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Designing drug delivery vehicles using cell-penetrating peptides is a hot area of research

in the field of medicine. In the past, number of in silico methods have been developed

for predicting cell-penetrating property of peptides containing natural residues. In this

study, first time attempt has been made to predict cell-penetrating property of peptides

containing natural andmodified residues. The dataset used to develop predictionmodels,

include structure and sequence of 732 chemically modified cell-penetrating peptides and

an equal number of non-cell penetrating peptides. We analyzed the structure of both

class of peptides and observed that positive charge groups, atoms, and residues are

preferred in cell-penetrating peptides. In this study, models were developed to predict

cell-penetrating peptides from its tertiary structure using a wide range of descriptors

(2D, 3D descriptors, and fingerprints). Random Forest model developed by using PaDEL

descriptors (combination of 2D, 3D, and fingerprints) achieved maximum accuracy of

95.10%, MCC of 0.90 and AUROC of 0.99 on the main dataset. The performance of

model was also evaluated on validation/independent dataset which achieved AUROC

of 0.98. In order to assist the scientific community, we have developed a web server

“CellPPDMod” for predicting the cell-penetrating property of modified peptides (http://

webs.iiitd.edu.in/raghava/cellppdmod/).

Keywords: modified cell-penetrating peptides, machine learning, Random Forest, SVM, in silicomethod, chemical

descriptors, antimicrobial peptide

INTRODUCTION

Since the existence of human race, therapeutic molecules have been used to cure human illness and
to extend lives (Tosato et al., 2007). In past, thousands of molecules have been studied to combat
deadly diseases. The ideal molecule must attain the desired therapeutic effect without causing side
effects. A large number of promising therapeutic molecules disparage before reaching to its target
(Gupta and Jhawat, 2017). In order to overcome this, several delivery vehicles have been discovered
in last three decades, such as nanoparticle (Wang et al., 2018) and lipid carrier conjugate (Xu
et al., 2017). Cell-penetrating peptide (CPP) is one of the most emergent and widely accepted
drug delivery vehicle, having ability to internalize even into eukaryotic cells in non-disruptive
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way. These are short peptides of 3 to approximately 40
amino acids, mostly cationic followed by amphipathic in nature
(Agrawal et al., 2016). CPPs can transport various biologically
active molecules inside microbes as well as mammalian cells
(Gao et al., 2014; Kurrikoff et al., 2016). CPPs such as TP10
and pVEC had been shown to significantly inhibit growth of
few microbes as Candida albicans, Staphylococcus aureus as well
as Mycobacterium smegmatis (Nekhotiaeva et al., 2004). CPPs
and cationic antibacterial peptides have similar physicochemical
properties, so many CPPs have shown antimicrobial activity
(Splith andNeundorf, 2011; Bahnsen et al., 2013; Rodriguez Plaza
et al., 2014). The poor membrane permeability of drug molecule
always remains a concern in drug designing. In the era of drug
resistance, where pathogen membrane provides a significant
barrier, intracellular delivery of antibiotics/drugs by the virtue of
CPP, proved to be a vital step in combating drug resistance to
some extent (Sparr et al., 2013). CPP based conjugates (Ganguly
et al., 2008; Jain et al., 2015) and combination therapy has
been explored against several resistant pathogens (Randhawa
et al., 2016). They have been proved effective against intracellular
pathogens too (Gomarasca et al., 2017).

A universal mechanism of CPP internalization is always
proved to be an exploring question, as the involved pathways
are not fully clarified yet. The difficulty arises due to differing
size, physicochemical properties, as well as concentration of
diverse CPP and CPP-conjugates (Guidotti et al., 2017). Several
mechanisms have been shown by various CPPs to translocate
in to the cell, as micelle formation (Derossi et al., 1996), pore
formation (Matsuzaki et al., 1996), membrane thinning (Pouny
et al., 1992), endocytosis (Ferreira and Boucrot, 2018) and
micropinocytosis (Jones, 2007). Majority of CPP internalization
occurs via endocytosis, but several evidences suggest that
at a threshold concentration direct penetration does occur
(Palm-Apergi et al., 2012). CPPs can be used for intracellular
delivery of small molecule-based drug (Lindgren et al., 2006),
oligonucleotide (Margus et al., 2012), peptide and protein
(Morris et al., 2001) and trans-epithelial delivery of peptides (Tan
et al., 2014).

