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The microbiome, a thriving and complex microbial community colonizing the human
body, has a broad impact on human health. Colonization is a continuous process that
starts very early in life and occurs thanks to shrewd strategies microbes have evolved
to tackle a convoluted array of anatomical, physiological, and functional barriers of
the human body. Cumulative evidence shows that viruses are part of the microbiome.
This part, called virome, has a dynamic composition that reflects what we eat, how
and where we live, what we do, our genetic background, and other unpredictable
variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune
defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many
acute and chronic disorders. A compelling example can be found in the respiratory
apparatus, where early-life viral infections are major determinants for the development
of allergic diseases, like asthma, and other non-transmissible diseases. In this review,
we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus
family. Anelloviruses are major components of the virome, present in most, if not
all, human beings, where they are acquired early in life and replicate persistently
without causing apparent disease. We will discuss how modulation of innate and
adaptive immune systems by Anelloviruses can influence the development of respiratory
diseases in childhood and provide evidence for the use of Anelloviruses as useful and
practical molecular markers to monitor inflammatory processes and immune system
competence.
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INTRODUCTION

At birth, both the digestive system and the airways are
immediately exploited as portals of entry by a number of
microbes, most of which are likely to persist and become
part of the so-called “microbiome.” This is a community of
microorganisms that live on the human body without apparently
affecting health (Whipps and Karen Lewis, 1988; Hooper et al.,
2012; Tremaroli and Bäckhed, 2012). It has long been known
that the microbiome is beneficial to hosts in a number of ways,
and, in recent years, its interaction with the immune system
has even been recognized as fundamental for immune system
maturation, reactivity to specific antigens and development of
tolerance (Scharschmidt et al., 2015; Ignacio et al., 2016; Kim
et al., 2016). The microbiome, from this point of view, tunes
immunity by acting as a constant source of stimuli (Belkaid and
Hand, 2014; Belkaid and Segre, 2014).

Recently, with the advent of high throughput sequencing
methods, the diversity of the microbiome inhabiting gut, lung,
skin, and even blood in physiological conditions has been found
to be much larger than first thought. In particular, a constantly
fluctuating population of viruses have joined the list of infectious
agents that are now considered part of the microbiome in several
body sites (Blaser and Valentine, 2008; Shulman and Davidson,
2017). Very recent work has estimated that roughly 45% of
mammalian viruses can be detected in healthy humans (Olival
et al., 2017).

Most initial interactions between hosts and viruses are
governed by the innate immune system, that prevents
colonizing infectious agents from spreading systemically and
maintains mucosal homeostasis (Medzhitov and Janeway, 2002;
Lamkanfi and Dixit, 2011). Activation of the innate immune
responses triggers a cascade reaction that results in secretion
of cytokines and chemokines, and often engages different cells
to control invasion (Freer et al., 2017). Following recognition
of specific microbial, viral and damage stimuli, intracellular
multiprotein complexes called inflammasomes assemble and
induce downstream immune responses to specific pathogens.
The effects of turning on immunity generally protects against
pathogen invasion, but reactions to harmless antigens may lead
to the establishment of disease in predisposed individuals. In
this review, we discuss the multiple effects of the virome on host
health, with special reference to Anelloviruses.

THE HUMAN VIROME

Although viruses have long been considered “bad news in
a protein coat” (Medawar and Medawar, 1983), many novel
viruses are found to replicate in healthy individuals. So far,
roughly 220 viruses are known to infect humans and only about
half are pathogens (Parker, 2016). Truly apathogenic viruses
can be grossly divided in viruses infecting bacteria, integrating
into human chromosomes as endogenous retroelements, and
persisting indefinitely. They are referred to as “commensal”
viruses that are part of the virome without an apparent clinical
outcome (Rascovan et al., 2016). Many viruses that infect

humans may even have a beneficial role (Phan et al., 2016): in
animal models, resident intestinal viruses were shown to reduce
intestinal inflammation by inducing interferon (IFN)-β, secreted
mainly by plasmacytoid dendritic cells (DCs) (Yang et al., 2016),
or by providing resistance to infection by bacterial pathogens
(Barton et al., 2007).

The number of apathogenic viruses includes many genera
detected in various tissues of healthy people, especially infants
(Allander et al., 2005; Wang et al., 2016; Moustafa et al.,
2017). What role they play in human physiology is still
unknown, although they are currently hypothesized to alter
disease susceptibility. This is suggested by many epidemiological
observations and findings in animal models (Roossinck, 2011;
Virgin, 2014).

