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Human T-lymphotropic virus 1 (HTLV-1) immortalizes T-cells and is the causative agent
of adult T-cell leukemia/lymphoma (ATLL). HTLV-1 replication and transformation are
governed by multiple interactions between viral regulatory proteins and host cell factors
that remain to be fully elucidated. The present study investigated the impact of HTLV-1
infection on the expression of miR-34a, a microRNA whose expression is downregulated
in many types of cancer. Results of RT-PCR assays showed that five out of six HTLV-
1-positive cell lines expressed higher levels of miR-34a compared to normal PBMC
or purified CD4+ T-cells. ATLL cell line ED, which did not express miR-34a, showed
methylation of the miR-34a promoter. Newly infected PBMC and samples from 10
ATLL patients also showed a prominent increase in miR-34a expression compared to
PBMC controls. The primary miR-34a transcript expressed in infected cell line C91PL
contained binding motifs for NF-κB and p53. Pharmacological inhibition of NF-κB with
Bay 11-7082 indicated that this pathway contributes to sustain miR-34a levels in
infected cells. Treatment of infected cell lines with the p53 activator nutlin-3a resulted
in a further increase in miR-34a levels, thus confirming it as a transcriptional target of
p53. Nutlin-3a-treated cells showed downregulation of known miR-34a targets including
the deacetylase SIRT1, which was accompanied by increased acetylation of p53, a
substrate of SIRT1. Transfection of C91PL cells with a miR-34a mimic also led to
downregulation of mRNA targets including SIRT1 as well as the pro-apoptotic factor
BAX. Unlike nutlin-3a, the miR-34a mimic did not cause cell cycle arrest or reduce cell
viability. On the other hand, sequestration of miR-34a with a sponge construct resulted
in an increase in death of C91PL cells. These findings provide evidence for a functional
role for miR-34a in fine-tuning the expression of target genes that influence the turnover
of HTLV-1-infected cells.

Keywords: HTLV-1, miR-34a, p53, nutlin-3a, adult T-cell leukemia/lymphoma

INTRODUCTION

Human T-lymphotropic virus 1 (HTLV-1) infects approximately 5–10 million people worldwide
(Gessain and Cassar, 2012). About 5% of infected individuals develop an aggressive malignancy
of mature CD4+ T-cells termed adult T-cell leukemia/lymphoma (ATLL) or a progressive
demyelinating neurological disease termed tropical spastic paraparesis/HTLV-associated
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myelopathy (TSP/HAM) (Poiesz et al., 1980; Yoshida et al.,
1982; Gessain et al., 1985; Osame et al., 1986). The transforming
potential of HTLV-1 is attributable primarily to the viral proteins
Tax (reviewed by Currer et al., 2012) and HBZ (reviewed by Ma
et al., 2016), which are each capable of inducing hematological
malignancies when expressed as transgenes in mice (Hasegawa
et al., 2006; Satou et al., 2011). However, the long clinical latency
and low penetrance of ATLL suggest that other viral and cellular
factors contribute to determine the fate of HTLV-1-infected cells
(for a recent review on HTLV-1, see Bangham, 2017).

The emerging importance of microRNAs (miRNAs) as fine-
tuners of gene expression has prompted studies of the interplay
between HTLV-1 and the miRNA network. The first such study
showed that HTLV-1-infected cell lines express high levels of
miR-21, miR-24, miR-146a, and miR-155 and reduced levels
of miR-223 compared to normal CD4+ T-cells and uninfected
T-cell lines (Pichler et al., 2008). ATLL cells also exhibit important
differences in miRNA expression compared to normal peripheral
blood mononuclear cells (PBMC) or CD4+ T-cells (Yeung et al.,
2008; Bellon et al., 2009; Yamagishi et al., 2012). The first miRNA
profiling study of ATLL samples revealed elevated expression
of miR-93 and miR-130b, which target the mRNA coding for
the pro-apoptotic protein TP53INP1 (Yeung et al., 2008). An
analysis of a large panel of ATLL samples revealed an overall
downregulation of miRNAs, including miR-31, an important
target of which is NIK, an activator of the NF-κB pathway
(Yamagishi et al., 2012). miR-145 is downregulated in HTLV-1-
positive cell lines and ATLL samples, a property that correlates
with poor ATLL patient survival; furthermore, miR-145 has
growth suppressive effects when expressed in an ATLL cell line
(Xia et al., 2014). Downregulation of miR-150 and miR-223
in HTLV-1-transformed cells results in loss of control of their
target STAT1 (Moles et al., 2015). The viral proteins Tax, Rex,
and HBZ interfere with the production of mature miRNAs by
promoting degradation of Drosha (Tax; Van Duyne et al., 2012)
and by inhibiting Dicer expression (HBZ; Gazon et al., 2016)
and Dicer activity (Rex; Abe et al., 2010). On the other hand,
Tax can upregulate expression of miR-130b (Yeung et al., 2008),
miR-146a (Pichler et al., 2008; Tomita et al., 2009), and miR-
155 (Tomita, 2012); TRAF6, an adaptor protein involved in a
variety of signal transduction pathways, was identified as a target
of miR-146a in HTLV-1-infected cell lines (Tomita et al., 2009).
HBZ upregulates miR-17 and miR-21, which target proteins that
control chromatin remodeling (Vernin et al., 2014). Binding of
the HTLV-1 genomic RNA by miR-28-3p interferes with reverse
transcription, thereby blocking productive infection (Bai and
Nicot, 2015).

