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Microorganisms play a major role in biogeochemical cycles. As such they are attractive
candidates for developing new or improving existing biotechnological applications,
in order to deal with the accumulation and pollution of organic and inorganic
compounds. Their ability to participate in bioremediation processes mainly depends
on their capacity to metabolize toxic elements and catalyze reactions resulting in, for
example, precipitation, biotransformation, dissolution, or sequestration. The contribution
of genomics may be of prime importance to a thorough understanding of these
metabolisms and the interactions of microorganisms with pollutants at the level of both
single species and microbial communities. Such approaches should pave the way for
the utilization of microorganisms to design new, efficient and environmentally sound
remediation strategies, as exemplified by the case of arsenic contamination, which has
been declared as a major risk for human health in various parts of the world.
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FROM GENES TO METAGENOMES

In over three billion years of evolution, microorganisms have colonized nearly all ecological
niches, including the most extreme environments. Due to their multiple metabolic activities, they
play a major part in biogeochemical cycles, affecting soil productivity or water quality (Madsen,
2011) and constitute an immense reservoir of genes with high potentials for biotechnology
applications. For those reasons, microorganisms from the environment have aroused a strong
interest since long before the microbial genomics era. A large number of enzymes and genes
coding for biocatalyzers (cellulases, proteases, lipases/esterases, glycosidases, chitinases, xylanases,
phosphatases) or for enzymes involved in vitamin and antibiotic biosynthesis have thus been
isolated from environmental microorganisms (Colin et al., 2015; Jacques et al., 2017; Krüger
et al., 2018). Many of these enzymes have been used for research, industrial or pharmaceutical
applications (Madhavan et al., 2017) like, for instance, restriction enzymes and the Taq DNA
polymerase that sparked a revolution in molecular biology techniques (Ishino and Ishino, 2014).

More than 20 years ago, thanks to the rise of molecular biology and the automation of DNA
sequencing, microbiology embraced genomics, the ensemble of approaches which address the
organization and activity of organisms within the scope of their full genome, acknowledging that
no living system can be reduced to a single gene expressed at some time or another (Bertin et al.,
2015). Since the very first genome sequence from a free-living organism, Haemophilus influenzae
Rb (Fleischmann et al., 1995), the number of new microbial genome sequences published each
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year has grown exponentially to reach in 2014 a total of over
30,000 publicly available sequenced bacterial genomes (Land
et al., 2015).

Yet, diversity data provided by molecular methods suggest
that there remains in many ecosystems a vast majority of
microorganisms belonging to taxa that have not been isolated
in pure culture (Rashid and Stingl, 2015) and cultivation may
be extremely difficult for a majority of them. Environmental
genomic approaches could nonetheless provide access directly
to the genome of uncultivated organisms like ‘Candidatus
Desulforudis audaxviator,’ which practically represents the sole
species present in a gold mine and can fix nitrogen using
a cellular mechanism similar to that of Archaea (Chivian
et al., 2008). Metagenomic analyses of nitrogen metabolism in
anaerobic enriched cultures also led to the reconstruction of
prokaryotic genomes such as Kuenenia stuttgartiensis (Strous
et al., 2006), ‘Candidatus Nitrospira defluvii’ (Lücker et al., 2010)
or the archaeon ‘Candidatus Methanoperedens nitroreducens’
(Haroon et al., 2013) involved in oceanic ammonium oxidation,
nitrite oxidation in sewage treatment plant sludge and anaerobic
oxidization of methane coupled to nitrate reduction, respectively.
Similarly, the genome of an iron-oxidizer strain belonging to the
Ferrovum genus was reconstructed from a mixed culture grown
from samples collected in a mine water treatment plant (Ullrich
et al., 2016).

Though molecular techniques associated with bioinformatic
and genome-mining methods are invaluable tools to reveal
the potential in genome data (Machado et al., 2017; Vallenet
et al., 2017), cultivation remains an important challenge
in microbiology, necessary for expanding our knowledge of
microorganisms’ physiology and for bioremediation (Overmann
et al., 2017). However, microorganisms from the environment
may require essential nutrients or particular growth conditions,
or may be extremely slow growers or obligate symbionts.
Although tackling these issues generally demands strenuous
efforts to design and test many isolation media, genome
characterization may highlight metabolic characteristics of the
targeted organism that could be leveraged to select and cultivate
a given strain (Garza and Dutilh, 2015). This strategy allowed the
isolation of the first nitrifying archaeon (Schleper et al., 2005)
after an analysis of the Sargasso Sea metagenome (Venter et al.,
2004) had detected on the same DNA fragment an Archaea-
specific ribosomal gene and a gene coding for the ammonium
monooxygenase, a key enzyme in nitrification. Subsequent
physiological studies showed that the nitrification function was
indeed expressed (Könneke et al., 2005). Another example is
provided by the isolation of Leptospirillum ferrodiazotrophum
(Tyson et al., 2005), which a previous metagenomic study had
shown to be the only strain in an acid mine tailing to be able to
fix nitrogen.

