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We have assessed how varying CO2 (180, 380, and 720µatm) and growth light intensity

(40 and 400µmol photonsm−2 s−1) affected Trichodesmium erythraeum IMS101 growth

and photophysiology over free iron (Fe′) concentrations between 20 and 9,600 pM. We

found significant iron dependencies of growth rate and the initial slope and maximal

relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light

increased growth rates and rPm; possibly indicating a lower allocation of resources to

iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all

iron concentrations, enabled growth to occur at lower Fe′ concentrations, increased

rPm and lowered the iron half saturation constants for growth (Km). We attribute these

CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake

and transport at low and high CO2, respectively. It seems reasonable to conclude that

T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to

CO2, light intensity and iron-limitation. These results are important given predictions of

increased dissolved CO2 and water column stratification (i.e., higher light exposures) over

the coming decades.

Keywords: Trichodesmium erythraeum, Cyanobacteria, ocean acidification, CO2, iron limitation, light intensity,

fluorescence light curves, electron transport rates

INTRODUCTION

In vast regions of the oligotrophic tropical and sub-tropical open oceans, input of new nitrogen
is primarily dependent on the N2-fixing capabilities of diazotrophic cyanobacteria, including
unicellular cyanobacteria such as UCYN-A (Martinez-Perez et al., 2016) and filamentous
cyanobacteria such as Trichodesmium spp. (Carpenter and Capone, 1992; Capone et al., 1997;
Campbell et al., 2005). Trichodesmium spp. are a fundamentally important organism as they
represent up to 50% of new nitrogen in some regions (Karl et al., 1997; Capone et al., 2005), and
contribute between 80 and 110 Tg of fixed N2 to the open ocean ecosystems per year (Capone et al.,
1997).

Diazotrophy is performed by the two-component enzyme nitrogenase, which comprises of an
iron-molybdenum protein (dinitrogen reductase) and an iron protein (nitrogenase reductase). The
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former reduces the latter using a low-potential electron donor
(ferredoxin) and consumes two molecules of ATP per electron.
Nitrogenase contains 19 iron atoms per heterodimeric protein
molecule (Shi et al., 2007). This is important because iron is a
cofactor for a whole range of enzymes involved in photosynthetic
and respiratory electron transport, nitrate and nitrite reduction,
chlorophyll synthesis and other biosynthetic or degradative
reactions (Geider and La Roche, 1994). Trichodesmium’s
dependence on diazotrophymeans the genus has a relatively high
metalloenzyme inventory. As a result, iron availability may be
critical in controlling rates of nitrogen fixation in large areas of
the open ocean (Rueter, 1988; Rueter et al., 1992; Falkowski and
Raven, 1997; Wu et al., 2000).

The majority of Fe(III) in the open ocean is chelated by
organic compounds (Shi et al., 2010) with the remaining fraction

present as hydrolysed species [Fe(OH)(3−x)+
x ]. The neutral tri-

hydrolysed species [Fe(OH)3] has very low solubility. As ocean
pH decreases, so too does the hydroxide concentration, which
slightly increases the solubility of iron in seawater (Liu and
Millero, 1999). As hydroxide ions and organic chelators compete
for the binding of Fe(III), ocean acidification will alter the organic
chelation of iron, the degree of which is subject to the pKa of
the binding site (Shi et al., 2007). This may therefore act to
limit the bioavailability of iron. This is particularly important for
areas of the ocean where a significant fraction of new iron comes
from dissolved iron in deep waters. In areas where the major
source is particulate iron, this may be partially compensated for
by an increased ability of some chelators to dissolve iron from
oxyhydroxides, arial dust, and siderophores (Shi et al., 2007;
Rubin et al., 2011), and/or by enhanced photo-induced redox
cycling (Croot and Heller, 2012).

The exceedingly low solubility of ferric iron (Fe3+) (10−18

M at pH 7.0 and effectively insoluble at higher pH), coupled
with the fact that a major source of iron flux to the open
ocean gyres is from atmospheric dust deposition (Gao et al.,
2001) has led cyanobacteria to employ various mechanisms to
(i), increase iron acquisition from the environment (i.e., outer
membrane receptor proteins, ligand complexes, periplasmic and
cytoplasmic iron transport proteins) (Braun and Killmann, 1999)
(ii), decrease the cellular iron requirement by regulating the
expression of genes encoding for cellular iron homeostasis
(i.e., IsiA, IsiB, Fur) (Webb et al., 2001) and (iii), intracellular
recycling of iron (Saito et al., 2011). These mechanisms allow
increased production of high-affinity iron transporters and
down-regulation of membrane-bound photosynthetic electron
transport (PET) components in proportion to their iron
requirement (Ivanov et al., 2000). For example, the Cu-
containing plastocyanin in place of cytochrome c553 and
flavodoxin in place of ferredoxin (Geider and La Roche,
1994).

There is still a dearth of knowledge regarding Trichodesmium’s
growth and photo-physiological response to iron-limitation;
especially in combination with the effects of ocean acidification
(Berman-Frank et al., 2001, 2007; Shi et al., 2007, 2010). Given
the significant role that Trichodesmium plays in biogeochemical
cycles, it would be extremely useful for future climate models if
such responses were better understood.

Recent studies have considered integrated responses of CO2

and light (Kranz et al., 2010a), CO2 and iron (Shi et al., 2012),
CO2 and NO−

3 (Eichner et al., 2014), and CO2, temperature
and light (Boatman et al., 2017). These studies illustrate how
Trichodesmium’s productivity and growth is modulated by
numerous environmental factors, highlighting the need for
more systematic, multivariable experiments under co-limiting
conditions. This requires that fully-acclimated balanced growth
is established by culturing Trichodesmium for long time periods,
under controlled and defined conditions.