In a previous analysis of small RNA libraries, we observed
that miR-34a, a highly conserved miRNA that is a component
of the p53 pathway and is downregulated in many types of
cancer (reviewed by Hermeking, 2010; Slabakova et al., 2017),
was more abundant in HTLV-1-infected cell lines C91PL and
MT-2 compared to control CD4+ cells (Ruggero et al., 2014).
As described below, further investigation of the expression of
miR-34a confirmed its upregulation in the context of HTLV-1
infection and identified targets with key roles in cell survival and
death.

MATERIALS AND METHODS

Cell Culture
HTLV-1-positive T-cell lines HUT-102 (Poiesz et al., 1980),
C91PL (Popovic et al., 1983), MT-2 (Popovic et al., 1983),
C8166 (Bhat et al., 1993), ATL-2 (Maeda et al., 1985), and ED-
40515(–) [an IL-2-independent subclone (Arima et al., 1992)
of ED-40515 (Maeda et al., 1985), referred to as ED in the
present study] and the T-ALL cell line Jurkat were maintained
in RPMI-1640 (Sigma-Aldrich or Euroclone) supplemented with
10% fetal bovine serum (FBS, Invitrogen), 100 units/mL penicillin
and 20 units/mL streptomycin (Euroclone, complete RPMI).
HeLa cells were maintained in Dulbecco’s Modified Eagles
Medium (DMEM, Sigma-Aldrich or Euroclone) supplemented
with 10% FBS and penicillin/streptomycin. Genetic profiling
was carried out on the cell lines with the PowerPlex 16 HS
kit (Promega, Raimondi et al., 2017). CD4+ cells were isolated
from normal peripheral blood mononuclear cells (PBMC)
using the MACS CD4+ T cell Isolation Kit II or MACS
CD4 Microbeads (Miltenyi Biotec). The resulting preparations
contained ≥90% CD4+ cells measured by flow cytometry
using a PE-labeled anti-CD4 antibody (Becton Dickinson).
PBMC samples from ATLL patients (described in Pise-Masison
et al., 2009) were collected in the context of National Cancer
Institute Institutional Review Board-approved studies (IRB nos.
00-C-0030 and 03-C-0194) with informed consent obtained
from all subjects in accordance with the Declaration of
Helsinki.

Infection of PBMC
C91PL cells were lethally irradiated (69.5 Gy). PMBC from two
blood donors were cultured for 3 h and monocytes/macrophages
were depleted by adhesion. 2 × 106 irradiated C91PL cells
were cultured together with 2.5 × 106 PBMC in a total volume
of 4.5 mL complete RPMI supplemented with 500 µg/mL
phytohemagglutinin (PHA, Sigma-Aldrich). Control cultures
containing only irradiated C91PL cells or PBMC stimulated
with PHA were set up in parallel. After 2 days, cultures were
supplemented interleukin-2 (IL-2, 20 U/mL, Roche). The control
irradiated C91PL cells were dead after 2 weeks. RNA was
isolated from aliquots of the stimulated PBMC after 8 days’
culture and from aliquots of the co-cultures at days 30 and 72.
Genomic DNA was isolated at the 72-day time point using a
salting-out method (Qiagen Flexigene kit) and analyzed by PCR
with primers specific for the HTLV-1 U5-gag region (Ruggero
et al., 2014); PCR with primers specific for the pri/pre-miR-
34a region (see below) served as a control. PCR products were
separated in non-denaturing polyacrylamide gels, stained with
GelRed (Biotium) and photographed using a Cambridge UVTEC
system.

RNA Isolation
Total RNA was isolated using TRIZol (Life Technologies) or
TriReagent (Sigma-Aldrich) according to the manufacturer’s
protocol and quantified using a Nanodrop or Implen
spectrophotometer.
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Sequencing of the TP53 Open Reading
Frame
Total RNA was reverse-transcribed using the Superscript VILO
cDNA Synthesis Kit (Invitrogen) according to the manufacturer’s
protocol. The resulting cDNA was PCR-amplified using TP53-
specific primers described elsewhere (Muscolini et al., 2008).
Amplicons were subjected to Sanger sequencing (Bigdye kit,
Applied Biosystems) and analyzed on a 3730xl DNA Analyzer
(Applied Biosystems). The resulting sequences were compared
to NCBI p53 transcript reference sequence NM_000546.5 using
Finch TV Version 1.4.0 (Geospiza).

miR-34a Promoter Methylation Analysis
Genomic DNA (500 ng) was subjected to bisulfite conversion,
desulfonation and column-purification (EZ DNA Methylation-
Gold kit, Zymo Research). One-tenth of the eluted DNA
was PCR-amplified using primers specific for methylated and
unmethylated CpG sites in a 170-bp segment spanning chr1 nt
9182497-9182328 (complementary strand; Chim et al., 2010).
PCR products were separated by non-denaturing PAGE in 2%
agarose gels. The efficiency of bisulfite conversion was evaluated
by subjecting the methylated-MSP product obtained for cell line
ED to Sanger sequencing as described above.

RACE
Total RNA isolated from C91PL cells was subjected to RACE
(rapid identification of cDNA ends) using the FirstChoice RLM
RACE kit (Ambion) according to the manufacturer’s instructions.
The 5′RACE was carried out using outer primer 5′RACE P1
(AGAGCTTCCGAAGTCCTGG) and inner primer 5′RACE P2
(TTGCTCACAACAACCAGCTAAGA) described by Navarro
et al. (Navarro et al., 2009). 3′RACE was performed using
outer primer 3′RACE P1 (GGACTTCGGAAGCTCTTCTG)
and inner primer 3′RACE P2 (TGGGAAAGTGAGCTCCAGG).
Second-round PCR products were separated on non-denaturing
acrylamide gels. The most abundant product was eluted and
sequenced using primer 5′RACE P2 or 3′RACE P2.