Resident viruses influence the immune system helping it to
develop properly, similarly to bacterial microbiome. Indeed,
Cadwell demonstrated that mouse norovirus, a commensal
relative of a human pathogen, restored intestinal morphology
and immunological functions in germ-free newborn mice,
where it is normally perturbed (Cadwell, 2015). On the other
hand, the immune system has been recently demonstrated to
control virome expansion, similarly to bacteria: HIV-infected
patients exhibited low peripheral CD4+ T cell counts and
dramatic expansion of enteric virome adenovirus titers, possibly
contributing to AIDS-associated enteropathy and disease
progression. These findings suggest that virome expansion is
linked to the pathogenesis of AIDS and highlights the role of the
immune system in controlling viral populations in the intestine
(Monaco et al., 2016). In addition, enteric viral communities
have been found to change during HIV infection and raises
in Anelloviridae and other virus titers have been associated to
increased pathology (Gootenberg et al., 2017).

Anelloviruses and TTV
A group of viruses discovered in 1997 (Nishizawa et al., 1997;
Okamoto et al., 1998), now called Anelloviruses (AV), represents
about 70% of total viruses detected in blood and in most tissues
and organs (De Vlaminck et al., 2013). Their prototype, presently
named torquetenovirus (TTV), is one of a vast spectrum of
viral agents with similar genomes, like torquetenominivirus
(Takahashi et al., 2000) and torquetenomidivirus (Ninomiya
et al., 2007), both of which have smaller genomes than TTV.
All these viruses are classified in the newly established family
Anelloviridae (from anellus, Latin for ring, for their circular
genome). AV are characterized by a small (2.2 to 3.7 kb),
single stranded DNA (ssDNA) circular genome, which makes
AV the genetically simplest of all known replication-competent
animal viruses. In addition, they are extremely diverse genetically,
more than any other viral family. They all lead to persistent,
possibly life-long infections and they can be detected at very high
levels in blood and in practically all tissues of almost 100% of
people worldwide. Different genetic forms are found in a large
proportion of individuals regardless of age, socio-economical
standing and health conditions, being acquired very soon after
birth or even prenatally (Maggi and Bendinelli, 2010).

No specific pathogenic effect has so far been pinpointed to
any AV, although similarity of human Anelloviridae to avian
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ones suggests that their pathogenicity might be underestimated
(Davidson and Shulman, 2008). Increased viremia levels of AV
have been found in immune suppressed individuals and in
subjects with inflammatory diseases, suggesting that they are
normally kept under immunological control, but may contribute
to maintain the background level of inflammation chronically
elevated in the body (Maggi et al., 2004; Li et al., 2013; Young
et al., 2015; Abbas et al., 2016).

How TTV Interacts and Modulates Host
Defenses
TTV interacts with many pathogen-associated molecular pattern
(PAMP) receptors (PRR) that fuel immune and inflammatory
responses (Zheng et al., 2007; Rocchi et al., 2009; Kincaid et al.,
2013). In vitro studies show that TTV ORF2 protein suppressed
the activity of NFκB, crucial for the expression of many genes
connected to inflammation. ORF2 protein of TTV is able to
influence the activity of NFκB by inhibiting its translocation
to the cell nucleus and, consequently, its ability to activate
transcription of genes, such as IL-6, -8, and cyclo-oxygenase-2
(Zheng et al., 2007).

In addition, the genome of TTV and its replication
intermediates may stimulate TLRs in infected cells and
consequently synthesis of pro-inflammatory molecules.
Unmethylated heterodimers of guanosine and cytosine (CpGs)
in bacterial and viral DNA are absent in mammalian DNA
and therefore seen as molecular signatures of foreign DNA.
The importance of these molecules as PAMPs is demonstrated
by the fact that one PPR, namely toll-like receptor (TLR)-9,
is specialized to detect CpGs. Depending on the number
or nucleotides flanking CpGs, it triggers production of
inflammatory cytokines, such as IFN-α, Interleukin (IL)-6,
and IL-12, or, alternatively, it may generate an inhibitory signal
(Krieg, 2002). Both stimulatory and inhibitory CpGs are present
in DNA of TTV and in most microbes, and their relative
frequency may differ considerably, even within strains of the
same species, thus probably influencing the way they interact
and stimulate TLR-9. For instance, we have found that TTV
genogroup 4, detected at higher levels in pediatric patients
with bronchopneumonia compared to those with milder acute
respiratory diseases (ARDs) (Maggi et al., 2003), was rich in
stimulatory CpGs and activated TLR-9 in mouse spleen cells
in vitro, causing abundant production of pro-inflammatory
cytokines (Zheng et al., 2007; Rocchi et al., 2009).