Like the majority of experiments investigating physiological
effects of iron-limitation, most research involving
Trichodesmium has used a single independent variable (e.g., iron)
whilst keeping CO2 and light intensity constant (Berman-Frank
et al., 2001, 2007; Chappell and Webb, 2010). Most of these
studies incorporate 5–8 treatments and culturing periods that
may not have been long enough to establish balanced growth. In
addition, growth conditions were frequently undefined.

Notable exceptions were the studies by Shi et al. (2012),
who investigated iron-limitation at three CO2 concentrations at
constant light intensity and temperature, and Hong et al. (2017),
who investigated two CO2 concentrations at constant light
intensity and temperature. Our approach comprised a systematic,
multivariable experiment; where numerous T. erythraeum
IMS101 treatments were grown over long durations with
controlled and well-defined growth conditions. Our aim was to
assess the response of T. erythraeum IMS101 growth, relative
photosystem II (PSII) electron transport rates and photo-
physiology to free iron (Fe′), and investigate how the integrated
effect of CO2 and light intensity influence this response.

MATERIALS AND METHODS

Prior to the experiment, T. erythraeum IMS101 was maintained
in the exponential growth phase in semi-continuous cultures at
two light intensities (40 and 400 µmol photons m−2 s−1) on
a 12:12 light:dark cycle at three targeted CO2 concentrations
(180, 380, and 720µatm) and optimal growth temperature (26◦C
± 0.2) for a period of ∼10 months. Each culture was used to
inoculate T. erythraeum IMS101 across a range (20–13,000 pM)
of Fe′ concentrations (4 treatments at LL and 5 treatments
at HL), generating 27 experimental treatments in total. All 27
treatments were maintained in exponential growth phase in
semi-continuous cultures at the specific growth conditions (i.e.,
light intensity, temperature, CO2 and Fe′) for ∼6 months (∼14
generations for the slowest growing cultures and 95 generations
for the faster growing cultures) to ensure fully acclimated
balanced growth was achieved.

Experimental Setup
Cultures were grown at low volume (5mL) in 12mL
polypropylene (PP) screw cap test tubes, incubated in a
custom-made, water-jacketed aluminium temperature block
illuminated from below. Sampling methodology and analytical
techniques followed those described in Boatman et al. (2017);
and involved median growth rates being determined from a
minimum of three replicate growth curves. Experimental setup
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was slightly different as we employed trace metal-clean culturing
techniques and used a modified YBCII growth medium,
polypropylene growth tubes, and a modified approach to target a
CO2 concentration as described below.

Growth rates were quantified from the linear regression of the
slope of ln minimum fluorescence (Fo) measured daily (between
09:00 to 10:30) on dark-acclimated cultures (20min) using
a FRRfII FastAct Fluorometer system (Chelsea Technologies
Group Ltd, UK). Cultures were kept within the early part of the
exponential growth phase and optically thin to avoid nutrient
limitation and self-shading as well as to minimise CO2 drift, as
described in Boatman et al. (2017).

Culture Medium Preparation
Single batches (4 L each) of filter-sterilised (0.25µm pore) YBCII
media (Chen et al., 1996) were made at each total iron (FeT)
concentration (i.e., 400, 200, 100, 40, 4 nM) in acid washed plastic
containers. Hydrated and anhydrous salts were added with Milli-
Q water (Millipore Milli-Q Biocel, ZMQS60FOI) and the pH
adjusted to ∼8.2 using filter-sterilised NaOH (pH checked by
taking 5mL aliquots). Trace metal contaminants were removed
by filtering through a Chelex column setup within a trace metal-
clean laminar flow cabinet (Class II). Trace metals and f/2
vitamins were added to each 4 L container using a revised EDTA
concentration (20µM) (Shi et al., 2012). Varying amounts of
a 40µM Fe stock (FeCl3:Na2EDTA) were added to give the
range of FeT concentrations. Each container was filter-sterilised
(0.2µm pore) into 1 L (sterile) plastic stericups (no headspace)
(Fisher Scientific 10518822, UK), and stored within double zip-
locked polyethylene (PE) bags. Prior to use, growth tubes were
acid washed (2 weeks in 10% HCl), rinsed with Milli-Q water
(Millipore Milli-Q Biocel, ZMQS60FOI), microwave sterilised,
air dried in a laminar flow cabinet (Class II), and stored within
double zip-locked PE bags (Anderson and Morel, 1982). Each
dilution was made into a new tube to avoid the build-up of
contaminants.

Calculating Iron Speciation
The speciation program visual MINTEQ (Gustafsson, 2012)
was used to calculate the solubility and organic complexation
of iron, as well as determine the chemical speciation as a
function of pH (Gledhill et al., 2015). Modelled concentrations
(M) of Fe2(OH)2(EDTA)

−4
2 , Fe(EDTA)−, FeH(EDTA) (aq) and

FeOH(EDTA)−2 were summed and used in the calculation of
the photo-redox disassociation of Fe(EDTA), which made up
the dominant source of Fe′ in the media. The photo-redox
calculation was based upon a set of rate constant equations
defined by Sunda et al. (2005), giving a diurnally averaged Fe′

concentration in the growth media (Supplementary Table 1);

Fe(III)′ =

[

Fe (EDTA) ·
(

Kd
′
(

dark
)

+ Ehv · khv ·
(

LP
24

))]

[EDTA∗]
(1)

Kd
′
(

dark
)

= 10(2.427 · [pH] · −26.84) (2)

Khv = 10(0.776 · [pH] · −12.92) (3)

where Fe(III)′ is the free iron (Fe′) concentration (M); Fe(EDTA)
is the total iron (FeT) concentration (M); [EDTA∗] is the total

EDTA concentration (M); Kd
′ (dark) is the constant in the

dark (= kd/kf ), which is the ratio of the rate constants for the
disassociation and formation of Fe(EDTA) chelates; Khv is the
rate constant (= khv/kf ) for Fe(EDTA) photolysis at a specific
light intensity; Ehv is the light intensity (µmol photons m−2

s−1) relative to that at which Khv was measured (i.e., 500 µmol
photons m−2 s−1); LP is the light period of the culture treatment
(h−1), and pH was a post-culturing measurement on the NBS
scale.