Quantitative RT-PCR
Total RNA was subjected to reverse transcription and qPCR
using Taqman microRNA assays (Applied Biosystems) and a
7900HT Fast (Applied Biosystems) or LightCycler 480 (Roche)
thermal cycler. RNU44 served as an endogenous control.
Results were analyzed by relative quantification using the
2−11CT method and a calibrator specified in the figure legends.
A threshold cycle (CT) of 35 was considered “undetermined.”
For mRNA expression analysis, RNA was treated with DNase
I (Invitrogen) and then reverse-transcribed using SuperScript
II reverse transcriptase (Invitrogen) and random hexamers
(Applied Biosystems) (Figures 5, 7 and Supplementary
Figures 1, 4) or with the Superscript VILO cDNA Synthesis
Kit (without DNAse treatment) (Supplementary Figure 3).
cDNA was PCR-amplified by using a SYBR Green master
mix (Roche or Thermo Scientific) and the following primer
pairs: CDKN1A-s (AGACTCTCAGGGTCGAAAAC) and
CDKN1A-as (TTCCAGGACTGCAGGCTTC); pri/pre-miR-

34a-s (TGGCAGTGTCTTAGCTGGTTG) and pri/pre-miR-
34a-as (GGCAGTATACTTGCTGATTGCTT) (Jiang et al.,
2005); TP53INP1-s (CTTCCTCCAACCAAGAACCAG) and
TP53INP1-as (CAAGCACTCAAGAGATGCCG); BAX-s (GTC
TTTTTCCGAGTGGCAGC) and BAX-as (AGGAAGTCCAA
TGTCCAGCC); BIRC5-s (TTCTCAAGGACCACCGCATC)
and BIRC5-as (TGAAGCAGAAGAAACACTGGG); SIRT1-s
(ACATAGACACGCTGGAACAGG) and SIRT1-as (GATAGCA
AGCGGTTCATCAGC); TP53-s (TGGAAGGAAATTTGCGTG
TGG) and TP53-as (CCAGTGTGATGATGGTGAGG); ACTB-s
(AGCACAGAGCCTCGCCTTTG) and ACTB-as (GGAATCCT
TCTGACCCATGC); B2M-s (TGACTTTGTCACAGCCCAAG)
and B2M-as (TTCAAACCTCCATGATGCTG); GAPDH-s
(GAAGGTGAAGGTCGGAGTC) and GAPDH-as (GAAGAT
GGTGATGGGATTTC). PCR reactions were set up in duplicate
or triplicate and amplified in a LightCycler 480 thermal cycler;
ACTB (β-actin), B2M (β-2 microglobulin) or GAPDH was used
as an endogenous control. RT-PCR to detect viral transcripts was
performed as described elsewhere (Rende et al., 2011). Primers
were synthesized by Sigma-Genosys.

Plasmids and Transfections
Plasmid pGFP-miR-34a-sponge was constructed by inserting the
GFP coding sequence followed by four miR-34a target sequences
into pcDNA3.1 (Invitrogen); a control plasmid lacking the
miR-34a target sequences (GFP-control) was also cloned. The
inserts were obtained from previously described retroviral vectors
(Rao et al., 2010). In Figure 4C, HeLa cells were transfected
using PolyJet transfection reagent (SignaGen Laboratories). In
Figure 7, C91PL cells were electroporated as described (Silic-
Benussi et al., 2010). DNA transfection mixtures and incubation
times are indicated in the figure legends.

Drug Treatments
Bay 11-7082 and nutlin-3a (Sigma-Aldrich) were dissolved in
dimethyl sulfoxide (DMSO, Hybrimax; Sigma-Aldrich). Cells
were seeded in tissue culture plates at 300,000 cells/mL and
treated with the drugs or with the same volume of DMSO (final
dilution, 0.1%) for 48 h. Nutlin-3a was substituted with nutlin-3
(Tocris Bioscience) in some replicates; no substantial difference
was noted in the effects of the two preparations.

Immunoblotting
Cells were lysed in Cell Disruption Buffer (Ambion) containing
inhibitors of proteases and phosphatases (Complete and
PhosSTOP, Roche); samples to be analyzed for p53 acetylation
were supplemented with 10 mM nicotinamide (Sigma-Aldrich)
to inhibit deacetylases. Samples were analyzed with a Bradford
protein assay (Bradford, 1976), balanced for total protein
and subjected to SDS-PAGE followed by electrotransfer to
nitrocellulose membrane (GE Healthcare). Blots were saturated
in non-fat milk (Euroclone) and incubated with rabbit anti-
GAPDH antibody (Genetex), rabbit anti-β-actin polyclonal
antibody (Sigma-Aldrich), rabbit anti-acetylated p53 antibody
(Lysine-382, Cell Signaling), goat anti-p53 polyclonal antibody,
and rabbit anti-SIRT1 polyclonal antibody (both from Santa Cruz
Biotechnology) followed by horseradish peroxidase-conjugated
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secondary antibodies (Pierce or GE Healthcare). Immunoreactive
bands were detected using Femto (Pierce) or LiteAblot Turbo
(Euroclone) chemiluminescence reagent and a digital imager
(BioRad ChemiDoc XRS or Cambridge UVTEC).