Beyond approaches centered on single organisms, the
developments of genomics have rendered possible a global view
of microbial communities that could help a better understanding
of natural remediation processes and identifying candidate
species for the design of bioremediation treatment plants. In this
respect, high-throughput tools such as microarrays have allowed
to address ecological questions related to the structure and

function of microbial communities. Developed from the genomic
data present in databases, such approaches may be helpful
to study the diversity and dynamics of microbial populations
using nucleic acids extraction and hybridization (Zhou et al.,
2015). They were successfully used, for example, to examine
the responses of microbial communities after the wreck of a
drilling rig in the Gulf of Mexico had released about 5 million
barrels of crude oil (Beazley et al., 2012). This study suggested
that the microbial community of the rhizosphere in the affected
coastal salt marsh could strongly contribute to hydrocarbon
natural remediation. Recently, the combination of ribosomal
16S RNA gene high-throughput sequencing with DNA-based
stable isotope probing in activated sludge samples incubated with
Na2

13CO3 uncovered the dynamics of ammonium-oxidizing
microorganism abundance and the relative importance of
archaeal and bacterial ammonium oxidation activities in a waste
water treatment plant (Pan et al., 2018).

In recent years, the development of high-throughput
sequencing and assembly software has allowed to determine the
complete genome sequence of uncultivated microorganisms from
direct sequencing of metagenomic libraries or environmental
DNA from complex microbial communities. Despite a number
of critical issues regarding sampling, assembly or annotation
(Teeling and Glöckner, 2012; Thomas et al., 2012), more than
10,000 metagenome projects are now referenced in the Genomes
Online Database (Mukherjee et al., 2016). This number is
expected to increase dramatically with such massive projects
as the Earth Microbiome Project whose goal is to produce a
global Gene Atlas of microbial communities encompassing an
estimated 500,000 genomes (Gilbert et al., 2010; Thompson et al.,
2017).

Environmental genomics now permits the study of the
organisms in an ecosystem as a set of elements behaving within
a complex network of interactions (Figure 1). For example,
a genome-scale study of the complex symbiosis between the
termite Macrotermes natalensis, its domesticated fungus and
several gut bacterial communities demonstrated the cooperation
between microorganisms in plant biomass conversion. The
results showed that the insect provides the infrastructure
allowing carbohydrate decomposition thanks to the functional
complementarity between the fungus and the gut microbiota
(Poulsen et al., 2014). More recently, the reconstruction of 2540
genomes using metagenomic data from 15 different sediment
and groundwater environments allowed to highlight the key
inter-organism interactions relevant to biogeochemical cycles in
an aquifer in Colorado, United States (Anantharaman et al.,
2016). Applying those approaches to various biotopes may thus
provide valuable insights into the functioning of ecosystems,
including polluted environments whose microbial communities
could constitute prospective candidates for bioremediation.

ARSENIC BIOREMEDIATION AND
‘OMICS’ APPROACHES: A CASE STUDY

Long-term exposure to arsenic represents a serious threat to
human health worldwide (Nordstrom, 2002). Even though the
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FIGURE 1 | Multi-omic studies of microorganisms from the environment
provide an integrated image or model of the microbial processes involved in
the ecosystem’s functioning and that may be utilized for bioremediation or
other biotechnology applications.