Inorganic Carbon Chemistry
The inorganic carbon chemistry (Ci) of each media bottle was
determined from a 15mL sample for total dissolved inorganic
carbon (TIC) analysis (Shimadzu TOC-V Analyser & ASI-V
Autosampler), and a 10mL sample for pH (Thermo Scientific
Orion Ross Ultra pH Electrode EW-05718-75, UK). All carbon
chemistry calculations were made in CO2SYS (Lewis and
Wallace, 1998), using the 1st and 2nd equilibrium constants
(K1 and K2) for carbonic acid (Millero, 2010), the dissociation
constant for KSO4 (Dickson, 1990), the boric acid constant (KB)
(Lee et al., 2010), and the total pH scale. The pH probes were
rinsed and calibrated with fresh (<2 weeks) artificial seawater
buffers (TRIS and AMP) prior to use (Dickson, 1993).

Once a culture reached a pre-determined Fo, it was diluted
(0.5mL culture to 4.5mL media) with filter-sterilised (0.2µm
pore) YBCII media to return the culture to a starting Fo value. To
obtain a target CO2 concentration in the YBCII media, medium
was bubbled with a CO2-air mixture (BOC Industrial Gases, UK)
using an acid washed (10% HCl), microwave sterilised section of
PTFE tubing. A series of 5ml aliquots were taken to measure the
pH (precision ± 0.002) until the target pH (and thus the target
CO2) had been achieved. Once at the target CO2 concentration
(±1%), the medium was immediately distributed into the test
tubes, already containing the 0.5mL of culture. The gaseous
headspace was flushed with a filtered (0.2µm pore) standard gas
mixture at the target CO2 concentration (BOC Industrial Gases,
UK) and the screw caps tightened. Parafilm was wrapped around
the caps before the tubes were removed from the laminar flow
cabinet.

Prior to every dilution, a 2mL sample of culture and a
2mL sample of filtrate were collected within 5mL plastic
cryogenic vials (Sigma-Aldrich V5257-250EA). Filtrate was used
to measure the post-culturing pH. Assuming a constant alkalinity
throughout the entire growth phase (Kranz et al., 2010b), the
post-culturing CO2 was calculated from the post-culturing pH
and initial alkalinity. The second 2mL aliquot of culture was
pipetted into a new growth tube to run a fluorescence light curve
(FLC).

Fluorescence Light Curves
Triplicate FLCs were performed for each treatment using
an FRRfII FastAct Fluorometer system (Chelsea Technologies
Group Ltd, UK) on dark-acclimated cultures (20min). The FLCs
lasted∼1 h and consisted of 12 light steps ranging between 6 and
1,400 µmol photons m−2 s−1, each lasting 5min in duration.
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The operating efficiency of PSII (Fq′/Fm′) was calculated as
follows;

Fq
′

Fm′
=

[

Fm
′ − F′

Fm′

]

(4)

where Fm′ is the maximum fluorescence in the light-acclimated
state and F′ is the steady-state fluorescence at any point.

Baseline fluorescence (Fb) originating from sources other than
functional, photosynthetically active PSII was determined using
the following equation (Oxborough, 2012);

Fb = Fm −

(

Fv

Fv/Fm
∗

)

(5)

where Fm is the maximum fluorescence in the dark-acclimated
state, Fv (= Fm − Fo) is the variable fluorescence in the
dark-acclimated state and Fv/Fm

∗ is the assumed Fv/Fm from
functional PSII. In this study, the value of Fv/Fm∗ was set to the
highest measured value from all treatments under iron-replete
conditions. This method assumes that across environmental
gradients, all photosynthetically active PSII operate with the same
intrinsic photochemical efficiency in the dark-acclimated state.
The impact of free phycobilisome complexes within the cell is
assumed negligible, as their peak emission wavelengths are too
short for detection by the FRRfII.

When applicable (i.e., Fv/Fm < Fv/Fm
∗), Fb was subtracted

from F′ and Fm
′, and Fq

′/Fm′ recalculated.
Relative PSII electron transport rates (rP) were calculated as

follows;

rP =

(

Fq
′

Fm′

)

· E (6)

where Fq
′/Fm

′ is the operating efficiency of PSII (baseline
corrected if required) and E is the actinic light intensity (µmol
photons m−2 s−1).

Curve Fitting of Growth Rate Data
Additional growth rate and FLC data points were incorporated
from the temperature and light response curves reported in
Boatman et al. (2017). These experiments shared identical growth
light intensities (low light = 40 µmol photons m−2 s−1, high
light= 400µmol photonsm−2 s−1), light:dark cycle (12:12), CO2

concentrations (low-CO2 = 180µatm, mid-CO2 = 380µatm
and high-CO2 = 720µatm), and growth temperature (26◦C);
only differing in the use of non-chelated hydrated and anhydrous
salts as well as the YBCII EDTA concentration (i.e., 2µM).

Growth rate-Fe (µ-Fe) curves were modelled using a
Michaelis-Menten equation (Michaelis and Menten, 1913);

µ =

[

µm · Fe′
(

Km + Fe′
)

]

(7)

where µm is the maximum growth rate (d−1); Fe′ is the free Fe
concentration of the media (pM) and Km is the half saturation
concentration (pM).

Curve fitting was performed on the median growth rate for
each CO2 and light treatment, using a non-linear least squares
algorithm to produce curves of best fit (r2 > 0.817). Statistical
analysis was performed using F-tests; analysing the variance of
separate and combined CO2 curve fits by comparing a calculated
F-statistic to an F-value at a 0.05 alpha level.