Analyses of Cell Turnover
For cell cycle analysis, cells were fixed in ethanol (Sigma-
Aldrich), stained with propidium iodide (Sigma-Aldrich) in the
presence of RNase A (Qiagen) and analyzed by flow cytometry
using a FACSCalibur (BD, FL2-A setting) and ModFit software.
Uptake of Live-Dead Far Red (Molecular Probes) was measured
according to the manufacturer’s instructions. Conversion of
3-(4, 5-dimethylthiazol-3-yl)-2,5-diphenyl tetrazolium bromide
(MTT, Sigma-Aldrich) to blue formazan (MTT test; Mosmann,
1983) was measured using a standard protocol.

RESULTS

miR-34a Expression Is Increased in
HTLV-1-Positive Cell Lines and Samples
From ATLL Patients
Figure 1A shows the results of quantitative RT-PCR (qRT-PCR)
to detect miR-34a in normal PBMC samples and in the HTLV-
1-positive cell lines C91PL, MT-2, HUT-102, C8166, ATL-2,
and ED, and in the uninfected cell lines HeLa and Jurkat;
results were scaled against values measured in normal PBMC.
These assays revealed that, with the exception of ED cells,
all of the HTLV-1-positive cell lines expressed much higher
levels of miR-34a compared to PBMC, HeLa, and Jurkat cells.
Additional assays carried out on 11 samples of purified CD4+
cells from healthy donors indicated variable levels of miR-34a,
which were lower than those measured in unfractionated PBMC
(Figure 1B).

Results of qRT-PCR on PBMC isolated from 10 ATLL patients
(described in Figure 1C and Pise-Masison et al., 2009) revealed
increased levels of miR-34a in all of the patients’ samples
compared to the PBMC calibrator (mean 32-fold increase;
Figure 1C).

Analysis of miR-34a Promoter
Methylation Status in HTLV-1-Positive
Cell Lines
The miR-34a gene is coded on the complementary strand of
chromosome 1p36.22, a region that is frequently deleted in cancer
(Calin et al., 2004). The miR-34a primary RNA (pri-miRNA)
contains two or more exons. The region upstream of exon 1
contains many CpG dinucleotides that can be methylated, an
event that contributes to the silencing of miR-34a expression
in various tumor-derived cell lines and solid cancers, and in
some hematological malignancies (Lodygin et al., 2008; Chim
et al., 2010; Craig et al., 2011). The substantial difference in miR-
34a levels detected in the cell lines shown in Figure 1A led us
to investigate the methylation status of the miR-34a promoter
by performing methylation-specific PCR (MSP) on a 170-bp

segment of the miR-34a promoter region as described (Ng et al.,
2014).

Results of MSP showed that the miR-34a promoter was
substantially methylated in Jurkat and ED cells, but not in cell
lines C91PL, MT-2, HUT-102, C8166, or ATL-2 (Figure 2). HeLa
cells and normal PBMC also did not yield methylated products.
Sequencing analysis of the methylated PCR product obtained
for ED cells confirmed efficient bisulfite conversion and revealed
methylation of 13 CpGs lying internal to the MSP PCR primers
(data not shown).

miR-34a Is Upregulated in Newly
Infected PBMC
To further examine the link between HTLV-1 infection and miR-
34a expression, PBMC from two healthy donors were infected
with HTLV-1 through co-cultivation with lethally irradiated
C91PL cells and then analyzed by qRT-PCR. Results showed
a progressive increase in miR-34a levels after 30 and 72 days
of culture compared to the uninfected PBMC (left-hand graph,
Figure 3A). The infected cultures also showed an increase in the
levels of miR-146a, a miRNA that is known to be upregulated
by Tax-mediated NF-κB stimulation (Pichler et al., 2008; Tomita
et al., 2009; right-hand graph, Figure 3A). Results of end-point
PCR on genomic DNA isolated at day 72 of the experiment
using primers specific for the HTLV-1 gag gene confirmed
that both co-cultures were HTLV-1-infected (Figure 3B). Short
tandem repeat (STR) analysis yielded distinct profiles for the
two co-cultures and the C91PL cell line, thus verifying that
the co-cultures no longer contained input C91PL cells (table in
Figure 3B).

Identification of a Spliced pri-miR-34a in
C91PL Cells
Alternatively spliced miR-34a pri-miRNAs have been identified
in different cell contexts. 5′RACE and 3′RACE on total RNA
isolated from C91PL cells followed by sequencing analysis yielded
a 2-exon pri-miR-34a of 894 nt (Figure 4A). This pri-miRNA
is similar to a miR-34a precursor designated EF592573.1 that
was previously identified in HeLa cells (Figure 4A; Chang
et al., 2007). It is noteworthy that exon 1 of this pri-miRNA
contains a binding site for NF-κB and a binding site for p53
that were shown to be engaged by these transcription factors
in other cell systems (Tarasov et al., 2007; Li et al., 2012).
Another miR-34a pri-miRNA designated EF570048.1, which was
identified in a lung cancer cell line induced to express p53
(Tarasov et al., 2007), does not contain the p53- and NF-κB
binding sites in exon 1 and contains a longer exon 2 sequence
(Figure 4A).

