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The Lyme disease causing bacterium Borrelia burgdorferi has an affinity for the central
nervous system (CNS) and has been isolated from human cerebral spinal fluid by
18 days following Ixodes scapularis tick bite. Signaling from resident immune cells of
the CNS could enhance CNS penetration by B. burgdorferi and activated immune
cells through the blood brain barrier resulting in multiple neurological complications,
collectively termed neuroborreliosis. The ensuing symptoms of neurological impairment
likely arise from a glial-driven, host inflammatory response to B. burgdorferi. To date,
however, the mechanism by which the bacterium initiates neuroinflammation leading
to neural dysfunction remains unclear. We hypothesized that dead B. burgdorferi and
bacterial debris persist in the CNS in spite of antibiotic treatment and contribute to the
continuing inflammatory response in the CNS. To test our hypothesis, cultures of primary
human microglia were incubated with live, antibiotic-killed and antibiotic-killed sonicated
B. burgdorferi to define the response of microglia to different forms of the bacterium.
We demonstrate that primary human microglia treated with B. burgdorferi show
increased expression of pattern recognition receptors and genes known to be involved
with cytoskeletal rearrangement and phagocytosis including MARCO, SCARB1, PLA2,
PLD2, CD14, and TLR3. In addition, we observed increased expression and secretion
of pro-inflammatory mediators and neurotrophic factors such as IL-6, IL-8, CXCL-1,
and CXCL-10. Our data also indicate that B. burgdorferi interacts with the cell surface
of primary human microglia and may be internalized following this initial interaction.
Furthermore, our results indicate that dead and sonicated forms of B. burgdorferi induce
a significantly larger inflammatory response than live bacteria. Our results support our
hypothesis and provide evidence that microglia contribute to the damaging inflammatory
events associated with neuroborreliosis.

Keywords: Borrelia burgdorferi, microglia, neuroborreliosis, Lyme disease, phagocytosis

Abbreviations: CCL-5, chemokine C-C motif ligand; CD-14, cell differentiation factor 14; CNS, central nervous system;
CSF, cerebral spinal fluid; CSF-1, macrophage colony stimulating factor-1; CXCL, chemokine C-X-C motif; ELISA, enzyme
linked immunosorbent assay; GDF-5, growth differentiation factor-5; gfp, green fluorescent protein; IL-8, interleukin 8;
LIF, leukemia inhibitory factor; MARCO, macrophage receptor with collagenous structure; MOI, multiplicity of infection;
PBS, phosphate buffered saline; PCR, polymerase chain reaction; PLA, phospholipase; PTLDS, post-treatment Lyme disease
syndrome; SCARB1, human scavenger receptor class B; TLR, toll-like receptor; VEGF, vascular epithelial growth factor.
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INTRODUCTION

The bacterium B. burgdorferi causes Lyme disease, which
affects many tissues and organs, including the CNS. Lyme
neuroborreliosis may manifest as meningitis, cranial neuritis,
facial nerve palsy, encephalitis, or peripheral nerve disease
(Rupprecht et al., 2008; Ramesh et al., 2013; Halperin, 2015).
Additional rare complications can include CNS vasculitis and
hemorrhagic stroke (Fallon et al., 2010; Back et al., 2013). While
most patients respond well to antibiotics, some experience long-
term sequelae including depressive states, decreases in verbal
fluency, fatigue, sleep disruptions, emotional lability, and short-
term memory problems (Fallon and Nields, 1994; Gustaw et al.,
2001; Fallon et al., 2008, 2010; Ljostad and Mygland, 2010).
Indeed, approximately 20% of patients treated for Lyme disease
experience PTLDS. However, the cause of persistent, lingering
neurological symptoms in patients following antibiotic treatment
is unknown.