Curve Fitting of FLC Data
Relative electron transport rates (rP) were modelled using a P-E
equation (Platt and Jassby, 1976), and were performed on each
replicate using a Marquardt–Levenberg least squares algorithm
to generate the best fit (r2 > 0.993);

rP = rPm
′
·

[

1− e

(

−α · E

rPm′

)

e

(

−β · E

rPm′

)]

(8)

where rPm′ is the maximum relative PSII electron transport
rate (unitless); α is the initial slope of the rP-light curve
(dimensionless); β is the parameter that accounts for
downregulation and/or photoinhibition at supra-optimal
light intensities (dimensionless); and E is the light intensity
(µmol photons m−2 s−1).

The achieved maximum relative PSII electron transport rate
(rPm), light intensity at which rP was maximal (Eopt) and
light-saturation parameter (Ek) were calculated from the fitted
parameters as follows:

rPm = rPm
′
·

(

α

α + β

)

·

(

β

α + β

)

β
α

(9)

Eopt =
rPm′

α
· ln

(

α + β

β

)

(10)

Ek =
rPm
α

(11)

RESULTS

Overall, CO2 concentrations in the cultures at the time of
sampling were between 55 and 75µatm lower than the target
pCO2 concentrations (i.e., 180, 380 and 720µatm). This was due
to drawdown of TIC associated with biomass production and was
similar across all iron and light treatments (Table 1).

Iron Limited Response of Growth Rate and
Photophysiology
Growth rates decreased significantly with a decrease in Fe′

(Figures 1A,B). Acclimation to high CO2 enabled growth to
occur at comparatively lower Fe′ concentrations at both low and
high light (Figures 1A,B). Maximum (iron-replete) growth rates
(µm) exhibited a CO2 response; where at low light, µm increased
significantly by 30% from low to mid CO2 [F(2, 8) = 14.00,
p < 0.05], and 29% from low to high CO2 [F(2, 8) = 6.00,
p < 0.05]. At high light, µm increased significantly by 74% from
low to mid CO2 [F(2, 10) = 26.25, p < 0.05], and 90% from
low to high CO2 [F(2, 10) = 51.17, p < 0.05; Table 2]. There
were no significant differences in µm between mid and high
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TABLE 1 | The growth conditions (± SE) of T. erythraeum IMS101 cultures.

Variables Units Low CO2 Mid CO2 High CO2

LL HL LL HL LL HL

pH Total 8.426 8.426 8.145 8.135 7.853 7.887

H+ nM 3.8 (0.2) 3.8 (0.1) 7.2 (0.1) 7.3 (0.1) 14.0 (0.4) 13.0 (0.4)

AT µM 2,396 (155) 2,399 (77) 2,453 (82) 2,324 (41) 2,256 (54) 2,427 (87)

TIC µM 1,740 (106) 1,751 (54) 2,009 (66) 1,906 (35) 2,001 (45) 2,138 (72)

HCO−

3 µM 1,326 (66) 1,344 (36) 1,729 (53) 1,647 (30) 1,835 (39) 1,949 (62)

CO2−
3 µM 410 (41) 403 (19) 271 (13) 250 (5) 147 (7) 171 (10)

CO2 µM 3.4 (0.1) 3.5 (0.1) 8.6 (0.2) 8.4 (0.2) 17.8 (0.3) 17.4 (0.1)

pCO2 µatm 126 (4) 129 (2) 318 (6) 312 (7) 662 (12) 644 (3)

Chl a µg L−1 12.3 (1.8) 17.9 (3.1) 19.9 (3.1) 35.0 (5.5) 21.4 (3.3) 33.7 (6.7)

n 11 14 17 30 15 15

Cultures were acclimated to three target CO2 concentrations (Low CO2 = 180µatm, Mid CO2 = 380µatm and High CO2 = 720µatm), saturating light intensity (400 µmol photons

m−2 s−1), optimal temperature (26◦C), across a range of Fe′ concentrations (∼20–1,010 pM). Iron treatments are grouped together to present the growth conditions for each CO2 and

light treatment. The pH was measured prior to every dilution, while the bicarbonate (HCO−

3 ), carbonate (CO
2−
3 ), CO2, and pCO2 concentrations were calculated via CO2SYS using the

post-culturing measurements of pH and the initial alkalinity (AT ) concentration. Note that the individual pH-values were converted to a H+ concentration, allowing a mean pH value to

be calculated.

CO2 treatments at low [F(2, 8) = 0.01, p > 0.05] or high light
[F(2, 10) = 1.25, p > 0.05; Supplementary Table 2].

At low light, increasing from low to mid CO2 caused
a significant three-fold decrease in the half saturation
concentration (Km) for growth [F(2, 8) = 14.979, p < 0.05],
as well as a three-fold increase in the affinity (initial slope) of
the growth-Fe′ curve [F(2, 8) = 11.222, p < 0.05]. Increasing
from mid to high CO2 did not cause significant differences to
either Km [F(2, 8) = 0.144, p > 0.05] or affinity [F(2, 8) = 1.031,
p > 0.05]. At high light, the variability in Km [F(4, 15) = 0.083,
p > 0.05] and affinity [F(2, 8) = 0.056, p > 0.05] between CO2

treatments was not significant. Due to the associated standard
errors, there were no significance differences in Km between low
and high light treatments at the low [F(4, 9) = 0.441, p > 0.05],
mid [F(4, 9) = 2.049, p > 0.05] or high [F(4, 9) = 1.158, p > 0.05]
CO2 treatments (Supplementary Tables 3–5).