occurrence of this element in drinking water constitutes the
major source of exposure, recent studies on risks of arsenic
accumulation in food revealed its presence in fish and crops
cultivated with arsenic-contaminated waters (WHO, 2011;
Jackson et al., 2012; Molin et al., 2015; Carlin et al., 2016).
Numerous physico-chemical methods are commonly used for
the treatment of arsenic-rich waters: coagulation/filtration,
ion exchange, enhanced lime softening, adsorption and
reverse osmosis (Ng et al., 2004; Nicomel et al., 2016). Over
the last years, in a search for sustainable and cost-effective
methods for water treatment, arsenic remediation turned
to the potentialities of biological approaches. The use of
rhizosphere microorganisms was recently investigated for their
capacity to enhance phytoremediation of arsenic-contaminated
environments (Ma et al., 2016). In particular, several arsenic-
resistant microorganisms belonging to various genera, e.g.,
Bacillus, Achromobacter, Brevundimonas, Microbacterium,
Ochrobactrum, Pseudomonas, Comamonas, Stenotrophomonas,
Ensifer were reported to decrease toxic effects of arsenic and
enhance plant growth by acting on arsenic mobilization and
accumulation in plants (Cavalca et al., 2010; Ghosh et al.,
2011; Wang et al., 2011; Yang et al., 2012; Pandey et al., 2013;
Mallick et al., 2014, 2018; Mesa et al., 2017). The ability of fungi
to resist, solubilize, transform or uptake metal species could
also be used in mycoremediation of arsenic-contaminated soil
(Singh et al., 2015; Srivastava et al., 2011). The production of
volatile trimethylarsine by reductive methylation from inorganic
and methylated arsenic compounds was reported in several
fungal strains, e.g., Aspergillus glaucum, Candida humicola,
Scopulariopsis brevicaulis, Gliocladium roseum, Penicillium
gladioli, and Fusarium spp. (Cullen and Reimer, 1989; Lin, 2008).
Bioaugmentation could thus represent a strategy to enhance the
efficiency of As removal from waters and soils by the addition
of specialized bacteria or fungi, either natural or genetically

engineered, able to directly remove As by volatilization
(Edvantoro et al., 2004; Chen P. et al., 2017) or indirectly through
the formation of biogenic Fe-Mn oxides (Bai et al., 2016).
However, despite an increasing interest for mycoremediation
and rhizoremediation of arsenic contamination, still very little is
known about their scalability.

To date, the bioremediation of arsenic-rich environments is
mainly based on the use of microorganisms able to resist or
metabolize arsenic through oxidoreduction reactions (Huang,
2014). Over the last decades the ecology of arsenic has been
widely studied and several arsenic-metabolizing microorganisms
isolated from various ecosystems have been characterized at the
genomic level (Oremland and Stolz, 2003; Páez-Espino et al.,
2009; Andres and Bertin, 2016). Herminiimonas arsenicoxydans
was the first arsenic-metabolizing bacterium to be described.
This β-proteobacterium isolated from an industrial wastewater
treatment plant in Germany was shown to resist to high levels
of arsenic and to oxidize arsenite, As(III), into arsenate, As(V)
(Muller et al., 2007). Functional genomics demonstrated that
this arsenic response is biphasic: H. arsenicoxydans activates the
resistance response based in part on the induction of efflux
mechanisms before inducing the detoxification processes leading
to As(III) oxidation (Cleiss-Arnold et al., 2010; Koechler et al.,
2010). Additionally, electron microscopy revealed that the strain
is able to sequester arsenic within an exopolysaccharide (EPS)
matrix (Muller et al., 2007). Thiomonas sp. 3As isolated from
an abandoned mine in France was also shown to produce
large amounts of EPS in the presence of arsenite, making it a
good candidate for the development of bioremediation strategies
relying on biofilm-based bioreactors (Arsène-Ploetze et al., 2010).
A strain belonging to the Rhizobium genus isolated from an
Australian gold mine was shown to carry arsenic resistance and
detoxification genes on a large plasmid, which could provide
an interesting genetic tool to transfer arsenic detoxification
capacity into closely related plant-associated bacteria with the
perspective of phytoremediation (Andres et al., 2013). More
recently, the genome of two arsenite-oxidizing strains hyper-
tolerant to arsenite was fully described: Halomonas A3H3
isolated from multicontaminated sediments in Mediterranean
Sea (Koechler et al., 2013), and Pseudomonas xanthomarina
S11 isolated from an arsenic-contaminated former gold mine
in France (Koechler et al., 2015). Overall, the identification and
the exploitation of microbial metabolic potentialities for arsenic-
contaminated water treatment are considered an emerging
challenge as mirrored by an increasing number of recent
studies (Crognale et al., 2017). Among the available bacterial-
driven processes, bioprecipitation, biosynthesis of adsorbent
materials, biosorption and biovolatilization, involving several
microorganisms (Table 1), are the most interestingly described
for bioremediation of arsenic-contaminated waters (Fazi et al.,
2016).

In recent years, several environmental genomic studies of
arsenic-contaminated ecosystems have been conducted (Huang
et al., 2016) and the molecular mechanisms involved have
been recently reviewed in detail (Andres and Bertin, 2016).
A metagenomic study of an acid mine drainage in France yielded
nearly complete reconstructions of seven microbial genomes,

Frontiers in Microbiology | www.frontiersin.org 3 April 2018 | Volume 9 | Article 820

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00820 April 25, 2018 Time: 11:58 # 4

Plewniak et al. Genomic Outlook on Arsenic Bioremediation

TABLE 1 | Microorganisms used in As-removal processes from waters.