Examination of tissues from patients with neuroborreliosis
is limited, but there is evidence for inflammatory changes
in the brains of patients, as well as from rhesus macaque
models (Sumiya et al., 1997; Ramesh et al., 2013, 2015). Indeed,
post-mortem pathological analysis from patients with clinically
diagnosed neuroborreliosis revealed lymphocytic infiltrates in
the CNS along with widespread microglial activation (Bertrand
et al., 1999). While the cause of neurologic symptoms following
antibiotic treatment is unclear, dead spirochetes and/or their
debris can provide a constant immune stimulus that contributes
to inflammatory pathogenic processes (Bockenstedt et al., 2012;
Embers et al., 2012, 2017; Wormser et al., 2012; Parthasarathy
et al., 2013). Dead spirochetes and spirochetal antigens have
been found to persist within injured tissues in human patients
with Lyme disease, and spirochetal antigens persist in the joints
of mice following antibiotic treatment (Steere et al., 1988;
Nanagara et al., 1996; Bockenstedt et al., 2012). Whether such
material persists in the CNS of patients is unknown; however,
in vitro studies demonstrate that non-viable B. burgdorferi
can stimulate the secretion of inflammatory mediators from
human CNS cells such as oligodendrocytes (Parthasarathy et al.,
2013). Collectively, these reports indicate that the presence
of spirochetal debris following antibiotic treatment may drive
persistent inflammation.

Microglia are resident CNS cells that respond to injury. These
dynamic cells of myeloid origin possess immune receptors such
as Fc receptors and TLRs, and as such are poised to infections
with microbes such as B. burgdorferi (Lee et al., 2013). Indeed,
upon stimulation with B. burgdorferi lysate, expression of TLR1
and TLR2 increases leading to the activation of TLR-linked
intracellular signaling pathways (Cassiani-Ingoni et al., 2006;
Parthasarathy and Philipp, 2015). Microglia are also facultative
phagocytes and, in addition to secreting pro-inflammatory
cytokines, produce neurotropic and neuroprotective factors.
Hence, microglia are recognized as innate immune cells of the
CNS but also have roles in brain homeostasis and tissue repair
(Blaylock, 2013). Inflammatory and homeostatic responses must
be balanced to eliminate pathogens and repair wounds while
preserving brain tissue and minimizing neurological impairment.

Continuous stimulation of microglia drives a pro-inflammatory
profile in the CNS and disrupt homeostasis.

We hypothesized that dead B. burgdorferi and debris persist
in the CNS following antibiotic treatment and promote a
chronic inflammatory response in the CNS through interaction
with microglial cells. In this study, we compared the innate
immune and phagocytic responses of highly pure cultures
of primary human microglia to live or killed B. burgdorferi.
We demonstrate that primary human microglia treated with
B. burgdorferi increase expression of genes involved with innate
immunity, cytoskeletal rearrangement, and phagocytosis, and
secrete pro-inflammatory mediators and neurotrophic factors.
We also visualized B. burgdorferi–microglia interactions and
demonstrate that the spirochete adheres to the cell surface and
may be internalized.

MATERIALS AND METHODS

Microglial Culture
Primary human microglial cells were purchased from ScienCell
Research Laboratories (Carlsbad, CA, United States; catalog
#1901). Microglial cells were maintained on T75 flasks coated
with poly-L-lysine (Corning, 2 µg/cm2, T-75) in microglia
medium (ScienCell, catalog # 1901) supplemented with 100
units/mL of penicillin and 100 µg/mL of streptomycin. In
addition, cultures contained microglia growth supplement (MGS,
catalog # 1952). Prior to B. burgdorferi stimulation, medium
was replaced with antibiotic-free medium. Microglia were used
at passages 2 or 3 at >85% confluence. B. burgdorferi at a
MOI of 10:1 bacteria:cells was used to stimulate microglia
for 24 or 72 h. Cell purity was determined at all passages
using immunocytochemical labeling of parallel cultures grown
on 12 mm glass coverslips (Deutsch Deckglaser-NeuVita Inc.,
Germany) coated with poly-L-lysine (MilliporeSigma, St. Louis,
MO, United States) with a specific marker for microglia rabbit
anti IBA-1 (Wako Chemicals, Richmond, VA, United States).
97% of cells were Iba-1 positive at passage 2 as were 95% of
cells at passage 3, indicating high levels of culture purity as
determined by counting the number of IBA-1 expressing cells
vs. DAPI stained nuclei (Figure 1). Experimental protocols and
commercially available primary cell cultures utilized in these
studies followed the University of North Dakota IRB guidelines as
stated in section 2.19 “Commercially Available Human Biological
Specimens (45 CFR 46.102, 46.103, and 46.116)” and do not
require IRB review.

