests that the manifestation
of SFP does not solely rely on the enterotoxic function of
SEs. Furthermore, we highlighted that different immune and
non-immune cell types are susceptible to immunomodulation
by the SEs. Any possible interaction between the SEs and
these cell types, especially in the gut environment, is worth
exploring. Overall, the molecular details involved in SE-mediated
enterotoxigenic disease are slowly being uncovered; however,
many basic questions remain. Future challenges therefore will
consist of deciphering the series of events that lead to disease
and whether there are other key cellular players, and identifying
an appropriate animal model that is amenable to genetic
manipulation.
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