For both low [F(4, 12) = 0.333, p > 0.05] and high light
[F(4,15) = 1.429, p > 0.05] treatments, combining the mid and
high CO2 growth rate data did not cause a significant difference
in curve fit parametrisations. However, incorporating the low
CO2 data into a combined fit (i.e., low+mid+ high CO2 growth
rate data) caused the combined curve fit parameterisations to be
significantly different to the separate CO2 growth rate-Fe′ curves
for both low [F(4, 12) = 14.143, p < 0.05] and high treatments
[F(4, 12) = 27.743, p < 0.05; Supplementary Table 2].

Growth-Fe′ curves were normalised to the modelled
maximum growth rate (µm) at each CO2 and light treatment to
generate a single µ/µm-Fe′ curve. Low CO2 data deviated either
side of the modelled curve fit (Figure 2A), highlighting that the
significant differences in the growth rate-Fe′ curve fits arise from
differences in the growth response to iron-limitation rather than
the maximal rate achieved under iron-replete conditions.

Dark-acclimated absorption cross-sections of PSII
photochemistry (σPII) showed little variation between CO2

or light treatments, but did significantly increase from ∼0.4
nm2 PSII−1 under iron-replete concentrations to ∼0.45 nm2

PSII−1 under iron-limited concentrations (One-Way ANOVA

on Ranks, Dunn’s post-hoc; p < 0.05) (Figures 1E,F). The
non-baseline (Fb) corrected photochemical efficiency of PSII
(Fv/Fm) exhibited a strong negative correlation to the non-Fb
corrected absorption cross section of PSII light harvesting (i.e.,
σLHII = σPII/Fv/Fm) (r2 = −0.871, p < 0.05) (Supplementary
Figure 1).

The highest Fv/Fm achieved from iron-replete cultures
(∼0.362) was used in the calculation of Fb (i.e., Fv/Fm∗). The
σLHII, calculated from Fb corrected Fv/Fm values, showed no
significant difference between CO2 or light treatments, but
did significantly increase from ∼1.0 nm2 PSII−1 under iron-
replete conditions to >1.4 nm2 PSII−1 under iron-limiting
concentrations (One-Way ANOVA on Ranks, Dunn’s post-hoc;
p < 0.05) (Figures 1G,H).

Iron Limited Response of Relative PSII
Electron Transport Rates and PSII
Photochemical Efficiency
The highest maximum relative PSII electron transport rates
(rPm) remained relatively constant down to an Fe′ concentration
of ∼1,000 pM (Figure 3A), and then decreased linearly with
decreasing Fe′ [t(2, 25) = 8.535, p < 0.0001 [rPm = Fe′ · 0.1455
+ 100.53, r2 = 0.732]]; where rates declined by ∼ 55%
as concentrations decreased from ∼1,000 to 20 pM Fe′

(Supplementary Figure 2). Whilst Fe′ concentrations were
dissimilar between treatments, a CO2 response at low
and high light was evident under iron-limited conditions;
where acclimation to higher CO2 concentrations (Fe′ < 300
pM) resulted in a comparatively higher rPm, α and Ek
(Figures 3A–C). For example, at the lowest Fe′ treatments,
rPm was only 8% lower and 18% higher at mid and high
CO2 relative to low CO2, despite Fe′ being 70 and 90% lower,
respectively.

Under iron-replete conditions, CO2 did not affect the rPm
(One-Way ANOVA, Tukey post-hoc; p > 0.05) or half saturation
concentration for rPm (KrPm

m ) at low [F(3, 13) = 0.063, p > 0.05]
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FIGURE 1 | The median (± SE) growth rate (µ) (A,B), and mean (± SE) pCO2 (C,D), absorption cross section of PSII photochemistry (σPII) (E,F), and absorption

cross section of PSII light harvesting (σLHII = σPII/Fv/Fm) (G,H) for T. erythraeum IMS101. Prior to calculating σLHII, the photochemical efficiency of PSII in the

dark-acclimated state (Fv/Fm) was corrected for baseline fluorescence (Fb) by assuming Fv/Fm* = 0.362. Left-hand panels (A,C,E,G) are low light treatments while

right-hand panels (B,D,F,H) are high light treatments. Cultures were acclimated to three targeted CO2 concentrations [Low = 180µatm (green circles),

Mid = 380µatm (blue circles) and High = 720µatm (orange circles)], two light intensities (LL = 40 µmol photons m−2 s−1, HL = 400 µmol photons m−2 s−1),

across a range of Fe′ concentrations (∼20–9,600 pM) and at optimal temperature (26◦C).

or high light [F(3, 13) = 2.860, p > 0.05; Supplementary Tables
6, 7]. Although there was a significant difference between light
treatments, where low light iron-replete cultures exhibited a
rPm ∼ 150 and high light cultures ∼220 (unitless) (One-Way
ANOVA, Tukey post-hoc; p < 0.05).

There were significant positive correlations between rPm and
the light-saturation parameter (Ek) (r2 = 0.797, p < 0.05),
rPm and the light intensity at which rP was maximal (Eopt)
(r2 = 0.501, p < 0.05), and rPm and the initial slopes of
rP-Fe′ curves (α) (r2 = 0.435, p < 0.05) (Figures 3E,F). In
contrast, the photoinhibition slopes (β) were not correlated

to CO2, light or Fe′ concentration (r2 < 0.5, p > 0.05)
(Figure 3D).

The highest light-acclimated, baseline-corrected operating
efficiency of PSII (Fq′/Fm′

m) was not correlated to Fe′ (r2 = 0.036,
p > 0.05) (Figure 3B). Although there was a significant CO2

response on the operating efficiency of PSII (Fq′/Fm′) at
the highest actinic light intensity (i.e., 1400 µmol photons
m−2 s−1) for low and high light cultures, where acclimation
to higher CO2 concentrations under iron-limited conditions
resulted in a comparatively higher Fq′/Fm′ value (Figures 3A–C).
This reflects the trends reported for rPm, which is to be
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TABLE 2 | The iron dependence of T. erythraeum IMS101 growth.