The presence of an NF-κB binding site in the miR-34a pri-
miRNA identified in C91PL cells was of interest, as constitutive
activation of the NF-κB pathway is a hallmark of HTLV-1
infection/transformation (reviewed by Sun and Yamaoka, 2005).
This led us to test the effects of the NF-κB inhibitor Bay 11-
7082 (Pierce et al., 1997) on miR-34a expression in C91PL and
MT-2 cells. As shown in Figure 4B, treatment with Bay 11-7082
led to a dose-dependent reduction in miR-34a levels in both cell
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FIGURE 1 | Expression of miR-34a in normal CD4+ cells, HTLV-1-infected cell lines, and ATLL samples. miR-34a was detected by qRT-PCR as described in the
Section “Materials and Methods,” with values measured in PBMC samples from healthy donors used as a calibrator (set at 1 in graphs). Panel (A) shows miR-34a
levels in the indicated cell lines. Bars represent mean values from three to seven samples of cells with standard error. ∗miR-34a was below the limit of detection in
cell lines ED and Jurkat. Panel (B) shows the expression of miR-34a in 11 samples of normal unstimulated CD4+ cells. The mean relative expression value for
miR-34a in the CD4+ cell samples was 0.316 (bar labeled CD4+ mean). Panel (C) shows expression of miR-34a in 10 ATLL samples. The mean relative expression
value for miR-34a in the ATLL samples was 31.91 (bar labeled ATLL mean). The table reports characteristics of the ATLL patients. Patient number 24 had ATLL
manifested as a lymphoma. M, male; F, female; RIT, radioimmunotherapy; Zenapax, humanized monoclonal antibody against IL-2Rα; CHOP, cyclophosphamide,
doxorubicin, vincristine, and prednisone; CVP, cyclophosphamide, vincristine, and prednisone.

lines, thus suggesting that NF-κB contributes to sustain miR-34a
expression. A previous study showed that treatment of HTLV-
1-infected cell lines and primary ATLL cells with Bay 11-7082
caused a reduction in the expression of NF-κB-responsive genes,
accompanied by reduced cell viability and increased apoptosis
(Mori et al., 2002). In line with these findings, we observed a dose-
dependent loss of viability in the Bay 11-7082-treated C91PL and
MT-2 cultures (Figure 4B).

miR-34a was previously observed to be upregulated in
the Epstein–Barr virus (EBV)-infected B-cells through LMP1-
mediated stimulation of the NF-κB pathway (Forte et al., 2012).

The ability of Tax to activate NF-κB, CREB, and other
transcription factors led us to test its effects on the expression
of miR-34a in HeLa cells transfected with wildtype Tax and
Tax mutants defective for activation of NF-κB or CREB. Results
showed that miR-34a expression was increased by about twofold
by wildtype Tax, and by about 1.5-fold by NF-κB-pathway-
defective TaxM22, while TaxM47, defective for CREB activation,
did not substantially affect miR-34a levels (Figure 4C). In
contrast, miR-146a, known to be regulated by NF-κB, was
strongly induced by wildtype Tax and TaxM47, but not by
TaxM22.
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FIGURE 2 | miR-34a promoter methylation in cell lines. Genomic DNA from
normal PBMC and the indicated cell lines was subjected to MSP as described
in the Section “Materials and Methods.” Shown are resulting PCR products
after separation in 2% agarose gels. The first lane in each image contains a
100-bp DNA marker (Sharpmass 100, Euroclone). Identical results were
obtained for a second DNA sample of each cell type; Jurkat cells are shown
as an example.

p53 Activation Enhances miR-34a
Expression in HTLV-1-Positive Cell Lines
We next investigated the effects of activation of p53 on miR-
34a expression in C91PL and MT-2 cells, which were reported
to produce wildtype p53 that is however functionally defective
(Cereseto et al., 1996; Kamihira et al., 2001; Hasegawa et al., 2009).
To activate p53 we treated the cell lines with nutlin-3a, which
stabilizes p53 through inhibition of MDM2 (Vassilev et al., 2004).
Results of qRT-PCR showed that nutlin-3a treatment resulted in
increased expression of the p53 target genes CDKN1A (coding
for p21Waf1/Cip1), TP53INP1, pri/pre-miR-34a, and mature
miR-34a (Figure 5A).

qRT-PCR analysis to compare the expression of 12 other
miRNAs in C91PL cells (Supplementary Figure 1) revealed that
most of the tested miRNAs were downregulated by nutlin-3a,
including miR-93 and miR-130b, whose levels are elevated in
HTLV-1-positive cell lines and ATLL samples (Yeung et al.,
2008). Of note, miR-125b, which is known to repress p53
expression in neuroblastoma cells and fibroblasts (Le et al.,
2011), was upregulated with nutlin-3a treatment (Supplementary
Figure 1).

We next investigated the expression of miR-34a target mRNAs
coding for the NAD+-dependent protein deacetylase SIRT1
(Yamakuchi et al., 2008), the inhibitor of apoptosis (IAP) family
member BIRC5 (Survivin; Chen et al., 2010; Kaller et al., 2011;
Shen et al., 2012) and the pro-apoptotic protein BAX (Fan and
Wang, 2016). qRT-PCR results demonstrated a ∼50% reduction
in the SIRT1 mRNA, a more substantial reduction in BIRC5,
and a marginal increase in the BAX mRNA (Figure 5B). The
strong reduction in BIRC5 was likely due to the combined effect

of miR-34a and transcriptional repression p53 (Hoffman et al.,
2002), while the modest increase in BAX could be explained by
the fact that BAX is both a target for repression by miR-34a
and for transcriptional upregulation by p53 (Miyashita et al.,
1994). Consistent with previous studies (Hasegawa et al., 2009)
and with its effects on CDKN1A expression, nutlin-3a caused a
block of C91PL and MT-2 cells in G0/G1 (Figure 5C), a reduction
in viability (measured using the MTT assay Figure 5D), and
increased staining with annexin V, a marker of apoptosis (data
not shown). Increased levels of CDKN1A and miR-34a and a
reduction in the levels of SIRT1 and cell viability were also
observed in nutlin-3a-treated HUT-102 cells (Supplementary
Figure 2). Results of cDNA sequencing confirmed that cell lines
C91PL, MT-2, and HUT-102 coded for wildtype p53 protein (data
not shown).