Borrelia burgdorferi Culture
Virulent B. burgdorferi strain B31 MI-16 (Fraser et al., 1997;
Casjens et al., 2000; Miller et al., 2003), avirulent derivative
e2 (Babb et al., 2004), or gfp-expressing B. burgdorferi (kind
gift of M.A. Motaleb, Eastern Carolina University; Sultan et al.,
2015) were grown at 34◦C to cell densities of approximately
1 × 108/mL in modified Barbour-Stoenner-Kelly II (BSK-II)
medium (Zückert, 2007). For stimulation of microglial cultures,
B. burgdorferi were centrifuged at 6,000 × g, washed 3X with PBS,
and resuspended in microglia medium containing no antibiotics.
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FIGURE 1 | Dual localization of DAPI stained nuclei and Texas Red labeled
IBA-1 (red) in passage 3 culture. Two independent immunocytochemistry
experiments were performed, with two replicate coverslips per experiment.
One count was made per quadrant of coverslip to give a total of eight counts
for each independent experiment. Cell purity in a passage 3 culture was
revealed to be >95%.

Bacterial counts were determined using a Petroff-Hausser
chamber and viewed using dark field microscopy. For bacterial
killing, 1 × 108 B. burgdorferi/mL were treated with ceftriaxone
(MilliporeSigma) for 72 h at 5X the minimum inhibitory
concentration (Veinovic et al., 2013). Ceftriaxone was chosen as
the antibiotic as it is the preferred treatment for neurological
symptoms according to both United States and European
guidelines for human treatment of Lyme disease (Mygland et al.,
2010; Hu, 2012). Complete killing of B. burgdorferi was confirmed
by darkfield microscopy and subculture into fresh BSKII medium
(data not shown). For stimulation experiments performed with
B. burgdorferi sonicate, cultures were subjected to five pulses
(amplitude 4 for 12–15 s each) with a probe sonicator (Fisher
Scientific, Pittsburgh, PA, United States; Model 120). A 10:1 MOI
was used to stimulate microglia cells with live B. burgdorferi.
An equivalent of 10:1 MOI was used to stimulate cell cultures
with antibiotic-killed B. burgdorferi. The amount of sonicate
that was used to stimulate cultures of microglia was equivalent
to 10:1 MOI and was determined by the concentration of
B. burgdorferi in media prior to spirochetal disruption. In this
manner, stimulation experiments were performed at a 10:1 MOI
of live or dead bacteria, or the amount of sonicate that would have
resulted in a 10:1 MOI had it not been sonicated.

Nucleic Acid Isolation and Synthesis
Total RNA was isolated via the RNeasy kit (Qiagen, Valencia,
CA, United States). After aspiration of media from stimulated
cultures, adherent cells were washed 3X with warm, sterile PBS.
Cells were suspended with trypsin-EDTA (ScienCell) and all
enzymatic activity neutralized with the addition of microglial
medium containing 5% fetal bovine serum. Buffer RLT (Qiagen)
was used to lyse cells. Genomic DNA was then removed by
on-column DNA digestion with RNase-Free DNase Set (catalog
# 79254, Qiagen). RNA was then concentrated using a the
Qiagen RNeasy MinElute Cleanup Kit (catalog # 74204). RNA

quality and concentration was assessed by spectrometry (Epoch,
Bio-Tek, Winooski, VT, United States). cDNA was synthesized
with Qiagen RT2 First Strand Kit (Catalog # 330401) following
manufacturer’s instructions.

Gene Expression Analysis by
Quantitative Real-Time RT-PCR (qPCR)
The expression of chemokine, cytokine, and neurotrophin genes,
as well as those associated with phagocytosis, was determined first
with RT2 Profiler PCR arrays (Qiagen) on a Bio-Rad myIQ2 Real-
Time PCR instrument. The manufacturer’s software was used to
analyze the data. Alterations in individual genes were confirmed
using individual PCR primer sets for qRT-PCR (Qiagen; Table 1).
Individual reactions contained 5.5 µl nuclease-free water, 2 µl
primer mix (both forward and reverse) at 10 µM, and 12.5 µl
Bio-Rad Sybr Green Supermix ±5 µl template DNA or no
template control (nuclease-free water). Forty cycles of PCTR were
performed following an initial 10 min denaturation at 95◦C. For
each cycle, a 1 min annealing step at 60◦C preceded a 15-s melting
interval at 95◦C. Melting curves were obtained using a stepped
temperature gradient of 0.5◦C × 10 s starting at 60◦C. Transcript
expression levels were then compared to standard housekeeping
genes (β-actin and GAPDH) and to those of untreated cells using
the 2−11CT method, where CT (threshold cycle). This method
was used on each individual example with the untreated sample
as the comparator (Schmittgen and Livak, 2008). Triplicate
samples were analyzed from a minimum of three independent
biological replicates for each time point.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Following microglial stimulation, culture supernatants were
collected, aliquoted for single use and stored at −80◦C.

