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Agricultural plastic mulch films are widely used in specialty crop production systems
because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an
environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike
PE films, which need to be removed after use, BDMs are tilled into soil where they are
expected to biodegrade. However, there remains considerable uncertainty about long-
term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil
microbial communities in two ways: first, as a surface barrier prior to soil incorporation,
indirectly affecting soil microclimate and atmosphere (similar to PE films) and second,
after soil incorporation, as a direct input of physical fragments, which add carbon,
microorganisms, additives, and adherent chemicals. This review summarizes the current
literature on impacts of plastic mulches on soil biological and biogeochemical processes,
with a special emphasis on BDMs. The combined findings indicated that when used
as a surface barrier, plastic mulches altered soil microbial community composition
and functioning via microclimate modification, though the nature of these alterations
varied between studies. In addition, BDM incorporation into soil can result in enhanced
microbial activity and enrichment of fungal taxa. This suggests that despite the fact that
total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity
may ultimately affect soil organic matter dynamics. To address the current knowledge
gaps, long term studies and a better understanding of impacts of BDMs on nutrient
biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil
health and agroecosystem sustainability.

Keywords: biodegradable plastic, plastic mulch, polyethylene, specialty crops, soil microbiology, soil
microclimate, soil biogeochemistry, soil health

INTRODUCTION: AGRICULTURAL PLASTIC MULCH FILMS

Agricultural plastic mulch films are used in production of specialty crops to modify soil
temperatures, conserve soil moisture (Kader et al., 2017) and reduce weed pressure (Martín-Closas
et al., 2017), ultimately improving crop productivity. Low-density polyethylene (PE) is the most
commonly used plastic mulch because it is inexpensive, easily processed, highly durable and flexible
(Kasirajan and Ngouajio, 2012). However, widespread use of PE, which is not biodegradable, has
resulted in serious environmental contamination (Teuten et al., 2009; Liu E.K. et al., 2014; He et al.,
2015; Steinmetz et al., 2016).
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A growing concern is that plastic mulches are never
completely removed from a field, leaving remnants which remain
in soil for decades (Feuilloley et al., 2005; Kyrikou and Briassoulis,
2007; Briassoulis et al., 2015; Ramos et al., 2015). In China, long
term use of plastic film mulches has resulted in an estimated
accumulation of 50–260 kg hm−2 of residual plastics in topsoil
(0–20 cm), which can inhibit plant growth (Liu E.K. et al., 2014).
While PE is considered to be chemically inert, accumulated PE
fragments can affect soil physically and may enter the food chain
(Barnes et al., 2009; Teuten et al., 2009; Sivan, 2011; Rillig,
2012; Duis and Coors, 2016; Huerta Lwanga et al., 2016). Plastic
mulches also introduce various additives such as plasticizing
agents which may pollute soil (Van Wezel et al., 2000; Fu and Du,
2011; Kong et al., 2012; Magdouli et al., 2013; Wang et al., 2013,
2015).

Biodegradable plastic mulches (BDMs) have been developed
as substitutes to PE mulch films and are designed to be tilled into
soil after use where resident microorganisms degrade the plastic.
BDMs can be prepared from biobased polymers derived from
microbes or plants, or fossil-sourced materials (Marechal, 2003).
Common biobased polymers used in BDMs include polylactic
acid (PLA), starch, cellulose, and polyhydroxyalkanoates (PHA).
Fossil-sourced polyesters used in BDMs include poly(butylene
succinate) (PBS), poly(butylene succinate-co-adipate) (PBSA),
and poly(butylene-adipate-co-terephthalate) (PBAT) (Kasirajan
and Ngouajio, 2012). Polymers used in BDMs contain ester
bonds or are polysaccharides, which are amenable to microbial
hydrolysis (Brodhagen et al., 2015). In theory, BDMs should
be completely catabolized by soil microorganisms, converted to
microbial biomass, CO2 and water (Malinconico et al., 2002;
Feuilloley et al., 2005; Imam et al., 2005; Dintcheva and La
Mantia, 2007; Kyrikou and Briassoulis, 2007; Kijchavengkul
et al., 2008; Lucas et al., 2008). In practice, complete breakdown
in a reasonable amount of time is not always observed (Li
et al., 2014b). Regulators and growers cite concerns about
unpredictable or incomplete breakdown and the ultimate fate of
BDM constituents and their effect on soil ecosystems (Goldberger
et al., 2015; Miles et al., 2017). Due to increased demand for
eco-friendly substitutes to PE, the global market for BDMs is
expected to continue to grow. Soil health is a key component of
agroecosystem sustainability, thus there is a need to understand
the effects of BDMs on both crop productivity and soils. To
date, the majority of soil studies related to plastic mulching
have focused on PE. The objective of this review is to highlight
research concerning impacts of plastic mulches on soil microbial
communities and their processes with an emphasis on BDMs.
Gaps in our current understanding of how plastics affect soil
ecosystems are highlighted.