Despite, numerous properties and potential applications of
CPPs, still there use in real life is limited. The primary
limitation associated with CPP is endosomal compartment
entrapment which reduces the bioavailability of the drug several
times. In literature, it has been shown that bioavailability
of CPPs can be increased several times by introducing a
chemical modification in a CPP (Postlethwaite et al., 1996;
Kim et al., 2006; Lundberg et al., 2007; Koppelhus et al., 2008;
Aubry et al., 2009). N-terminal stearylation of Arg8 peptide
improved the delivery of siRNA (Futaki et al., 2001), C-terminal
cysteamidation of MPG peptide improved the delivery of siRNA
(Simeoni et al., 2003), cysteine residue modification improved
the stability of Tat peptide and thus enhances the plasmid
delivery (Lo and Wang, 2008), Poly-L-ornithine modification
in PepFect 14 peptide increases transfection efficiency of
oligonucleotide in HeLa pLuc 705 (Ezzat et al., 2011). Thus, it
is important to understand chemical modification of residues
in a peptide and its impact on cell-penetrating property of
peptides.

In the last few years, several computational methods have
been developed for the prediction of CPPs. These methods have
been developed on various features like amino acid composition
(Sanders et al., 2011), dipeptide composition (Tang et al., 2016),
binary profile, physiochemical properties and motifs (Gautam
et al., 2013). They have also applied Z-scale based method
(Sandberg et al., 1998), feature selection techniques (Tang
et al., 2016), classifiers like Random Forest (RF) (Wei et al.,
2017), Support Vector Machine (SVM) (Sanders et al., 2011).
Beside this, few more methods have been developed in recent
years for predicting CPPs with high accuracy (Chen et al.,
2015; Tang et al., 2016; Wei et al., 2017). Best of authors
knowledge, all methods developed so far for predicting CPPs
are suitable for peptides containing natural residues only, but
no method has been developed for predicting cell penetration
property of peptides with non-natural and modified residues.
In this study, a systematic attempt has been made to develop a
machine learningmethod for predicting cell penetration ability of
peptides containing non-natural and modified residues. Machine
learning technique derive features/rules from the experimentally
validated modified CPPs and Non-CPPs are used to predict
cell penetration ability of a modified peptide. We hope this
method will be useful for researchers working in the field of drug
delivery.

MATERIALS AND METHODS

Creation of Dataset for CPPs and
Non-CPPs
Cell-penetrating peptides were extracted from CPPsite2.0
database (Agrawal et al., 2016), which provides comprehensive
information on wide-range of CPPs. It consists of 1,850
experimentally validated natural and modified CPPs. We remove
CPPs that does not contain any modified residue; we also remove
peptides whose tertiary structure is not available in the database.
Finally, we got 732 chemically modified CPPs whose structure is
available in CPPsite 2.0. We assign this set of 732 CPPs as positive
set or set of CPPs. To develop any method, we also need equal
number of negative examples. In this study, we extracted non-
CPPs from SATPdb (Singh et al., 2016) database which maintains
information of 19,192 peptides having several properties. We
extracted structures of 732 peptides, which may exhibit any
characteristic other than cell penetrating property. This set of
peptides were assigned as negative set or set of non-CPPs. Finally,
we built the dataset that contains 732 CPPs and 732 non-CPPs
whose sequence and tertiary structure is available in CPPsites 2.0
or SATPdb.

Datasets for Internal and External
Validation
The dataset was divided into two datasets namely training
(main) and validation dataset (Bhalla et al., 2017). The training
dataset consists of 80% of peptides, 582 CPPs, and 582 non-
CPPs. The validation dataset consists of remaining 20% of
peptides, 150 CPPs, and 150 non-CPPs. We used training
dataset for developing models and for internal validation.
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In internal validation, models were trained and tested using
commonly used five-fold cross-validation technique (Nagpal
et al., 2017). Performance of best model achieved on training
dataset, was evaluated on validation dataset. The evaluation of
the performance of model on validation or independent dataset
is called external validation.