TABLE 1 | Primer sets used for quantitative RT-PCR.

Primer name RefSeq accession Qiagen catalog #

B-actin NM_001101 PPH00073G

GAPDH NM_002046 PPH00150F

IL-8 NM_000584 PPH00568A

CXCL-1 NM_001511 PPH00696C

CXCL-10 NM_001565 PPH00765E

VEGF NM_003376 PPH00251C

LIF NM_002309 PPH00813F

IL-6 NM_000600 PPH00560C

IL-15 NM_000585 PPH00694B

CD14 NM_000591 PPH05723A

MARCO NM_006770 PPH09783A

CSF1 NM_000757 PPH00124B

C3 NM_000064 PPH01185E

FCER1G NM_004106 PPH02628B

CD36 NM_000072 PPH01356A

TLR3 NM_003265 PPH01803E

WNT5A NM_003392 PPH02410A

COLEC12 NM_130386 PPH08828C
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ELISA kits were purchased from R&D Systems (Minneapolis,
MN, United States) and were used following manufacturer’s
instructions. Briefly, plates were coated overnight with 100 µl of
specific capture antibody (e.g., anti-IL-8) followed by multiple
wash cycles. Sample standards and controls (100 µl) were
then added to individual wells and incubated for 2 h at room
temperature. Plates were then washed 3X and 100 µl of antibody
conjugate was added to each well, and incubated for 2-h at room
temperature and finally chromogenic detection of desired host

cell factor. Plates reads were performed at an optical density of
450 nm on a BioTek Epoch plate reader. Triplicate samples from
each treatment group were collected and pooled. Data represent
the means and standard errors from at least two independent
biological replicates analyzed in triplicate per time point.

Immunocytochemistry
Microglia were maintained on poly-L-lysine coated glass
coverslips (Neurovita, Germany) in microglia medium (seeding

TABLE 2 | Transcriptional profiling of chemokine gene expression in microglial cells upon stimulation with B. burgdorferi.

Gene Non-virulent Live Abx Function

BMP1 105.4 1209.3 760.0 Bone morphogenic protein; metalloprotease

CSF1 35.5 276.2 194.0 Macrophage colony stimulating factor

GDF5 74.0 235.5 205.0 Growth differentiation factor

IL15 112.2 116.9 95.6 IL2-like cytokine affecting T cell differentiation

IL6 190.0 519.1 661.6 Cytokine important for acute phase response

IL8 340.1 398.9 349.7 Neutrophil chemoattractant

LIF 233.9 648.0 675.5 Leukemia inhibitory factor

VEGFA 182.2 544.9 604.6 Angiogenic factor

Values shown correspond to the mean ratio of triplicate measurements between normalized gene intensity values determined after 72 h of stimulation with 10:1
B. burgdorferi strain B31 (Live), non-virulent B. burgdorferi B31-e2 (NV), or antibiotic-killed B. burgdorferi (Dead) compared with gene intensity values from unstimulated
cells.

FIGURE 2 | Validation of differentially regulated genes by qPCR array analysis. Primary human microglia were stimulated with live virulent (V), non-virulent (NV),
antibiotic-killed (Abx), or antibiotic-treated and sonicated (Abx/Son) B. burgdorferi for 24 or 72 h. Data are representative of two biological replicates per time point,
with each PCR reaction run in triplicate. Data were normalized to transcription levels of two independent housekeeping genes and are expressed as fold change
versus no spirochete control. Error bars represent SEM. Statistical significance for qPCR experiments was determined by running a one-way ANOVA with a post hoc
Dunn’s test (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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FIGURE 3 | B. burgdorferi-stimulated microglia protein expression. Primary human microglia were stimulated with live virulent, non-virulent, antibiotic-killed or
antibiotic-treated and sonicated B. burgdorferi for 24 or 72 h as described in “Materials and Methods.” Cytokine and chemokine concentrations were measured
using ELISA analysis (R&D Systems). Data represent two biological replicates per time point, with each sample run in triplicate. Error bars represent SD. Statistical
significance for ELISAs was determined by running a one-way ANOVA with a post hoc Student–Newman–Keuls (SNK) test (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