MicroRNAs (miRNA) are∼22 nt small, single-stranded, non-
coding RNAs produced by hosts and pathogens. They are potent
modulators of pathogen recognition and host defense in a
vast array of cellular metabolic pathways. As regards microbe–
host interaction, cellular miRNAs seem to modulate immune
responses and inflammation and to play a direct antiviral role
by blocking translation of viral genes, counteracting block of
apoptosis and persistent replication. Very recent work shows that
miRNA can polarize macrophages toward allergic reactions in
animal models (Zhou et al., 2017). Their role in inflammation
is probably very complex, since they may both up- and down-
regulate inflammation in several diseases, including asthma

(Dissanayake and Inoue, 2016). Viruses, including small ones
like TTV, encode their own miRNAs that cooperate with viral
proteins to regulate the expression of viral genes, replication,
pathogenesis and immune evasion, and the whole process of
virus-related inflammation (Kincaid and Sullivan, 2012; Cullen,
2013; Sorel and Dewals, 2016). Of note, both cellular and viral
miRNAs have been found to transmit information to distant cells
by circulating within plasma exosomes.

Interestingly, TTV was also found to encode in vivo miRNAs
possibly involved in viral immune evasion and that could be
involved in the regulation of IFN signaling (Kincaid et al., 2013).
Different TTV species have been shown to encode miRNAs and
cause these molecules to be found as plasma exosomes in many
infected individuals. Production and release was not correlated
with virus replication, as monitored by measuring TTV viremia
levels. Notably, TTV miRNA profiles differed depending on
patients’ health status; the type of miRNAs produced also differed
within sick patients (Vignolini et al., 2016). Role and significance
of TTV miRNAs are not yet understood and warrant further
studies. An overview of the mechanisms exploited by TTV to
stimulate or soothe host innate and adaptive defenses is shown
in Figure 1.

Role of Microbial Exposure and Viral
Infections in Wheezing and Asthma
Development
Asthma is a multifactorial inflammatory disease of the lower
airways, caused by environmental and genetic factors. The disease
incidence seems to be increasing especially in industrialized
countries (Ellwood et al., 2017). A long-standing theory, the
hygiene hypothesis, suggests that insufficient interaction with
microbes in early life leads to the development of allergic
reactions (Liu, 2015). Significant differences in the prevalence of
asthma were found between Amish and Hutterite schoolchildren,
despite similar genetic ancestries and lifestyles. As compared with
the Hutterites, the Amish practice traditional farming and are
exposed to an environment rich in microbes. The significantly
lower rates of asthma and the distinct immune profiles in
the Amish suggest that environment and sustained microbial
exposure have profound effects on innate immunity (Stein et al.,
2016). Further data generated in an experimental model of
asthma support this notion by showing that the protective effect
of the Amish environment requires the activation of innate
immune signaling.

On the other hand, there is a consensus on the notion that
early respiratory viral and bacterial infections are potent triggers
of wheezing-related disorders and development of asthma later
in life (Lemanske, 2004; Gern et al., 2005). Growing evidence
indicates that respiratory viral infections, especially when
acquired in early life may provide the stimulus to inflammasomes
assembly, and prime immature DCs toward a Th2 response that,
eventually, may sensitize genetically predisposed individuals to
local allergens (Holgate, 2011; Lee et al., 2014).

Virus and microorganisms in general may act through several
PRRs including TLRs (TLRs and TLR-9 in particular) on DCs.
Virus infections have been shown to modulate the responses
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FIGURE 1 | Possible mechanisms whereby TTV infection may modulate host defenses. TLR, toll-like receptor; CpG, unmethylated heterodimers of guanosine and
cytosine; eNO, exhaled nitric oxide; sECP, secreted eosinophil cationic protein; PAMP, pathogen-associated molecular pattern.

of TLRs and miRNAs on the balance of T cells toward Th1,
Th2, Th17, or T-regulatory (Treg) subtypes in respiratory airways
(Durrani et al., 2012; Holt and Sly, 2012). Microbial products
may in turn bind TLRs on airway epithelial cells, leading
to the release of the IL-7-like cytokines and thymic stromal
lymphopoietin. They may also interact with TLRs on DCs
and upregulate the expression of costimulatory molecules to
enhance Th2 polarization, also activating mast cells for Th2
cytokine production (de Heer et al., 2004; Troy and Bosco, 2016).
Recently, the role of respiratory syncytial virus (RSV) and
its impact on bronchiolitis at the time of infection and
respiratory morbidity later in life has been revisited (Rossi
and Colin, 2017). It has been shown, although controversially,
that patients with RSV infection receiving hospital-based care
have a higher incidence of asthma and reduced pulmonary
function in childhood and in adolescence (Sigurs et al., 2010).
In addition, large-scale use of molecular diagnostic techniques
pinpointed human rhinovirus (HRV) to infant wheezing and
asthma development (Song, 2016). Indeed, HRV has been
isolated in 90% of children with asthma exacerbations and
found closely connected to hospitalization risk in cohort studies
(Bizzintino et al., 2010; Foxman and Iwasaki, 2011). Further
evidence on the role of HRV infections during infancy in asthma
development has been found: the Childhood Origin of Asthma
(COAST) cohort study showed that at least one HRV infection
during infancy was the most significant risk factor for persistent
wheezing at the age of 3 years (Lemanske et al., 2005). Also,
having an HRV wheezing episode in the first 3 years of life was
a strong risk factor for asthma not only in childhood (Hyvärinen