Microorganism Process Reference

Ralstonia eutropha Bio-adsorption Mondal et al., 2008

Rhodopseuodomonas palustris Bio-volatilization Liu et al., 2011

Sphingomonas desiccabilis Bio-volatilization Liu et al., 2011

Bacillus idriensis Bio-volatilization Liu et al., 2011

Cyanobacteria Bio-volatilization Yin et al., 2011

Klebsiella oxytoca Bio-synthesis of adsorbent materials Casentini et al., 2015

Mixed microbial community Bio-precipitation Omoregie et al., 2013

Gallionella ferruginea and Leptothrix ochracea Microbial Fe-oxidation coupled to As removal Katsoyiannis and Zouboulis, 2004

Desulfotomaculum auripigmentum As and Fe–As sulfide precipitation driven by sulfate
reducers

Newman et al., 1997

Mixed Sulfate Reducing Bacteria As removal driven by sulfate reduction processes Teclu et al., 2008; Serrano and Leiva, 2017

Mixed microbial community Microbial Fe- and Mn-oxidation coupled to As removal Thapa Chhetri et al., 2014

Mixed microbial community As removal via co-oxidation with Fe and sorption or
co-precipitation with Fe(III) (oxyhydr)oxides

Nitzsche et al., 2015

Mixed microbial community Microbial Fe- and Mn-oxidation coupled to AsIII removal Yang et al., 2014

Mixed microbial community As(III) microbial oxidation coupled to FeII oxidation Kamei-Ishikawa et al., 2017

Aliihoeflea sp. 2WW As(III) microbial oxidation Corsini et al., 2014

Thiomonas arsenivorans As(III) microbial oxidation Wan et al., 2010; Dastidar and Wang, 2012

Rhodococcus equi As(III) microbial oxidation Bag et al., 2010

CAsO1 bacterial consortium As(III) microbial oxidation Battaglia-Brunet et al., 2002; Michel et al., 2007

Ensifer adhaerens As(III) microbial oxidation Ito et al., 2012

Mixed microbial community As(III) microbial oxidation Gude et al., 2018

Mixed microbial community As(III) microbial oxidation Li et al., 2016

Mixed microbial community As(III) microbial oxidation Sun et al., 2011

Mixed microbial community Anoxic As(III) microbial oxidation coupled with
chemolithotrophic denitrification

Sun et al., 2010

providing a better understanding of the arsenic metabolism
and natural attenuation which significantly reduce arsenic
concentration along the creek, thanks to arsenite oxidation
followed by co-precipitation with iron and sulfur. This analysis
led to the identification of the corresponding genes, in particular
aio coding for arsenite oxidase in Thiomonas sp. and rus coding
for rusticyanin in Acidithiobacillus sp. (Bertin et al., 2011).
A comparative metagenomic study of sediments in two harbors
on the Mediterranean French coast, focusing on sequence
markers specific for sulfur-metabolizing bacteria uncovered
a correspondence between biotic sulfate reduction and the
abiotic production of highly soluble thioarsenical compounds.
In combination with arsenate reduction these processes, which
favor arsenic dispersion in the water column, could explain the
higher mobility of arsenic observed on the most contaminated
site (Plewniak et al., 2013). Recently, the assembly of 27
Micrarcheota and 12 Parvarchaeota new genomes from 12
acid mine drainage and hot spring metagenomes was reported
in a study targeting Archaeal Richmond Mine Acidophilic
Nanoorganisms. The analysis of these almost complete genomes
suggests a possible contribution of these organisms to carbon
and nitrogen cycling by organic matter degradation, as well as
to iron oxidation (Chen L.-X. et al., 2017). Those studies suggest
that arsenic bioremediation strategies could be based upon
microbial communities with iron, sulfur, and arsenic metabolism
capacities and highlight the importance of metabolisms other
than those of metals in arsenic removal. In this respect, mixed

microbial communities were tested for bio-precipitation capacity
and arsenic removal coupled with iron and manganese oxidation
in filtration systems (Table 1) and recently, the use of acid/metal-
tolerant sulfate reducing bacteria was applied for arsenic removal
from an acid mine drainage (Serrano and Leiva, 2017).