Parameters Units Low CO2 Mid CO2 High CO2

LOW LIGHT

µm d−1 0.104 (0.005)[A]* 0.136 (0.006)[B]* 0.134 (0.012)[B]*

Km pM 307 (56)[A] 116 (29)[B] 124 (48)[B]

Affinity d−1 (nM)−1 0.339 (0.028)[A]* 1.165 (0.125)[B]* 1.083 (0.259)[B]*

HIGH LIGHT

µm d−1 0.193 (0.021)[A]* 0.337 (0.025)[B]* 0.367 (0.016)[B]*

Km pM 236 (104) 206 (72) 201 (46)

Affinity d−1 (nM)−1 0.819 (0.248)* 1.639 (0.321)* 1.823 (0.175)*

T. erythraeum IMS101 was acclimated to three target CO2 concentrations (Low

CO2 = 180µatm, Mid CO2 = 380µatm, and High CO2 = 720µatm), saturating light

intensity (400 µmol photons m−2 s−1), optimal temperature (26◦C), across a range of Fe′

concentrations (∼ 20–9,600 pM). Median Fe-dependent growth rate curves were fitted

using a Michaelis-Menten function, defining parameter values (± SE) for µm (d−1), the

maximum growth rate; Km (pM Fe′ ), the half saturation concentration and affinity [d−1 (nM

Fe′ )−1 ], the initial slope of the growth- Fe′ curve. At low light, there were 6 growth rate data

points per CO2 treatment with two estimated parameters (df = 4); and at high light, there

were 7 growth rate data points per CO2 treatment with two estimated parameters (df= 5).

Letters in parenthesis indicate significant differences between CO2 treatments (F-test,

P < 0.05); where [B] is significantly greater than [A]. An asterisk indicates a significant

difference between light treatments.

expected given rPm is a product of Fq
′/Fm′ and actinic light

intensity.

DISCUSSION

Iron, CO2, and Light Dependencies on
Balanced Growth Rates
Accounting for differences in growth conditions (i.e., light
intensity, CO2 etc.), iron-replete growth rates were similar to
the majority of previous research, exhibiting similar responses
under comparable Fe′ concentrations (Berman-Frank et al.,
2001, 2007). Our findings show a significant CO2 response,
affirming the observation that elevated CO2 produces higher
growth rates, with the magnitude of the CO2 response increasing
more under iron-replete conditions. In contrast, Shi et al.
(2012) reported a decrease in growth rate at elevated CO2

under iron-replete conditions, which they attribute to a direct
pH-mediated change in Fe′, that in turn lowers the iron
uptake rate. While we cannot offer a definitive explanation
for this discrepancy, it may arise from differences in culturing
techniques. Specific differences could include culture medium
(YBCII vs. Gulf Stream seawater), themethod used tomanipulate
the inorganic carbon chemistry (bubbling vs. HCl/NaOH
additions) and the acclimated state of the cultures; where
balanced growth is only achieved after many generations
(Boatman et al., 2017).

A recent study by Hong et al. (2017) reported that the
positive effect of ocean acidification was due to a pH induced
shift of the NH3/NH

+

4 equilibrium, where NH3 concentrations
in the medium declines at lower pH (i.e., higher CO2).
Dissolved inorganic N concentrations were measured in parallel
cultures (Supplementary Table 8), and for all CO2 and light
treatments were undetectable at the start of culturing and

approximately 0.8µM post-culturing. Similar concentrations
have been reported in previous studies using standard YBCII
media (Mulholland and Capone, 2001; Mulholland et al., 2004;
Mulholland and Bernhardt, 2005), and likely indicates some
cellular leakage of NH+

4 from cells rather than contamination
of the growth medium. In any case, the NH+

4 concentrations we
measured are sufficiently low (<10µM) to have a negligible effect
on nitrogenase activity and cellular metabolism (Mulholland
et al., 2001), and will not be toxic to Trichodesmium cells (Hong
et al., 2017).

Growth rates from our highly-buffered 20µM EDTA cultures
started saturating at ∼1 nM Fe′, and were comparable to
the iron-replete maximum growth rates reported by Boatman
et al. (2017), which used standard YBCII EDTA concentrations
(2µM). In addition, Fv/Fm of the 2µM and 20µM EDTA, iron-
replete cultures were comparable (Supplementary Figure 1). This
suggests that cultures from both experiments were not affected
by trace metal toxicity, as one would expect a decrease in growth
and/or Fv/Fm during exposure to toxic Cu2+ concentrations, as
the primary reactions of photosynthetic will become inhibited
(Cid et al., 1995; Yruela et al., 1996; Nielsen et al., 2003).

Under iron-limitation there were no differences in the dark-
acclimated absorption cross-sections of PSII photochemistry
(σPII) or maximum photochemical efficiency of PSII (Fv/Fm)
between low and high light treatments. Therefore, the lower
initial slopes (Affinity) of the low light growth-Fe′ curves are
likely due to a decrease in cellular chlorophyll a. Decreasing
the chlorophyll a concentration conserves energy, alters the
stoichiometry of iron containing components in the PET chain
(Falkowski and LaRoche, 1991), and may be of importance
during iron-limited, low light conditions; where a ten-fold
decrease in light intensity (500 to 50 µmol photons m−2 s−1)
can cause a four-fold increase in the cellular iron requirement
of marine phytoplankton (Sunda and Huntsman, 1997). The
combination of iron-limitation and low light conditions can
significantly decrease iron uptake rates (Shi et al., 2012), creating
a situation where Trichodesmium’s cellular requirements for
growth cannot be supported. Thus, when the light intensity is
less than the Ek for Trichodesmium growth [∼80 µmol photons
m−2 s−1 at low CO2 and ∼130 µmol photons m−2 s−1 at mid
and high CO2 (Boatman et al., 2017)], productivity may well be
constrained by a co-limitation of light and iron.