et al., 2005; Jackson et al., 2015), but also in adolescence (Rubner
et al., 2017). In fact, in a high-risk birth cohort, HRV wheezing,
associated with early life aeroallergen sensitization, had additive
effects on asthma risk at adolescence (Rubner et al., 2017). Other
detrimental effects have been associated to various respiratory
viruses, such as metapneumovirus and bocavirus (Camargo
et al., 2008; Söderlund-Venermo et al., 2009; Rudd et al., 2017).
Indeed, atopy predisposition may be the individual driving factor
involved in promoting asthma development via interaction with
HRV, and possibly other respiratory viral infections, in infancy
(Song, 2016). Allergic sensitizations and viral infections may in
turn skew immune responses to produce Th2 cytokines that may
at the same time amplify allergic inflammation and reduce the
host antiviral responses, resulting in increased viral replication
and cellular damage (Xatzipsalti et al., 2008).

AV and Respiratory Allergy
Although TTV has been investigated to a reasonable extent,
its role on asthma is far from clear. Previous studies of our
group have shown that presence or viremia levels of TTV were
significantly associated with ARDs in pediatric patients and
that children with bronchopneumonia (BP) have considerably
higher TTV loads than do children with milder respiratory
disease. Further, high TTV loads correlate with a decrease in
circulating CD3+ and CD4+ T cells, an increment in B cells,
and increased activity of eosinophils, again emphasizing the
immunomodulatory activity of TTV (Maggi et al., 2004; Pifferi
et al., 2005). In another study, a positive association was found
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between nasal TTV loads and levels of eosinophil cationic
protein, a marker of bronchial inflammation. These markers were
found particularly elevated in the children with asthma who
had moderately to severely compromised spirometric indices.
This study was the first performed in children with asthma
and suggested that TTV might be a contributing factor in lung
impairment (Pifferi et al., 2005).

Concerning a mechanistic role of TTV in respiratory
dysfunction, it has been postulated that this virus, either alone
or synergistically with other viruses, may act as an enhancer
of inflammation systemically or at specific body sites such as
upper and lower airways (Maggi and Bendinelli, 2009). One
possible way can be envisioned via high amounts of immune
complexes that form following TTV replication in blood. In
infants with ARD, the airways were shown to be the sites of
primary infection and continual replication by TTV, with higher
viral loads in patients with more severe lower respiratory tract
infections (Maggi et al., 2003). Furthermore, TTV may worsen
the extent and the severity of the inflammatory response due to
allergens, if sensitization is present in the subject. This hypothesis
is supported, in children with ARD, by the positive correlation
between TTV loads and serum concentration of eosinophil
cationic protein (Maggi et al., 2004), and of exhaled nitric oxide, a
sensitive marker of airway inflammation in asthmatic children (Li
et al., 2013). In another study, we were able to demonstrate a high
prevalence of TTV infections in children with bronchiectasis, a
chronic respiratory disorder associated with several invalidating
airway diseases: indeed, strong correlation between TTV loads
and airflow limitation within the more peripheral airways was
found, as well as between severity of the disorder and limitation
of the lung function (Pifferi et al., 2006).

CONCLUSION

Most viral infections elicit robust immune responses but
viral clearance is not always obtained. Consequently, there

must be unidentified factors/conditions that determine a
tolerogenic status toward non-pathogenic viruses, and strong
immune opposition against pathogenic ones. Tolerance
may depend on host genetic, life-style and environmental
factors, or alternatively on the ability of “commensal”
viruses not to stir up inflammasomes and innate immune
effectors.

Increasing evidence shows that the virome is actually
beneficial to the host, who seems to tolerate “commensal”
viruses, although they replicate and circulate among individuals.
AV infect and persist in nearly all mammals and represent a
large body of the human virome. They continuously replicate
with no overt damage to the host and, therefore, are a good
example of commensal viruses in this respect. Several clinical
studies suggest that TTV plays a role in the development and/or
exacerbation of respiratory diseases in childhood. Although
further studies are warranted to draw firm conclusions, the
virome and AV are one the best examples of a virus–host
relationship. Its understanding will help clarify the role of viruses
in shaping human immune defenses and perhaps contribute to
their derangement.
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