As(III) microbial oxidation can also be coupled to commonly
used adsorption removal technology, without any chemicals
addition nor toxic by-products (Bahar et al., 2013). The
As(III)-oxidation potentialities of several As(III)-oxidizing
microorganisms, such as Aliihoeflea sp. 2WW, Thiomonas
arsenivorans strain b6, Ensifer adhaerens, Rhodococcus equi
and other As(III)-oxidizing mixed bacterial populations as
planktonic cells or associated with biofilms were successfully
tested in lab-scale experiments for treating contaminated water
(Table 1). Moreover, the anoxic As(III) microbial oxidation
coupled with chemolithotrophic denitrification was successfully
employed in the treatment of arsenic in bioreactors (Sun et al.,
2010). To date, only one case study of full-scale treatment of
arsenic contaminated groundwater using biological As(III)
oxidation has been documented in the scientific literature
(Katsoyiannis et al., 2008). This multi-stage treatment method
was based on the biological oxidation of NH4

+ and Mn(II) for the
simultaneous As(III) oxidation and subsequent As(V) removal
by coagulation. However, As removal is strongly dependent on
Fe(II) and Mn(II) concentrations since the process relies on
the sorption of As on iron and manganese oxides produced by
autochthonous Fe(II)- and Mn(II)-oxidizing bacteria.
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Although several studies demonstrated the efficacy of arsenic
removal from water by microorganisms, these approaches
are yet to be fully exploited for arsenic remediation, and
knowledge about the diversity and distribution of functional
genes controlling arsenic transformation in such processes is
still quite fragmentary (Andres and Bertin, 2016; Crognale et al.,
2017). The industrial application of arsenic removal from water
still requires further evaluation in real situation of additional
aspects such as the influence on microbial As(III) oxidation
of geometric and hydraulic parameters in column systems or
the requirement for carbon supply to support fast reactions.
Although recent batch experiment works are addressing the
question of the effects of nutrient sources and temperature in acid
mine drainage (Tardy et al., 2018), there is still a want of further
genomic and metagenomic studies of arsenic-contaminated
ecosystems addressing not only the metabolisms of metals,
arsenic and sulfurs but the full-range of microbial metabolic
capacities. Such studies will be necessary for understanding
the complex trophic interaction network of microorganisms in
those ecosystems and for designing optimized artificial microbial
communities that could be exploited in large-scale arsenic
remediation systems.

CONCLUSIONS AND PERSPECTIVES

At the interface between molecular biology and ecology,
environmental genomic DNA sequencing techniques allow to
reach, beyond the mere description of a simple organism, the
characterization of complex microbial communities including
organisms recalcitrant to isolation and culture. In association
with global functional approaches – metatranscriptomics,
metaproteomics, metabolomics including stable-isotope probing
(Fischer et al., 2016; Musat et al., 2016; Vogt et al., 2016;
Zuñiga et al., 2017) – these techniques help increasing our
knowledge of the functioning of ecosystems. Additionally,
the sequencing depth attained by these new technologies can
give access to the less represented species of an ecosystem
(the rare biosphere). Allowing fast and inexpensive massive
characterization of microbial communities, they could also be an
asset for the continuous monitoring of microbial communities
involved in bioremediation processes to avoid changes that

could compromise the efficiency of the treatment (Lovley,
2003; Stenuit et al., 2008; Techtmann and Hazen, 2016). In
combination with the indispensable experimentations in the
laboratory and in the field, these approaches require the
development of efficient reproducible sampling and extraction
methods as well as of robust and new computing solutions
for storing, exchanging, and analyzing the huge amounts
of data they produce. Indeed, power analysis and sample
size requirements estimation for high-throughput sequencing
data demand computations of much higher complexity than
classical statistical analyses and must be fine-tuned to the
type of problem that is being addressed (Pasolli et al.,
2016; Li et al., 2017). It is moreover necessary that all
published studies include complementary data (meta-data)
which should be collected for every genome/metagenome to
permit the proper exploitation of data (Satinsky et al., 2013) as
defined by the Genomic Standard Consortium (Yilmaz et al.,
2011).

The public access on sites like the EBI Metagenomics (Mitchell
et al., 2017) to thousands of metagenomic samples combined
with big data analysis, data mining algorithms and metabolic
modeling constitutes an unprecedented opportunity to study
and understand how the different components of an ecosystem
may function together in relation with environmental biotic and
abiotic factors, largely surpassing mere inventories of biological
objects. A better understanding of the concerned organisms,
of their spatial and temporal distribution, of the adaptive and
evolutive processes at stake and of the metabolic interactions
they develop should thus provide an integrated image of the
microbial communities and metabolic functions involved in
the microbiological processes underlying arsenic removal from
water. Using ad hoc predictive models, such knowledge may be
expected to permit the optimal utilization of microorganisms’
properties in biotechnological applications and bioremediation
processes.
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