density of 20,000 cells/coverslip). Microglia were stimulated by
exposure to B. burgdorferi MOI 10:1 for 24 or 72 h. Microglia
were fixed for 15 min in buffered 4% paraformaldehyde and
washed 3X with PBS. The cells were given three 10 min PBS plus
0.1% Triton x100 (PBS-T) washes and were incubated for 1 h at
room temperature in blocking serum. Blocking serum consisted
of 4% normal serum of the species of the secondary antibody. The
cells were probed with rabbit anti-IBA-1; 1:500 dilution (Wako
Chemicals) diluted in blocking serum and incubated overnight
at 4◦C. Cells were washed 3X with PBS-T and incubated for 1 h
in a solution of biotinylated goat anti-rabbit IgG, (1:500 dilution;

Jackson Immunoresearch, West Grove, PA, United States) diluted
in blocking serum. Following three more washes with PBS-T,
the cells were incubated in a solution of streptavidin-AlexaFluor
594 for 1 h (1:1000 dilution; Thermo Fisher, Grand Island, NY,
United States; cat #S11227). Cells were then washed in PBS
3X and coverslipped with Vectashield containing DAPI (Vector
Laboratories, Burlingame, CA, United States). Immunostained
coverslips were visualized with fluorescent microscopy using
an Olympus BX-51 fluorescence microscope with attached DP-
71 digital camera and dedicated CellSens Standard software
(Olympus, Waltham, MA, United States).
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Confocal Microscopy
Coverslips were coated with collagen at 5 µg/cm2 using a
ScienCell Collagen I-Cell Culture Surface Coating Kit (Cat
#8188) according to manufacturer’s instructions. Microglia were
maintained on collagen-coated glass coverslips in microglia
medium (seeding density of 20,000 cells/coverslip). Microglia
were stimulated by exposure to B. burgdorferi MOI 10:1 for
24 h, or with 5 × 106 beads per well (∼100 ± 25 beads per
cell) of green Fluoresbrite Plain YG 1.0 micron microspheres
with excitation maxima and emission maxima of 441 nm
and 485 nm, respectively (Polysciences Inc., Warrington, PA,
United States; Cat# 17154). Cells were fixed for 15 min in buffered
4% paraformaldehyde and washed three times with PBS. The
cells were blocked in PBS buffer until labeled with IBA-1 as
described above. Images were acquired on an Olympus FV300
confocal microscope. Z stacks were taken at 0.225 µm/image
with a Kallman of 3. Images were viewed and edited with Imaris
software.

Statistical Analysis
Enzyme-linked immunosorbent assay experiments were carried
out two times (24-h samples) or three times (72-h samples and
control samples) in biologically independent experiments with
triplicate replicates. Chemokine and cytokine qPCR experiments
were carried out three or four times in independent experiments
with triplicate replicates. Phagocytosis experiments were carried
out between four and seven times in biologically independent
experiments with triplicate replicates. Statistical significance
for ELISAs was determined by running a one-way ANOVA
with a post hoc Student–Newman–Keuls (SNK) test. Statistical
significance for qPCR experiments was determined by running
a one-way ANOVA with a post hoc Dunn’s test.

RESULTS

Characterization of Microglia Culture
Purity
To verify the purity of our primary human microglial cultures,
cultures of passage 2–3 microglia were incubated with anti-IBA-
1 antibody and counterstained with DAPI. Culture purity was
determined by dividing the number of cells immunoreactive
for IBA-1 staining (microglia) with the total number of nuclei
(DAPI). At passage 2, primary human microglial cultures were
>97% pure; at passage 3, primary human microglial cultures
were >95% pure (Figure 1). No changes in morphological
characteristics were observed through the passages.

Differential Chemokine Gene Expression
in Human Microglia Cells Stimulated
With B. burgdorferi
Primary cultures of human microglia cells were stimulated
with virulent, non-virulent, and antibiotic killed B. burgdorferi
for 24–72 h. RNA was extracted from stimulated and control
cells, cDNA synthesized for real-time PCR array analysis.
There was very little variation between technical replicates

across the array, with standard deviations averaging less
than 1 threshold cycle (data not shown). Several genes
were differentially upregulated more than threefold by non-
virulent B. burgdorferi, virulent B. burgdorferi, and antibiotic-
killed bacteria, including neutrophil chemoattractants (IL-
8), growth/differentiation factors (CSF-1, GDF-5, LIF), and
cytokines IL-6, IL-15, and VEGF (Table 2).