INDIRECT EFFECTS OF PLASTIC
MULCHES ON SOILS VIA
MICROCLIMATE MODIFICATION

One way that plastic mulches (both BDMs and PE) may indirectly
affect soil ecosystems and microbial community functioning is
via modification of soil microclimate and atmosphere. As a

barrier on the soil surface, plastic mulches reduce evaporation
and gas exchange, increase temperature and reduce light
transmissivity (Figure 1; Kasirajan and Ngouajio, 2012). The
extent of these modifications depends on their physicochemical
properties; for example, PE mulches result in greater warming
compared to BDMs (Moreno and Moreno, 2008; Kader et al.,
2017) and are less vapor-permeable (Touchaleaume et al.,
2016) resulting in accumulation of soil CO2 (Zhang et al.,
2015; Yu et al., 2016). By serving as a barrier to evaporation,
plastic mulches can result in increased soil moisture levels
(Qin et al., 2015) which can ultimately alter soil physical
structure; for example by increasing the proportion of water
stable aggregates (Siwek et al., 2015). Favorable moisture and
temperature conditions under plastic mulches also affect plant
roots, typically stimulating root development and increasing
root exudation (Li et al., 2004b; Subrahmaniyan et al.,
2006; Wang et al., 2016). This results in greater nutrient
availability for rhizosphere microorganisms (Subrahmaniyan
et al., 2006; Lin et al., 2008; Maul et al., 2014; Liu et al.,
2015).

Since levels of soil moisture, temperature, vapor diffusivity
and presence of roots modulate microbial activity, it follows that
modifications to soil microclimate under plastic mulches affect
soil microbial communities. Plastic mulching can also decrease
populations of soil invertebrates (Schonbeck and Evanylo, 1998;
Miñarro and Dapena, 2003), which may reduce top-down grazing
pressures on soil microbes. A 28-year study in Shenyang,
China, demonstrated that plastic film mulching increased
relative abundances of Proteobacteria and Actinobacteria (Farmer
et al., 2017). Other studies reported improved control of
Phytophthora capsici (Núñez-Zofío et al., 2011) or increased
mycotoxigenic fungi under plastic mulches (Munoz et al., 2015).
From PE studies, we can infer that BDMs may have similar
indirect effects and alter microbial community structure and
diversity.

In addition to changes in microbial community structure,
plastic film mulches affect microbial functioning. Some studies
report increased microbial activity under mulches (Mu et al.,
2014, 2016; Zhang et al., 2015; Chen H. et al., 2017), while
others report decreased activity (Moreno and Moreno, 2008).
The response is most likely dependent on the amount of
warming under the mulches: where ambient temperatures are
cool, mulches bring soil temperature closer to microbial optima
and increase activity, whereas in warmer seasons, the mulches
may push temperatures above optima, limiting soil microbial
activity (Moreno and Moreno, 2008). The changes in microbial
activity ultimately influence nutrient cycling and storage. The
effect of plastic on soil organic carbon (SOC) is the result of the
balance between increased root growth and exudate secretion,
and microbial decomposition and loss to CO2 (Wien et al., 1993;
Nan et al., 2016). Thus, it is not surprising that studies examining
SOC under plastic mulches have yielded mixed results, with some
reporting increased microbial biomass carbon (Li et al., 2004a;
An et al., 2015) and SOC (Munoz et al., 2017) and others no
change (Wang et al., 2016) or decreased SOC (Cuello et al.,
2015). It should be noted that changes in SOC take place over
longer time intervals, so the short term (one or two seasons)
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FIGURE 1 | Indirect [polyethylene and biodegradable mulches (BDMs)] and direct (BDMs only) effects of plastic mulching on soil ecosystems. Plastic mulches form a
barrier on the soil surface which influences soil temperature, moisture and soil-air gas exchange, indirectly altering the microbial communities. BDMs are tilled into
the soil at the end of the growing season, introducing physical fragments and a carbon source, along with other components of the plastic films (additives,
plasticizers, minerals, etc.) which may additionally influence soil communities and their processes.

nature of most mulching experiments do not capture these longer
term dynamics. Plastic mulching also affects cycling and losses
of nitrogen in soils (Qin et al., 2015; Nan et al., 2016). Because
plastic mulching improves water use efficiency (WUE), nitrate
leaching is reduced (Romic et al., 2003). Indeed, Qin et al.
(2015) estimated up to 60% increase in nitrogen use efficiency
(NUE) under PE mulching compared to no-mulch controls. With
respect to N2O gas release, results are mixed, with some studies
reporting decreases (Berger et al., 2013; Li et al., 2014d; Liu J.L.
et al., 2014) and others, increases (Okuda et al., 2007; Arriaga
et al., 2011; Nishimura et al., 2012; Cuello et al., 2015; Chen H.
et al., 2017).