Model Development
Computation of Features From Peptide Structures

Composition Based Features
Atom composition is computed from CPPs and non-CPPs by
converting peptide structures in SMILES format using openbabel
(O’Boyle et al., 2011). These SMILES were further used to
compute atom composition of following atoms C, H, O, N, S, Cl,
Br, and F. The atomic composition provided the fixed length of 8
vectors.

Fraction of atom (a) =
Total number of atom (a)

Total number of all possible diatoms
× 100 (1)

Where atom (a) is one out of 8 atoms.

Diatom Composition
We computed diatom composition of amino acids just like
the atomic composition for CPPs and non-CPPs. The diatomic
composition provides the composition of the pair of atoms in
each residue (e.g., C-C, C-O, etc.) of the peptide, and used to
convert the variable length of modified peptides to fixed length
feature vectors. The diatomic composition provided the fixed
length of 64 (8× 8) vectors.

Fraction of Diatom(a) =
Total number of Diatom (a)

Total number of all possible diatoms
× 100 (2)

Where diatom (a) is one out of 64 diatoms.

Chemical Descriptors
A biological property of any chemical molecule is determined
by its chemical descriptors, which have been used in the past
to develop QSAR based molecules (Kumar et al., 2015). PaDEL
software, a freely available software was used for the calculation of
chemical descriptors (Yap, 2011). We calculated 15,537 different
types of descriptors, including 2D, 3D, and 10 different types
of fingerprints. As all descriptors don’t correlate with biological
activity, we have done feature selection using “CsfSubsetEval”
function present in WEKA software (Smith and Frank, 2016)
to remove unnecessary descriptors hence reduced noise from
dataset.

Computation of Features From Amino Acid
Sequence of Peptide
Amino Acid Composition

We substitute the symbol of the modified residue with its original
natural amino acid, for calculating amino acid composition for
the positive and negative dataset. This left us with the sequence
having 20 natural amino acids which generated the vector of 20.

AAC (a) =
Ra

N
x100 (3)

Here, AAC (a) is the percent composition of amino acid (a); Ra
is the numbers of residues of type a, and N represents the total
number of peptide’s residues.

Dipeptide Composition
We also calculated dipeptide composition of the peptides since
it provides global information of the peptide. The dipeptide
composition was calculated using the formula 4, and it generated
the vector of 400 (20× 20).

Fraction of Dipeptide (a) =
Total number of Dipeptide (a)

Total number of all possible dipeptides
× 100

(4)

Where dipeptide (a) is one out of 400 dipeptides.

Terminus Composition-Based Model

We also calculated N and C terminus amino acid composition as
well as dipeptide composition for developing prediction models.
The composition of 5, 10, and 15 residues from N-terminus
as well as C-terminus was taken into account. Also, we joined
the terminal residues like N5C5, N10C10, and N15C15 and for
developing models.

Residue Preference
In order to observe the residue preference at a particular position
in the peptide, web-logos were prepared for first 15N and
15 C-terminals along with their modifications using online
WebLogo software (Crooks et al., 2004). These logos provide the
position specific frequency of amino acids in a peptide. Each logo
consists of stacks of symbols, one stack for each position in the
sequence. The overall height of the stack indicates the sequence
conservation at that position while the height of symbols within
the stack indicates the relative frequency of each amino acid at
that position.

Statistical Analysis
To check whether is there any significance difference between
modified CPPs and non-CPPs, we performed Welch t-test on
the selected features of 2D, 3D and Fingerprints descriptors
using in house R-script. Adjusted p-values were calculated using
Boneferroni adjustment.

Performance Measure
Different parameters were used to check the performance of
various models developed in this study. These parameters are
divided into two groups.

Threshold Dependent Parameters

This category includes Sensitivity (Sen), Specificity (Spc),
Accuracy (Acc), and Matthews’s correlation coefficient (MCC),
where Sensitivity is true positive rate, Specificity is true negative
rate, accuracy is ability to differentiate true positive and true
negative and MCC is a correlation coefficient between observed
and predicted. These can be calculated using the following
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equations.