Transcription of selected genes from the PCR array were
confirmed at 24 and 72 h after stimulation with live virulent,
non-virulent, antibiotic-killed, and antibiotic-killed sonicated
B. burgdorferi. A similar trend was observed for several
transcripts at 24 h, including IL-6, IL-8, IL-15, LIF, and VEGF
(Figure 2).

To determine if these transcriptional changes were biologically
relevant, we measured the production of cytokines, chemokines,
and neurotrophins secreted from microglia stimulated with live
virulent, non-virulent, and antibiotic-killed and antibiotic-killed
sonicated spirochetes for 24–72 h. We quantified supernatant
protein concentrations of IL-6, IL-8, LIF, CXCL-1, and CXCL-10
by ELISA. Our results demonstrate elevated protein levels for all
six proteins examined when compared to non-treatment controls
with the highest concentrations of protein associated with the
antibiotic-treated and sonicated B. burgdorferi. Chemokines IL-
8, CXCL-1, and CXCL-10 and the cytokine IL-6 were generally
secreted in a temporal pattern, with highest secretion occurring
72 h after cell stimulation when compared to the 24 h time point
(Figure 3).

Differential Phagocytosis-Related Gene
Expression in Human Microglia Cells in
Response to B. burgdorferi
Primary cultures of human microglia cells were stimulated
with exponential phase live, antibiotic-killed and antibiotic-
killed sonicated spirochetes for 24 h. Again, we utilized
commercial qPCR arrays to quantify the transcription of a
panel of human phagocytosis-related genes. Surprisingly, no
genes were upregulated when stimulated with live B. burgdorferi
(data not shown). Because antibiotic-killed B. burgdorferi

TABLE 3 | Transcriptional profiling of phagocytosis-related gene expression in
microglial cells in response to B. burgdorferi.

Gene Abk Abks Function

CD14 10.3 17.4 Co-receptor for PAMPS

CSF1 2.4 8.8 Macrophage colony stimulating factor

LYN 3.7 2.8 Src family tyrosine kinase

MARCO 8.3 9.2 Scavenger receptor

PLA2G4 3.1 5.9 Phospholipase A2

PLD2 3.6 4.3 Phospholipase D2

SCARB1 3.8 5.8 Scavenger receptor

TLR3 3.4 4.7 Toll-like receptor 3; endosomal TLR

WNT5A 13.4 6.8 Wingless homolog; stimulates phagocytosis

Values represent the mean ratio of triplicate measurements determined between
normalized gene intensity values after 24 h of stimulation with 10:1 antibiotic-killed
B. burgdorferi strain B31 or antibiotic-killed and sonicated B. burgdorferi (ABKS)
compared with gene intensity values from unstimulated cells.
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FIGURE 4 | Validation of selected phagocytosis-related gene expression. Primary human microglia were stimulated with live virulent (V), non-virulent (NV),
antibiotic-killed (Abx), or antibiotic-treated and sonicated (Abx/Son) B. burgdorferi for 24 h followed by RNA purification and cDNA synthesis. Individual primer sets
(SABiosciences) were used to amplify transcripts of interest by qPCR. Data represent two biological replicates per time point, with each PCR reaction run in triplicate.
Data were normalized to transcription levels of two independent housekeeping genes and are expressed as fold change compared to no spirochete control. Error
bars represent SEM. Statistical significance for qPCR experiments was determined by running a one-way ANOVA with a post hoc Dunn’s test (∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001).

had elicited robust chemokine expression, we investigated
whether primary human microglia would respond to dead
B. burgdorferi. Bacteria were either killed with antibiotics or
killed with antibiotics and disrupted by sonication. In contrast
to live B. burgdorferi, several genes were upregulated more
than threefold by dead B. burgdorferi, including scavenger
receptors (MARCO, SCARB1), PLAs (PLA2, PLD2), and pattern
recognition receptors (CD14, TLR3) (Table 3).