Engagement of the miR-34a-p53
Feedback Loop in Nutlin-3a-Treated
Cells
Substrates of SIRT1 include lysine 382 of p53 (Nakamura et al.,
2000; reviewed by Martinez-Redondo and Vaquero, 2013), whose
deacetylation interferes with the tumor suppressor’s functional
activity (reviewed by Reed and Quelle, 2014). We therefore
measured the effects of nutlin-3a on the levels of SIRT1 protein,
total p53, and lysine 382-acetylated p53. Results showed that
nutlin-3a treatment produced a reduction in the levels of SIRT1
(Figure 6A), and an increase in total p53 and acetylated p53
(Figure 6B), with a relative increase in acetylation on lysine
382 (graph, Figure 6B). This observation indicated that nutlin-
3a engages the p53-miR-34a-SIRT1 positive feedback loop in
infected cells.

Effects of an miR-34a Mimic and Sponge
in C91PL Cells
To verify that SIRT1, BIRC5, and BAX represent direct targets
of miR-34a in our cell system, we electroporated C91PL cells
with a synthetic miR-34a mimic or control RNA. Results of
RT-PCR revealed that the mimic-transfected cells had increased
levels of miR-34a and reduced levels of the SIRT1, BIRC5, and
BAX mRNAs (Figure 7A), thus providing direct evidence for
targeting of these mRNAs by miR-34a. Immunoblot analysis
confirmed the downregulation of SIRT1 protein in the miR-
34 mimic-transfected cells (Figure 7A, right panel). However,
the miR-34a mimic did not have a substantial effect on the
levels of mRNAs coding for the p53 targets CDKN1A and
TP53INP1, nor did it affect the cell cycle profile or cell viability
(Figure 7B).

Studies of miR-34a in EBV-infected cells showed that its
functional knockdown results in increased cell death (Forte
et al., 2012). In an analogous experiment, we electroporated
C91PL cells with a GFP expression plasmid containing four
binding sites for miR-34a in its 3′UTR (“GFP-sponge”) or
with a control GFP plasmid lacking the miR-34a binding
sites; all transfections included a plasmid expressing LNGFR
as a transfection standard. Results of flow cytometry analyses
after 3 days of culture showed that while the control- and
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FIGURE 3 | Changes in miR-34a and miR-146a levels upon infection of PBMC. Panel (A) shows miR-34a and miR-146a levels in PBMC from two healthy donors
(distinguished by light- and dark gray bars) harvested 7 days after stimulation with PHA and IL-2 (Controls) and 30 or 72 days after PHA/IL-2 stimulation and
co-cultivation with lethally irradiated C91PL cells. Relative expression values were calculated using the control PBMC as calibrators (set at 1 in the graphs). Panel (B)
shows results of PCR to detect HTLV-1 sequences (lanes labeled HTLV-1) in the genomic DNA of infected PBMC cultures #1 and #2 at day 72. PCR to detect the
pre-miR-34a genomic region (lanes labeled pre-miR-34a) served as a control for amplification of genomic DNA, and genomic DNA from C91PL cells and from PBMC
of an uninfected donor (CTR) served as positive and negative controls for amplification of HTLV-1 DNA. The table reports values for selected short tandem repeat
markers that distinguished the infected PBMC cultures from input C91PL cells.

sponge-transfected cells expressed similar levels of LNGFR,
the expression of the GFP-miR-34a sponge was considerably
lower than that of the GFP control (Figure 7C, left panel),
an indication that endogenous miR-34a was silencing the
sponge construct. An analysis of Live/Dead Far Red staining
revealed an increase in death in the cultures transfected with
the miR-34a-sponge compared to cells transfected with the
control plasmid (Figure 7C, right panel). These observations
provide evidence that, in analogy to observations made in
EBV-infected B-cells, miR-34a favors the survival of C91PL
cells.

DISCUSSION

Accumulated data indicate that HTLV-1 infection has an
important impact on the pattern of microRNA expression in the
host cell (reviewed by Moles and Nicot, 2015). In the present
study we provide evidence indicating that HTLV-1 infection
results in a substantial upregulation of miR-34a expression
(Figure 3) that is sustained in most HTLV-1-positive cell lines
(Figure 1A). Interestingly, miR-34a is also elevated in primary
PBMC samples from ATLL patients (Figure 1C), suggesting that
high miR-34a levels provide a selective advantage to HTLV-1-
infected cells in vivo that persists during the complex process of
transformation.

The hypothesis that, rather than representing a functionally
irrelevant side effect of infection, upregulation of miR-34a
contributes a pro-survival advantage to HTLV-1-infected cells
is supported by the observation that its functional knockdown

resulted in an increase in death of C91PL cells (Figure 7C) and is
in line with observations made in EBV-infected cells (Forte et al.,
2012).

The presence of an NF-κB binding site in the spliced pri-
miR-34a identified in C91PL cells (Figure 4A) along with
the observation that pharmacological inhibition of NF-κB with
Bay 11-7082 resulted in a reduction of miR-34a expression in
C91PL and MT-2 cells (Figure 4B) suggested that this pathway
contributes to sustain miR-34a levels in HTLV-1-infected cells.
However, we cannot exclude the possibility that the effect of Bay
11-7082 on miR-34a levels in part reflected a general inhibition
of gene expression that accompanied the substantial reduction in
cell viability (Figure 4B).