This low light mediated response also exhibited a CO2

dependency where (i), elevated CO2 enabled growth rates to
occur at significantly lower Fe′ concentrations (ii), increased
CO2 yielded higher growth rates (Figure 2) and (iii), acclimation
to low CO2 yielded the lowest initial slope of the growth-
Fe′ response (Affinity) as well as the highest iron saturation
parameter (Km). We attribute these CO2 responses directly to
the operation of the CCM and the ATP spent/saved for CO2

uptake and transport at low and high CO2, respectively. At high
light, Trichodesmium likely has a lowered iron quota; therefore,
whilst under iron-limitation, a low CO2 concentration will limit
growth rates less than low light. Based on the relative growth
rate curve fits (µ/µm) and the F-test results (Supplementary
Tables 2–5), we suggest that at limiting and saturating light
intensities,Trichodesmium’s present (i.e., mid CO2) or future (i.e.,
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FIGURE 2 | The iron dependency of maximum-normalised growth rates (µ/µm ). Panel (A) shows the iron-limitation range (0–1,200 pM) plot on a linear scale while

panel (B) shows the full range (0–12 nM) of data plot on a log scale, and includes the data points from Boatman et al. (2017). T. erythraeum IMS101 was cultured at

three targeted CO2 concentrations [Low = 180µatm (green circles), Mid = 380µatm (blue circles) and High = 720µatm (orange circles)], two light intensities

[LL = 40 µmol photons m−2 s−1 (open circles), HL = 400 µmol photons m−2 s−1 (closed circles)], across a range of Fe′ concentrations (∼20–1,010 pM), at optimal

temperature (26◦C). The solid line is µ/µm modelled by a Michaelis-Menten function (Km of 177 pM with an r2 of 0.803).

FIGURE 3 | The mean (± SE) maximum relative PSII electron transport rate (rPm) (A), photochemical efficiency of PSII in the dark-acclimated state (Fv/Fm) (B), initial

slope of the rP-Fe′ curve (α) (C), slope of photoinhibition (β) (D), light-saturated parameter (Ek ) (E), and light intensity at which rP was maximal (Eopt ) (F) for

T. erythraeum IMS101. Cultures were acclimated to three targeted CO2 concentrations [Low = 180µatm (green circles), Mid = 380µatm (blue circles) and

High = 720µatm (orange circles)], two light intensities [LL = 40 µmol photons m−2 s−1 (open circles), HL = 400 µmol photons m−2 s−1 (closed circles)], across a

range of Fe′ concentrations (∼20–9,600 pM), at optimal temperature (26◦C). In (A), the dashed and solid lines are the Michaelis-Menten function curve fits for the low

light and high light treatments, respectively; where green, blue and orange lines are for low, mid and high CO2 treatments, respectively. Data in the iron-limited region

only (20–1,010 pM Fe′) is presented in Supplementary Figure 2.
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high CO2) µ-Fe′ response can be defined using shared model
parameterisations.

Resource Allocation Under Iron Limitation
T. erythraeum IMS101 exhibited an array of responses to CO2,
light and iron-limiting conditions, indicating a high degree
of phenotypic plasticity. Whilst not measured here, it is well-
documented that under iron-limitation, T. erythraeum IMS101
downregulates the genes that encode for major iron-binding
proteins. For example, Shi et al. (2007) reported a decrease in
psbA and psbE (PSII), psaA and psaC (PSI), petB and petC
(Cyt b6f complex) and nifH (nitrogenase); where expression of
nifH decreased significantly more than PSI or PSII genes. By
contrast, Küpper et al. (2008) found that both the abundance
of iron requiring PSI and the total phycobiliproteins measured
from single-cell in vivo spectra remained constant under iron-
limitation. The selective decrease in nifH over genes encoding
for components of the photosynthetic machinery of the electron
transport chain may aid in reducing the risk of photodamage
and conserve energy which can be used to increase the carbon
concentrating mechanism (CCM), CO2 fixation or up-regulate
photoprotective (i.e., IdiA and IsiA) or iron-scavenging (i.e.,
TonB, ExbB, and ExbD) proteins.

Proteins associated with N2 fixation are more affected
under iron-limitation than those associated with photosynthesis
(Paerl et al., 1994; Shi et al., 2007; Brown et al., 2008;
Fu et al., 2008; Küpper et al., 2008). Decreased nitrogenase
activity induced by iron-limitation (Berman-Frank et al., 2001,
2007) decreases a major sink for reductant and energy that
is otherwise supplied by respiratory electron flow through
the Cyt b6f complex. This complex couples PSII to PSI
by transferring electrons from hydroplastoquinone (PQH2) to
plastocyanin (PC) (Supplementary Figure 3). Thus, under iron-
limitation, electrons originating from photosynthesis (oxidation
of water) and respiration (oxidation of organic carbon) could
be bottlenecked at the Cyt b6f complex, resulting in a highly
reduced plastoquinone (PQ) pool and consequent decrease in
non-Fb corrected Fv/Fm (Supplementary Figure 1).

Alternatively, under iron-limited conditions, it may be
that photoinactivated PSII reaction centres accumulate within
the thylakoid membrane, which could account for the lower
values for Fv/Fm. In addition, connectivity between active
and photoinactivated PSIIs within a dimer or less efficient
connectivity among monomeric PSIIs could account for the
increase in σPII observed at very low iron concentrations
(Figure 1).