Sensitivity =
TP

PS
× 100 (5)

Specificity =
TN

NS
× 100 (6)

Accuracy =
TP + TN

PS+ NS
× 100 (7)

MCC =
1−

(

FN
PS ×

FP
NS

)

√

(

1+ FP−FN
PS

)

×
(

1+ FN−FP
NS

)

(8)

Where TP represents correctly predicted positive, TN represents
the correctly predicted negative examples, PS represents total
sequences in positive set, NS represents total sequences in
negative set, FP represents actual negative examples which have
been wrongly predicted as positive and FN represents wrongly
predicted positive examples. This is a well-established method
of measuring performance and has been used earlier in many
studies (Porto et al., 2017; Agrawal et al., 2018).

Threshold Independent Parameters

In this study, we also used threshold independent measure
to evaluate the performance of models. In case of threshold
independent measures, Receiver Operating Characteristics
(ROC) curve is drawn between false positive and false negative
rates. In order to measure performance, Area Under Curve ROC
curve is computed called AUROC.

RESULTS

Analysis
We compute percent average composition of atoms in CPPs and
non-CPPs to understand the preference of certain types of atoms

present in the CPPs and non-CPPs. Overall, the profile is more
or less same in both CPPs and non-CPPs.CPPs are slightly rich in
H and N atoms whereas non-CPPs are slightly rich in C, O, and
S (Figure S1). We analyzed the amino acid composition of both
positive (CPPs) and negative (Non-CPPs) dataset. It has been
observed that certain type of residues like R, K, and Q are more
prominent in CPPs; in contrast residues are like C, L, V, P, and G
are not preferred in CPPs (Figure 1). In the samemanner, we also
calculated the average amino acid composition of the first 15N
and 15 C- terminal amino acid residues (Figure S2). At the N
terminal R, Q, I and M are more prominent in CPP as compared
to Non-CPP (Figure S2A). Similarly at C terminal, R, K and Q
are more prominent (Figure S2B).

In addition to compositional preference, we also computed
preference of different types of residues in CPPs. It was revealed
that some specific type of residues was preferred in the positive
dataset contain CPPs as compared to the negative dataset
contain non-CPPs. Residues like Rand K are highly preferred
at various positions CPPs particularly at N terminal (Figure 2).
Similarly, K and R are mostly preferred at C terminal also
(Figure 3).

Machine Learning Based Prediction Model
We used various machine-learning approaches like SVM,
Random Forest, Naive Bayes, J48 and SMO for developing the
prediction model. These models utilize different features or
descriptors to discriminate or classify CPPs and non-CPPs. The
results are explained in details in the following sections.

Model Based on Peptide Structure

Tertiary structure of a peptide can present all type of
modifications. Thus structure of peptide is used to predict
cell penetration ability of modified peptide. In this study,

FIGURE 1 | Percentage amino acid composition of CPPs and non-CPPs.
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FIGURE 2 | Weblogo illustrating residue preference of first 15 N terminal

residues of modified (A) CPPs and (B) non-CPPs.

we got structure of peptides from databases CPPsite 2.0 and
SATPdb. The models were developed using various features
of peptide structures. First, we developed model using atomic
composition of peptides. In order to obtain atomic composition
of peptides from its structure, we convert structure from
sdf format to SMILES. The atomic composition of peptides
was calculated from SMILES of peptide. Prediction models
were developed using different classifiers like SVM, RF, Naive
Bayes, SMO and J48 using atomic composition as an input
feature. Random Forest based classification model provided
the highest accuracy of 84.02%, MCC of 0.68 and AUROC
of 0.91 on the training dataset. On validation dataset, we
achieved maximum accuracy of 78.33%, MCC of 0.57 and
AUROC of 0.88. Performance of different classifiers given in
Table 1. We also developed model using diatom composition
of peptides and obtained the highest accuracy of 88.40% with
MCC of 0.77. On validation dataset, we achieved maximum
accuracy of 91.00% with MCC 0.83. Here SVM based model
performed best among all the classifiers used for prediction
(Table 2).