We then validated the expression of selected differentially
regulated genes by qPCR array analysis. The mRNA expression of
selected genes from the phagocytosis array was analyzed at 24 h
after B. burgdorferi stimulation. Transcriptional induction by
antibiotic-killed and antibiotic-killed sonicated was observed by
qRT-PCR and that seen in the commercial real-time PCR arrays

for several transcripts, including MARCO and CD14 (Figure 4).
In contrast to the array results, live B. burgdorferi also upregulated
several of these transcripts, including CD14 and MARCO. No
significant differences were seen between live and antibiotic-
killed spirochete induction of transcripts, with the exception of
TLR3.

Confocal Microscopic Analysis of
Microglial Phagocytosis of B. burgdorferi
In order to confirm whether the results of commercial
phagocytosis arrays were the result of internalization or solely the
aftermath of cell-surface receptor cascades, confocal microscopy
was used to visualize B. burgdorferi in microglia cells. Primary
cultures of human microglia were left un-stimulated, stimulated
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FIGURE 5 | Confocal microscopy of B. burgdorferi interactions with primary human microglia. (A) Oblique view showing 1 µM green fluorescent beads associated
with microglial cell (green arrows, 60X). (B) Demonstrates internalization of beads. Green arrows denote internalized bead in (A,B). (C) White arrows illustrate intact
spirochete associated with surface of microglial cell with no indication of internalization. (D) Blue arrows demonstrate internalization of Borrelia particles (C,D)
suggesting internalization is associated with prior bacterial cell death.

with green fluorescent control beads, or stimulated for 24 h
with fluorescent gfp-expressing B. burgdorferi. After fixation,
cells were stained with Texas Red 594 for IBA-1. Images of
non-treated control cells demonstrate Texas Red 594 bound to
IBA-1 without the co-localization of gfp-expressing B. burgdorferi
(Figure 5). Fluorescent beads are useful probes for measuring
phagocytic response among cells. Indeed, our cultures of
primary human microglia are capable of internalizing or
engulfing fluorescent control beads and confocal analysis of
microglia treated with live B. burgdorferi suggested interaction
on the cell surface in addition to internalization as well
(Figure 5).

DISCUSSION

Previous work on murine microglia and B. burgdorferi indicates
that both live B. burgdorferi as well as spirochetal antigen
induces IL-6 and TNF-α secretion from these cells. Furthermore,
B. burgdorferi antigen induces increased expression of several
innate immune molecules and signaling factors such as NOD2,
TLR2, and CD14 by murine microglia (Rasley et al., 2002;
Sterka and Marriott, 2006; Sterka et al., 2006; Tauber et al.,
2011). Likewise, after 24 h of incubation with live B. burgdorferi,
primary rhesus microglia respond with increased transcription of
chemokines and cytokines including IL-6 and IL-8. Among other
products, primary rhesus microglia elaborate the proteins IL-6
and IL-8 (Myers et al., 2009; Ramesh et al., 2009). As with murine
microglia, TLRs and their signaling pathways are involved in the
response of rhesus microglia to B. burgdorferi (Bernardino et al.,
2008; Parthasarathy and Philipp, 2013). Taken together, previous
studies characterizing the response of both murine and primary
rhesus microglia to B. burgdorferi indicate an upregulation of
innate immune receptors such as toll like receptors along with
the secretion of chemokines and cytokines including IL-6, IL-8,
and TNF-α.

Our results demonstrate the robust transcription and protein
secretion of both chemotaxic and potentially neuroinflammatory
proteins by primary human microglial cells in response to
B. burgdorferi in vitro, consistent with previous studies in mouse
and monkey microglia (Rasley et al., 2002; Myers et al., 2009).
CXCL-1 and IL-8 (potent neutrophil chemoattractants) were
among the most upregulated, although secretion of CXCL-10
(T cell chemoattractant) and IL-6 were also observed. IL-6
can play both inflammatory and neurotrophic roles in CNS
disorders (Suzuki et al., 2009), and whether it potentiates
B. burgdorferi-induced damage or protects neurons in Lyme
neuroborreliosis is unknown. The strongest protein response
was observed in antibiotic-killed and sonicated spirochete
treated cultures indicating that elevated protein expression
can occur in response to dead or viable B. burgdorferi.
These data suggest even after antibiotic killing, B. burgdorferi
debris and dead bacteria could potentiate an inflammatory
response in the absence of live organisms. This concept is
supported by work by Parthasarathy et al. (2013) demonstrating
inflammatory responses to non-viable B. burgdorferi in human
oligodendrocytes, as well as studies in which inflammation
remained after antibiotic treatment of B. burgdorferi-infected
rhesus macaques (Parthasarathy et al., 2013; Crossland et al.,
2017; Embers et al., 2017).