We considered Tax to be a likely candidate for activating
miR-34a, given its ability to activate the NF-κB pathway. It was
therefore surprising that both wildtype Tax and Tax defective
for NF-κB activation (TaxM22) produced a modest increase in
miR-34a in HeLa cells, while the CREB pathway-defective mutant
(TaxM47) did not induce miR-34a (Figure 4C). While this
result may reflect limitations of this cell line as an experimental
system for studying miR-34a regulation, we must also consider
the possibility that Tax affects miR-34a through its interactions
with CREB (reviewed by Nyborg et al., 2010) or with other
transcription factor complexes such as AP-1 (reviewed by Gazon
et al., 2017). Furthermore, other viral and cellular factors besides
Tax are likely to play a role in miR-34a expression. This latter
possibility is supported by the fact that ATLL cells express
little or no Tax (Takeda et al., 2004; Yamagishi et al., 2012).
In contrast, ATLL cells consistently express HBZ (Satou and
Matsuoka, 2007). Results of qRT-PCR assays on five of the
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FIGURE 4 | C91PL cells produce a pri-miR-34a transcript that contains binding sites for NF-κB and p53. Panel (A) shows the spliced pri-miR-34a identified by
RACE in the present study of C91PL cells, in a previous study of HeLa cells (EF592573.1; Chang et al., 2007) and in a lung cancer cell line engineered to produce
p53 (EF570048.1; Tarasov et al., 2007). Two additional spliced pri-miR-34a transcripts identified in phorbol ester-treated K562 cells contain 2 exons located 5′ to
exon 1 (not shown; Navarro et al., 2009). Numbering is according to the GenBank GRCh38.p12 primary assembly (minus strand). The box with diagonal lines
indicates an NF-κB binding site (nt 9182264-9182255; Li et al., 2012), the gray box indicates a p53 binding site (nt 9182163-9182144; Raver-Shapira et al., 2007)
and the black box indicates the position of mature miR-34a (nt 9151756-9151735). In EF570048.1, exon 2 is drawn at reduced scale (indicated by diagonal lines).
Panel (B) shows expression of miR-34a and cell viability in C91PL and MT-2 cells after treatment for 48 h with the indicated concentrations of the NF-κB inhibitor
Bay 11-7082; control cultures were treated with the same volume of DMSO (set at 1). Cell viability was measured as MTT conversion. In Panel (C), HeLa cells were
transfected with a plasmid coding for wildtype Tax, TaxM22, or TaxM47 (Smith and Greene, 1990) or with pBluescript KS+ (Stratagene; CTR, set at 1) and analyzed
for expression of miR-34a and miR-146a. All graphs show mean values from three experimental replicates with standard error bars, scaled against controls.
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FIGURE 5 | Effects of nutlin-3a in C91PL and MT-2 cells. C91PL and MT-2 cells were treated with 1 or 5 µM nutlin-3a or with the same volume of DMSO for 48 h
and then analyzed for expression of p53-responsive mRNAs, including pri-/pre-miR-34a and mature miR-34a [three experiments, Panel (A)] and miR-34a target
transcripts [three experiments, Panel (B)]. Relative expression values were scaled against DMSO-treated controls (set at 1). Panel (C) shows cell cycle analysis
measured in three experiments. Panel (D) shows cell viability measured by MTT conversion (six experiments). Graphs show mean values with standard error.

ATLL samples analyzed in the present study (nos. 1, 3, 14,
20, 31) confirmed the presence of HBZ mRNA in all of the
samples, while Tax/Rex mRNA was undetectable (Supplementary
Figures 3A,B). The levels of HBZ mRNA in these samples did not
appear to correlate with their differences in miR-34a expression
(Figure 1C).

Our experiments with nutlin-3a confirmed that miR-34a is
a transcriptional target of p53 in C91PL, MT-2, and Hut-102
cells (Figure 5A and Supplementary Figure 2), and provided
evidence that, by repressing SIRT1, miR-34a reinforces p53

activation (Figures 5B, 6). In contrast, treatment of ED cells
with nutlin-3a did not result in an increase in p53 protein, and
miR-34a remained undetectable (data not shown). This cell line,
which was derived from leukemic cells of an ATLL patient, is
defective for p53 expression (Ju et al., 2014) and contains a
premature stop codon in the Tax open reading frame (Takeda
et al., 2004). An analysis of ATLL sample nos. 1, 3, 14, 20, 31 for
p53 mRNA revealed varying levels of expression (Supplementary
Figure 3C) that did not appear to correlate with levels of miR-34a
(Figure 1C).
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FIGURE 6 | Activation of the p53-miR-34a-SIRT1 feedback loop in C91PL and MT-2 cells. Panel (A) shows composite images of immunoblots to detect SIRT1
protein in lysates of control and nutlin-3a-treated cells, with β-actin serving as a loading control. The graph shows the mean fold change in SIRT1 protein expression
normalized against β-actin measured in 3 experiments with standard error bars. In Panel (B), lysates were immunoblotted with an antibody specific for p53
acetylated on lysine 382. The blots were then stripped and incubated with an anti-p53 antibody. Signal intensities were used to calculate ratios of acetylated p53 to
total p53 in each sample. Values were scaled against the ratio calculated for the untreated cells to express a fold-change of acetylated/total p53 in the treated
samples compared to untreated controls. The plot shows mean scaled ratios measured in three experiments with standard error bars.