We developed models individually for 2D descriptors, 3D
descriptors, and Fingerprints as well as the single model by
combining 2D, 3D descriptors, and Fingerprints. The descriptors
were computed using PaDEL software from tertiary structure
of peptides (sdf format). The models were developed on
the features, selected after performing feature selection, by
attribute evaluator named, “CfsSubsetEval” with search method
of “BestFirst” at default parameters in the forward direction
(amount of backtracking, N = 5 and lookup size D = 1). In case
of 2D descriptors, total 144 descriptors were calculated initially
and were reduced to 17 after feature selection. List of the selected
features is provided in Table S1. We applied different machine
learning techniques on these selected features and observed that
Random Forest based model achieved the maximum accuracy

FIGURE 3 | Weblogo illustrating residue preference of first 15 C terminal

residues of modified (A) CPPs and (B) non-CPPs.

of 92.34%, MCC of 0.85 and AUROC of 0.97 for the main
dataset and 91.67% accuracy, 0.83 MCC and 0.97 AUROC for the
validation dataset (Table 3).

In case of 3D descriptors, total 47 features were calculated
and was reduced to 6 after applying feature selection (Table S2).
On these features, Random Forest model performed better than
other models and achieved maximum accuracy of 76.55%, MCC
of 0.53 and AUROC value of 0.85 on the main dataset and
73.49% accuracy, 0.47 MCC and 0.83 AUROC on validation
dataset (Table 4). The different types of fingerprints generated
14,532 features, which were reduced to 27 after feature selection
(Table S3). Performance of different classifiers were evaluated on
these features (Table 5) and once again Random Forest showed
the best performance with maximum accuracy of 92.25%, MCC
of 0.85 and AUROC of 0.98 on main dataset and accuracy
of 92.33%, MCC of 0.85 and AUROC of 0.98 on validation
dataset.

Finally, we calculated all the 2D, 3D descriptors and
fingerprints at the same time, which generated 15,204 features.
Feature selection reduced it down to 48 important features on
which different machine learning classifiers were evaluated. Here
we observe the maximum accuracy of 95.10%, MCC of 0.90 and
AUROC of 0.99 on main dataset and 92.33% accuracy, 0.85 MCC
and 0.98 AUROC on validation dataset by Random Forest model
(Table 6). Figure 4 shows the AUROC curve as well as AUROC
values of different models.

Significance of features
We obtained significant difference between the positive and
negative features based on adjusted p-values. P-values were found
to be less than 0.05 for most of the features. Therefore, we can
say that these features can be used to discriminate modified CPPs
and non-CPPs. Mean value of positive and negative features
along with their p-value for 2D, 3D, and fingerprint descriptors
is provided in Tables S1–S3.
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TABLE 1 | Performance of different machine learning methods on atom composition.

Parameter Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 1, c = 9, j=4 81.10 80.58 80.84 0.62 0.84 79.33 75.33 77.33 0.55 0.81

Random Forest Ntree = 30 83.33 84.71 84.02 0.68 0.91 79.33 77.33 78.33 0.57 0.88

SMO g = 1, c = 2 77.66 83.51 80.58 0.61 0.80 75.33 82.67 79.00 0.58 0.79

J48 c = 0.1, m = 1 75.43 80.58 78.01 0.56 0.82 80.00 76.00 78.00 0.56 0.79

Naive Bayes Default 74.57 65.46 70.02 0.40 0.80 80.00 69.33 74.67 0.50 0.82

TABLE 2 | Performance of different machine learning methods on diatom composition.

Parameters Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 0.01, c = 15, j = 2 90.38 86.43 88.40 0.77 0.93 85.33 96.67 91.00 0.83 0.97

Random Forest Ntree = 30 88.49 88.49 88.49 0.77 0.94 85.33 82.00 83.67 0.67 0.93

SMO g = 0.1, c = 4 86.25 89.00 87.63 0.75 0.87 86.67 84.00 85.33 0.71 0.85

J48 c = 0.3, m = 1 82.47 81.10 81.79 0.64 0.81 85.33 81.33 83.33 0.67 0.82

Naive Bayes Default 71.65 70.45 71.05 0.42 0.78 72.67 66.67 69.67 0.39 0.77

TABLE 3 | Performance of different machine learning methods on 2D descriptors.