Together, these studies show that plastic mulching,
independent of composition, has significant effects on soil
microbes and their processes via environmental modification.
In several cases, improved crop productivity with mulch was
accompanied by a loss of soil organic matter and increased release
of greenhouse gasses (Steinmetz et al., 2016). It is important
to note that PE films often result in higher soil temperatures
and are more effective in suppressing weeds compared to
BDMs (Bonanomi et al., 2008). As a physical barrier, BDMs are
expected to have similar, though not identical, indirect effects
on soil microbes via microclimate modification; the outstanding
question is how these effects play out when direct incorporation
and biodegradation of BDMs are taken into consideration.

DIRECT EFFECTS OF BDMs VIA
INCORPORATION INTO SOIL

While BDMs may have comparable effects as PE mulches when
used as a surface barrier, they are distinctly different when
considering their ultimate fate. After the growing season, PE
films should be removed from the soil surface, while BDMs
are meant to be tilled in and biodegraded by microorganisms.
BDM fragments are both a physical and a biogeochemical input

(Figure 1). This aspect is unique to BDMs, and may have effects
on soil ecology and functioning that cannot be predicted from
studies of non-biodegradable plastics such as PE.

Biodegradable plastic mulch fragments may physically modify
soil before they are fully biodegraded. For example, PE plastic
fragments reduce soil infiltration and water absorption; their
accumulation may affect soil ecosystems and ultimately plant
germination and growth (Liu E.K. et al., 2014). Therefore, it is
conceivable that under conditions restricting soil microbiological
activity (e.g., water scarcity), BDM fragments may accumulate in
soil with similar effects on soil and plants.

From a toxicology standpoint, the fragments of BDMs
incorporated into the soil are generally considered to be safe.
For example, tests of the starch-copolyester blend Mater-Bi R©

(Novamont, Novara, Italy) have shown no ecotoxic effects
(Sforzini et al., 2016), nor adverse effect on nitrification potential
(ISO 14238:2012) (Ardisson et al., 2014), Enchytraeus albidus
reproduction (ISO/CD 16387), or Vibrio fischeri (ISO 11348 flash
test) (Kapanen et al., 2008). Similarly, soil samples containing
Ecoflex R© (BASF), PHB, and PLA show no demonstrated visual
phytotoxicity (ISO 11269-2) (Rychter et al., 2006, 2010). It should
be noted that these studies focus on acute responses; possible
effects of longer exposure is untested.

Plastic mulches are composed not only of the main polymers
but also of small amounts of organic (e.g., additives, plasticizers,
etc.) and inorganic (e.g., Cu, Ni, etc.) components, whose effects
are largely unknown. Traditional plant tests for toxicity have
not been adapted to identify effects of compounds released
from BDMs. First, different compounds are released at different
times during the biodegradation process. Second, frequently
used tests fail to reckon the changing needs and responses
throughout plant development by only focusing on germination.
Finally, the diversity of plant responses in the ecosystem is
narrowly represented by tests that analyze early growth in a
few, mostly vigorous, plant species. Despite these constraints,
some effects have emerged. A phytotoxicity test of several
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chemicals used in bioplastics found that some exhibited a
concentration-dependent inhibition of plant growth (Martin-
Closas et al., 2014). Acrylate polymers used to maintain soil
humidity damaged maize root and shoot development (Chen
et al., 2016). Organic compounds released from mulch polymers
have been found to be absorbed by crop plants (Du et al.,
2009; Li et al., 2014c; Chen N. et al., 2017). Given some of the
demonstrated effects on plants, these additives may also impact
soil microbes and their functions, though these effects are largely
unexplored.

Tilled into soil, BDMs are an input of carbon, albeit a
very small one when taking into account the volume of soil
into which they are incorporated. However, the growth of
soil microbes in agricultural soil is usually carbon-limited and
several studies have demonstrated responses by soil microbes
to these small inputs. BDMs have caused increases in microbial
biomass and enzyme activities (Li et al., 2014a; Yamamoto-
Tamura et al., 2015) and changes in soil microbial community
structures (Koitabashi et al., 2012; Li et al., 2014b; Muroi et al.,
2016). There is evidence that BDMs enrich for certain taxa,
for example, PBSA films preferentially selected for Aspergillus,
Penicillium, and Acanthamoeba fungi (Koitabashi et al., 2012)
and PBAT film surfaces were enriched in Ascomycota (Apodus,
Saccharicola, Setophoma), and Proteobacteria (Hyphomicrobium,
Caenimonas) (Muroi et al., 2016). Several studies have also
noted increased fungal abundances in soil as a result of BDM
incorporation (Rychter et al., 2006; Li et al., 2014b; Ma et al.,
2016; Muroi et al., 2016). The majority of these studies examine
only one soil type or location; one of the few studies to
examine responses in multiple locations showed an enrichment
of fungi in one location and Gram-positive bacteria in another
(Li et al., 2014b) indicating that microbial responses to BDMs
may be affected by environment, soil type and/or management
legacies.