We also saw increased transcription and protein secretion of
growth factors and neuroprotective factors including LIF. LIF
is a neurotrophic cytokine that shares a receptor subunit with
IL-6 and ciliary neurotrophic factor (Suzuki et al., 2009), and
was recently shown to be required to prevent the propagation of
secondary neurodegeneration after brain injury (Goodus et al.,
2016). Microglial activation can be beneficial or detrimental,
depending on the balance of pro-inflammatory factors, anti-
inflammatory molecules, neurotrophins, and the magnitude of
response. Factors involved in promoting glial inflammation in
response to infection and injury include more than the usual
suspects (e.g., inflammatory cytokines). Indeed, recent work
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supports roles for the neuropeptide substance P in inflammatory
CNS disorders, including infection with B. burgdorferi (Chauhan
et al., 2008; Johnson et al., 2016; Burmeister et al., 2017;
Martinez et al., 2017). In light of recent work on the connection
of glia to persistent pain (Loggia et al., 2015; Ji et al.,
2016), the contribution of neurotrophins, growth factors, and
neurotransmitters to cellular responses to B. burgdorferi may
offer clues to chronic pain often reported by patients with post-
treatment Lyme sequelae. Interestingly, we saw upregulation of
CSF-1 in response to B. burgdorferi, and this factor has been
recently linked to microglia proliferation (Guan et al., 2016).

We also investigated whether primary human microglia
could effectively phagocytize B. burgdorferi. Phagocytosis of
B. burgdorferi can occur via one of three mechanisms: opsonic
mediated phagocytosis (through interaction with complement
receptors), conventional phagocytosis mediated by integrins and
C-type lectins, or coiling phagocytosis, which involves filopodial
protrusion and actin rearrangement (reviewed in Cervantes
et al., 2014). Many of the factors involved in phagocytosis
of B. burgdorferi were substantially upregulated in primary
human microglia, such as CD14 and MARCO, but only in
the presence of dead spirochetes. These results were somewhat
surprising, as murine microglia incubated with live B. burgdorferi
can efficiently phagocytize and kill the bacteria, even in the
absence of opsonizing antibodies (Kuhlow et al., 2005). The
cell surface component CD14 is key to the recognition of
bacteria such as B. burgdorferi. More specifically, CD14 has been
shown to cooperate with complement receptor 3 in promoting
phagocytosis of B. burgdorferi in both murine macrophages and
human monocytes (Hawley et al., 2012). The scavenger receptor
MARCO is upregulated in response to B. burgdorferi in murine
macrophages, and the lack of this receptor decreases the ability
of these cells to internalize B. burgdorferi (Petnicki-Ocwieja et al.,
2013). In the only other published report investigating responses
of human microglia to B. burgdorferi, cells stimulated with
B. burgdorferi lysate also upregulate transcription of MARCO
(Cassiani-Ingoni et al., 2006).

Consistent with these results, we saw increased expression
of MARCO only in antibiotic-killed and antibiotic-killed
sonicated B. burgdorferi-treated cells. MARCO and other
scavenger receptors may play a role in Alzheimer’s and other
neurodegenerative diseases, where the receptors facilitate uptake
of amyloid beta and induce an inflammatory response that could
contribute to microglial neurotoxicity (Yu and Ye, 2015). Future
experiments are required to confirm the expression of MARCO in

microglia in the rhesus macaque model of neuroborreliosis, and
its function in B. burgdorferi clearance in non-murine models.

CONCLUSION

We have demonstrated that primary human microglia treated
with B. burgdorferi experience increased expression of pattern
recognition receptors and genes known to be involved with
cytoskeletal rearrangement and phagocytosis, in addition to
the expected increased expression as well as secretion of pro-
inflammatory molecules and neurotrophic factors. Our data also
indicate that B. burgdorferi interacts with the cell surface of
primary human microglia and may be internalized following
this initial interaction. Our futures studies will use scanning
and transmission electron microscopy to gather high-resolution
images of the cell surface interacting with B. burgdorferi to
confirm B. burgdorferi internalization by human microglia.
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