Parameters Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 0.01, c = 6, j = 2 89.00 84.48 86.75 0.74 0.92 86.00 82.67 84.33 0.69 0.92

Random Forest Ntree = 60 92.78 91.90 92.34 0.85 0.97 94.67 88.67 91.67 0.83 0.97

SMO g = 0.001, c = 4 83.16 86.38 84.77 0.70 0.84 81.33 87.33 84.33 0.69 0.84

J48 c = 0.2, m = 2 89.52 88.79 89.16 0.78 0.89 90.00 87.33 88.67 0.77 0.89

Naive Bayes Default 75.09 78.79 76.94 0.54 0.85 74.67 77.33 76.00 0.52 0.84

TABLE 4 | Performance of different machine learning methods on 3D descriptors.

Parameters Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 1e-05, c = 15, j = 1 76.29 74.40 75.34 0.51 0.80 71.14 73.15 72.15 0.44 0.80

Random Forest Ntree = 700 80.93 72.16 76.55 0.53 0.85 79.87 67.11 73.49 0.47 0.83

SMO g = 0.0005, c = 2 69.42 72.85 71.13 0.42 0.71 63.09 76.51 69.80 040 0.69

J48 c = 0.1, m = 3 74.74 76.12 75.43 0.51 0.78 72.48 74.50 73.49 0.47 0.78

Naive Bayes Default 69.24 74.40 71.82 0.44 0.78 69.80 75.84 72.82 0.46 0.79

TABLE 5 | Performance of different machine learning methods on fingerprints.

Parameters Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 0.005, c = 15, j = 1 90.19 88.12 89.16 0.78 0.95 93.33 89.33 91.33 0.83 0.96

Random Forest Ntree = 600 94.32 90.19 92.25 0.85 0.98 96.67 88.00 92.33 0.85 0.98

SMO g = 0.0005, c = 4 85.54 85.03 85.28 0.71 0.85 88.67 85.33 87.00 0.74 0.87

J48 c = 0.25, m = 1 90.02 89.33 89.67 0.79 0.89 88.67 88.67 88.67 0.77 0.90

Naive Bayes Default 86.40 84.34 85.37 0.71 0.90 82.67 85.33 84.00 0.68 0.90
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TABLE 6 | Performance of different machine learning methods on 2D, 3D and fingerprints collectively.

Parameters Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM g = 1e-05, c = 15, j = 1 83.33 79.21 81.27 0.63 0.89 78.67 82.67 80.67 0.61 0.87

Random Forest Ntree = 60 95.19 95.02 95.10 0.90 0.99 91.33 93.33 92.33 0.85 0.98

SMO g = 0.0001, c = 5 76.80 76.98 76.89 0.54 0.76 75.33 83.33 79.33 0.59 0.79

J48 c = 0.25, m = 5 89.69 87.63 88.66 0.77 0.90 84.67 92.00 88.33 0.77 0.92

Naive Bayes Default 95.19 88.14 91.67 0.84 0.95 92.00 89.33 90.67 0.81 0.96

FIGURE 4 | ROC curve showing performance of models on various structural

features.

Model Based on Peptide Sequence
It is nearly impossible to present a modified peptide by amino
acid sequence. Thus, prediction of modified peptide from there
sequence is not possible. Same time generating tertiary structure
of a peptide is a tedious job for a biologist. We made an
attempt to develop prediction model for cell penetration peptides
of modified peptides from their amino acid sequence only by
ignoring modifications in peptide. First, we developed simple
composition-based models using various machine learning
techniques. The SVM based model showed the best performance
among all the classifiers used in the study. The accuracy of
91.67%, MCC of 0.83 and AUROC of 0.96 was achieved for
the main dataset. On validation dataset, we obtained accuracy
of 89.67%, MCC of 0.79 and AUROC of 0.96 (Table S4). We
also developed SVM based model on first 5, 10, and 15N and
C-terminus residues. Results are given in Table S5.

Secondly, we developed models using dipeptide composition,
SVM classifier showed the highest accuracy of 91.84%, MCC of
0.84 and AUROC of 0.96 for the main dataset. For independent
dataset, the accuracy of 92.33%, MCC of 0.85 and AUROC of
0.97 was achieved (Table S6). Results of SVM based models
on terminus residues for dipeptide composition is provided

in Table S7. It is important for users to understand that
sequence based model is not alternate to structure based models
or alternate to past sequence based models developed for
natural peptides. This sequence based is just approximate cell
penetration potential of a modified peptide from its amino acid
sequence.