In order to tease apart whether observed changes in microbial
communities are a result of microclimate effects (i.e., changes
that would be expected regardless of the plastic material used)
or are specific to BDMs tilled into soil, results from studies
that directly compare microbial communities under PE and
BDMs in the same experiment are required. The few studies
available reported increased microbial abundances, respiration,
and enzyme activities under BDMs compared to PE treatments
(Moreno and Moreno, 2008; Li et al., 2014a; Yamamoto-Tamura
et al., 2015; Barragán et al., 2016; Hajighasemi et al., 2016;
Ma et al., 2016) suggesting that incorporation of BDMs does
have some effect on microbial activity. Evidence of enhanced
degradative activities by soil microbes suggests that BDMs may
ultimately change carbon cycling and storage in soil. The total
amount of carbon in BDMs is small, and much of it is expected
to be respired as CO2. However, repeated tilling of BDMs
into soil may have an effect over time. In one study, use of
BDMs resulted in increased microbial biomass carbon compared
to PE mulches (Moreno and Moreno, 2008), suggesting an
impact on soil carbon dynamics that may accumulate over
time. It should also be considered whether enhanced BDM
decomposition would impact cycling of other nutrients. Studies
on nutrient transformation related to BDM use are limited; two

studies reported that BDMs, like PE films, had no measurable
impact on nitrification potential of soils (Kapanen et al.,
2008; Ardisson et al., 2014); effects on other nutrients remain
unknown.

Taken together, the changes in microbial community
structures, stimulated microbial decomposition, and increased
microbial biomass suggest enhanced nutrient and carbon cycling
under BDMs, which may result in long term effects on soil
organic matter dynamics. However, with limited research on
long term studies, it remains unknown if BDMs may impact soil
functions differently than PE and what implications this has for
sustainability of this technology for crop production.

FUTURE RESEARCH OPPORTUNITIES

Biodegradable plastic mulches are a promising alternative to
PE plastic film mulches. However, there are considerable gaps
in our understanding of how long-term use of BDMs affects
soil ecosystems that are critical to crop productivity. Effects
of conventional PE mulches on soil microclimate, microbial
communities and biogeochemistry provide insight into how
BDMs may be indirectly influencing soil. As a surface barrier,
plastic mulches can alter soil microbial community composition
and functioning in terms of carbon and nitrogen cycling
via microclimate modification, though the nature of these
alterations has varied between studies. Additionally, there is
a lack of knowledge regarding the ecological consequences
of BDM degradation products (Lambert and Wagner, 2017).
Repeated tilling of BDM fragments into soil may alter the
soil physical environment and act as a new source of carbon
for microbes. In this regard, effects of BDMs on soils are
unique compared to other plastics. The dearth of research
directly comparing BDMs to PE renders it difficult to tease
apart whether BDMs have an impact on soil microbes and
their activities above and beyond what would be expected
from a PE plastic film. The few available comparative studies
show that microbial activity is enhanced under BDMs. This
suggests that despite the fact that total carbon input from BDMs
is minuscule, a stimulatory effect on microbial activity may
contribute to soil microbial biomass and ultimately soil organic
matter.

Several key gaps remain in our understanding of BDMs
and their impacts on soil ecosystems. First, studies to date
have focused on short term effects, generally one or two
growing seasons, or acute toxicity, so long term effects are
unknown. Second, the relationship between plastic composition
and microbial responses needs exploration: different types
of biodegradable plastics will likely differentially affect soil
microbes, based on both the parent polymer composition and
breakdown products. Third, additives have been demonstrated
to leach out of plastic and affect plants; but their effects on soil
microbes are unknown. Fourth, several studies have indicated
that BDMs may stimulate decomposition; however, effects on
nutrient biogeochemistry are largely unexplored. To address
these knowledge gaps, long term studies are needed to assess soil
health and sustainability impacts, particularly with respect to soil
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carbon and/or chronic toxicity effects. In addition, studies should
include a direct comparison of PE to BDMs to determine
whether BDMs affect soils differently than conventional plastic
mulches. Addressing these knowledge gaps will provide much-
needed information to growers and regulators on the safety and
sustainability of BDMs for agroecosystems.
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