Additionally, non-Fb corrected Fv/Fm may also decrease in
part to an increased expression of IsiA, which forms an antenna
around PSI, increasing the absorption cross-sections of PSI
light harvesting (σLHI) (Bibby et al., 2001a,b; Melkozernov and
Blankenship, 2005; Wang et al., 2008). This mechanism may
also play a critical role in non-photochemical quenching as (i),
blue light converts IsiA from one form (efficient in harvesting
photons) to another (converts excess energy to heat) (Cadoret
et al., 2004) and (ii), high light increases the affinity of IsiA
for phycobilisomes thus reducing the high fluorescence of free
phycobilisomes (Joshua et al., 2005). In addition, IsiA can

aggregate to form empty multimeric rings (without PSI) which
exhibits a strong quenched state (Yeremenko et al., 2004), and
are responsible for the dissipation of thermal energy (Ihalainen
et al., 2005).

Iron, CO2, and Light Dependencies on
Photophysiology
Under iron-limitation, the initial slopes of the rP-light curves
declined due to a decrease in Fq

′/Fm′ (Supplementary Figure 4).
Due to light-dependent state transitions, Fo′ can’t be calculated
using the initial, pre-FLC dark stepmeasure of Fo and Fv/Fm only;
and as such Fq

′/Fm′ was not separated into its two contributing
processes; the PSII photochemical efficiency factor (Fq′/Fv′) and
the maximum efficiency of PSII photochemistry (Fv′/Fm′). The
lower operating efficiency of PSII (Fq′/Fm′), and subsequent
lower rP at low CO2 is likely attributed to the an up-regulated
CCM and/or to a down-regulation of the IdiA protein, which is
thought to maintain optimal PSII activity (Michel and Pistorius,
2004).

Trichodesmium has high PSI:PSII ratios ranging between 1.3
and 4 under iron-replete diazotrophic conditions (Berman-Frank
et al., 2001, 2007; Levitan et al., 2007, 2010; Brown et al., 2008).
Previous studies have shown PSII to be less sensitive to iron-
limitation than PSI at both an mRNA and protein level (Richier
et al., 2012). It has been proposed that decreasing the PSI:PSII
ratio is a physiological response to conserve iron (Berman-
Frank et al., 2001), and one which could be compensated by
increasing the cross-section of PSI light harvesting via IsiA-PSI
super-complexes (Bibby et al., 2001a; Ryan-Keogh et al., 2012).

Pseudocyclic electron transport describes the movement of
electrons around PSI, and the Mehler reaction (via flavodoxin)
which is a photo-catalysed reaction consuming O2 (helping
prevent nitrogenase inhibition) whilst simultaneously supplying
ATP to nitrogenase (Supplementary Figure 3). Mehler activity
can consume up to 75% of the O2 evolved from PSII (Milligan
et al., 2007). Prolonged exposure to iron-limiting concentrations
could lead to the occurrence of reactive oxygen species as several
key proteins (e.g., catalase, peroxidise, superoxidase dismutase)
associated to the Mehler reaction are dependent on iron as
a co-factor. However, as the nitrogenase pool is significantly
reduced under iron-limitation, maintaining the same degree of
intracellular anoxia may be less critical.

As reported here, the PSII operating efficiency decreased
significantly under iron-limitation, yielding lower rPm. Given
that IsiA proteins can be 4 and 6 times more abundant
than PSI and PSII proteins in iron-starved cultures and
natural populations, respectively (Richier et al., 2012), we
suggest that under iron-limitation, Trichodesmium increases
pseudocyclic electron transport, with energy being re-directed
from nitrogenase to enhance production of key proteins
associated with iron stress (i.e., IsiA and IsiD).

CONCLUSION

Our findings highlight iron as a major influencing factor on
Trichodesmium growth, productivity and biogeographical
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distribution. Whilst iron-limitation constrains maximal
Trichodesmium growth and productivity in the open ocean
(Rueter, 1988; Rueter et al., 1990), integrated effects of elevated
CO2 and/or high light intensities may act as negative feedbacks
to climate change. Under iron-limitation the positive effects of
elevated CO2 likely arise from a down-regulation of the CCM,
whilst the positive effects of saturating light are likely due to a
decrease in the requirement for key metalloenzymes, and lead
to an increase in iron scavenging mechanisms and high light
induced proteins (HLIP). Our findings are important given
predictions of an increase in water stratification, a decrease in
upwelling and wind-driven mixing, a shoaling of the mixed layer
depth, increases in CO2 and sea surface temperatures (SSTs), as
well as higher daily light exposures within the water column over
the coming decades (Doney, 2006).

A major source of both iron and phosphorus to the Atlantic
Ocean is Aeolian dust, which provides up to 16 Tg Fe yr−1

(Jickells et al., 2005) and 1.15 Tg P yr−1 (Mahowald et al.,
2008), or 82% and 83% of total input, respectively. Although
toxic to picoeukaryotes and Synechococcus (Paytan et al., 2009),
Aeolian dust benefits Trichodesmium by providing a source
of bioavailable iron (Carpenter and Romans, 1991) coupled
with a low N:P ratio. This combination of features stimulates
diazotrophic growth without providing a competitive advantage
to other phytoplankton groups (Krishnamurthy et al., 2010).

One might expect changes in light and temperature to have
a minimal direct effect on iron concentrations in the ocean.
However, increased light intensity will increase Fe′ through
the photolysis of ferric chelates and the resulting iron redox
cycle. Temperature also influences the light requirement for
algal growth, as light absorption by photosynthetic pigments and
associated photochemistry within the photosynthetic reaction

centres are insensitive to temperature, whereas downstream
“dark” metabolic reactions which support growth are highly
temperature dependent (Geider, 1987; Raven and Geider, 1988).
Consequently, higher light is needed to support growth at a
higher temperature (Davison, 1991). As such, increased CO2

and higher light intensities in the surface waters could help
enhance Trichodesmium’s productivity and growth in the future,
potentially expanding its distribution into more iron-limited
regions. However, it is worth considering whether the direct
and indirect benefits of elevated CO2 and higher light intensity
outweigh the disadvantages of supra-optimal SSTs.
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