Implementation of Webserver
To assist the scientific community, the best models are
provided freely at http://webs.iiitd.edu.in/raghava/cellppdmod/.
The “PREDICTION” module, consider tertiary structure (PDB
format) of the modified peptide as an input and does the
prediction. If a user has no structural information, he/she can
generate PDB structure of their peptide up to 25 residues in
length using server “PEPstrMOD” (Singh et al., 2015) (http://
webs.iiitd.edu.in/raghava/pepstrmod/) developed by our group
specifically for predicting the structure of the modified peptide.
In case of natural peptide user can also use following servers
PEP-FOLD (Thevenet et al., 2012) (http://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLD/) and QUARK (Xu and
Zhang, 2012) (https://zhanglab.ccmb.med.umich.edu/QUARK/)
for predicting structure of peptides. Multiple modification
options are provided there, and the user can choose the
desired modification. After generating the structure, user can
do the prediction on “PREDICTION” module, whether the
given modified PDB structure is CPP or non-CPP. Beside
the main model, we have also implemented model based on
peptide sequence (Subsidiary model). We have also provided a
“DOWNLOAD” module from where the user can download the
dataset used in this study.

DISCUSSION

CPPs has shown a promising impact in the field of therapeutics
or for targeting a specific disease (Bechara and Sagan, 2013).
However, the major limitations associated with some of
these CPPs is their entrapment of CPP-cargo in endosomal
compartments followed by endocytosis and therefore their
bioavailability and half-life is severely reduced (Mäe et al., 2009).
To overcome this limitation, people have tried to modify the CPP
chemically. For example, to increase the delivery of nucleic acid
more efficiently, people have introduced chemical modifications
like N terminal stearylation (Futaki et al., 2001; Khalil et al.,
2004), C-terminal cysteamidation (Simeoni et al., 2003; Morris
et al., 2007), residue modifications (Lundberg et al., 2007).Tat
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is one of the first CPP, discovered from protein of HIV and
various studies showed that it enhances the uptake of various
drug and protein (Brooks et al., 2005). But DNA delivery by Tat
is limited, because of the instability of Tat-DNA complex (Lo
and Wang, 2008). Lo and Wang (2008) showed that Cysteine
makes the Tat-DNA complex more stable. Incorporation of two
cysteine residues results into interpeptide disulphide bond, form
by air oxidation once bind to DNA. This enhance the stability
of Tat-DNA complex, as well as protect DNA in extracellular
environment. Therefore, gene transfection efficiency is more in
modified Tat than simple Tat.

Computational algorithms have been proved a wide success in
designing therapeutic peptides (Dhanda et al., 2017), therefore a
large number of sequence-based model to design CPP has been
developed in past. But all of these models have one limitation
in common that they can only handle peptides with natural
residues. Due to the huge therapeutic importance of modified
CPP, prediction and designing of modified CPPs is the need of
hour. So, we have developed a computational method, which is
based on structural features, can handle the natural as well as
modified peptides both. Beside this we have also incorporated
a subsidiary model based on the sequence of peptides which
consider only natural residues, to handle large number of
peptides simultaneously. Here, sequence-based model is not
alternate to the methods developed in past to predict natural
CPPs.

We have developed various models using machine learning
techniques such as SVM, Random Forest, J48, naïve bayes,
SMO; individually for atom composition, 2D descriptors, 3D
descriptors, and Fingerprints as well as the single model by
combining 2D, 3D descriptors, and Fingerprints. We obtain best
performance by Random Forest for both combined (2D, 3D,
and Fingerprint descriptors) as well as fingerprint with accuracy
92.33% and AUROC 0.98 on validation dataset. As fingerprint
alone will be computationally more feasible as compared to
the combined method, so we have implemented this model on
webserver.

We believe this work will prove a great assist to the researchers
aim to design cell penetrating peptide, as well as incorporate
differentmodification and to check their effect on cell penetration
ability. In future, we can improve this method, if better art of
structure prediction will be developed, as right now PEPstrMOD
could tackle only 7–25 amino acid length and other best model
I-TASSER only deals with natural residues. So, in conclusion this

field must grow simultaneously with the betterment of art-of-
structure prediction.
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