Following the description of miR-34a as a transcriptional
target of p53 (Bommer et al., 2007; Chang et al., 2007;
He et al., 2007; Raver-Shapira et al., 2007; Tazawa et al.,
2007), studies of the impact of p53 on the miRNA regulatory
network identified many miRNAs whose expression is increased
due to p53-mediated transcriptional upregulation or through
p53-enhanced processing of miRNA precursors (reviewed by
Hermeking, 2012). miR-145, a miRNA that is upregulated
by p53 through its effects on Drosha-mediated pri-miRNA
processing (Suzuki et al., 2009), is of interest, given its
downregulation in the context of HTLV-1 and ATLL (Xia
et al., 2014). Results of qRT-PCR experiments indicated that
miR-145 is not expressed in untreated or nutlin-3a-treated
C91PL and HUT-102 cells (data not shown). miR-107, which
is upregulated by p53 and regulates hypoxic signaling in
the colon cancer cell line HCT116 (Yamakuchi et al., 2010),
showed a slight reduction in nutlin-3a-treated C91PL cells
(Supplementary Figure 1). The lack of an increase in the levels
of miR-145 and miR-107 upon nutlin-3a treatment suggests
that p53 status might not be a major determinant controlling
expression of these miRNAs in the context of HTLV-1-infected
cells.

In addition to NF-κB and p53, other transcription factors
including the p53 family member TAp73 (Agostini et al., 2011),

ELK1 (Christoffersen et al., 2010), and transcription factors
induced by phorbol esters (Navarro et al., 2009) are capable
of upregulating miR-34a expression in different cell contexts
(reviewed by Slabakova et al., 2017). The possible impact of these
factors in HTLV-1-associated upregulation of miR-34a merits
further investigation.

Results of early studies of miR-34a demonstrated that its
ectopic expression induced cell cycle arrest or apoptosis in many
cell lines (Chang et al., 2007; He et al., 2007; Raver-Shapira et al.,
2007; Tarasov et al., 2007; Welch et al., 2007). These and other
studies prompted the development of strategies to employ miR-
34a to treat cancer (Beg et al., 2017; reviewed by Saito et al.,
2015). Electroporation of a miR-34a mimic in C91PL cells led
to a reduction in the expression of SIRT1, BIRC5 (Survivin),
and BAX, thus providing evidence for a direct role for miR-34a
in fine-tuning these targets in the context of HTLV-1 infection
(Figure 7A). However, in our experiments the synthetic miR-34a
mimic was not able to rescue p53 function or reduce cell viability
(Figure 7B).

Studies of miR-34a have placed emphasis on its many
targets that have an impact on cell proliferation and survival,
such as MYC (Christoffersen et al., 2010) and MYCN (Cole
et al., 2008), MET (He et al., 2007; Li et al., 2009), CCND1
and CDK6 (Sun et al., 2008), BCL2 (Cole et al., 2008), and
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FIGURE 7 | Effects of a miR-34a mimic and sponge in C91PL cells. In Panels (A) and (B), C91PL cells (4 × 106 cells, 4 µg DNA in 100 µL Buffer R) were
electroporated with a miR-34a-mimic or a control synthetic RNA and analyzed 72 h later for changes in miR-34a and the indicated mRNAs (3–6 experimental
replicates), SIRT1 protein (four replicates), and cell cycle (five replicates). Cell viability measured with the MTT test (four replicates) at the indicated time points after
electroporation was scaled against values obtained for control-electroporated cultures at the corresponding time point. Graphs show mean values and standard
error bars. The immunoblots show a representative experiment to quantify the change in SIRT1 normalized against GAPDH protein. In Panel (C), C91PL cells were
electroporated with pGFP-control or pGFP-miR-34a-sponge (see section “Materials and Methods”) together with pMACS-LNGFR (Miltenyi Biotec, coding for
truncated nerve growth factor receptor) and pBluescript KS+ (included as carrier). Three days later, aliquots of cells were labeled with APC-conjugated anti-LNGFR
antibody (Miltenyi Biotec) or with Live/Dead Far Red (Invitrogen) and FITC-conjugated anti-LNGFR antibody (Miltenyi Biotec) and analyzed with a BD FACSalibur. The
left-hand plot shows the mean fluorescence intensities (MFI) measured for the LNGFR and GFP signals in the GFP+LNGFR double-positive populations from three
transfections with standard error bars. The right-hand plot shows mean % cell death values [=(% of Live/Dead Far Red+LNGFR-labeled cells/total % LNGFR-positive
cells) × 100] from 11 transfections with standard error bars (p = 0.021, Mann–Whitney rank sum test).
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NOTCH1 (Ji et al., 2008). The possibility that miR-34a favors
survival of HTLV-1-infected cells by modulating expression of
BAX, a known tumor suppressor (Yin et al., 1997), merits further
investigation.

It is noteworthy that SIRT1 is upregulated in HTLV-1-
transformed cells, and particularly in acute ATLL (Kozako et al.,
2012). Experiments carried out in chronically infected cell lines
and ATLL cells showed that siRNA-mediated knockdown of
SIRT1 expression or treatment with sirtuin inhibitors results
in apoptotic death, suggesting that SIRT1 is important for
the survival of HTLV-1-transformed cells (Kozako et al.,
2015; Tang et al., 2015). On the other hand, another study
indicated that SIRT1 interferes with the ability of Tax to
transactivate the LTR promoter (Tang et al., 2015). It is
thus possible that, by modulating SIRT1 expression, miR-
34a might enhance transcription of the viral genome. Along
these lines, it is interesting to note that nutlin-3a substantially
increased the levels of viral mRNAs in C91PL and MT-
2 cells (Supplementary Figure 4A) and in HUT-102 cells
(Supplementary Figure 2B). However, such an increase was not
observed upon electroporation of the miR-34a mimic into C91PL
cells (Supplementary Figure 4B). A thorough understanding of
the impact of miR-34a on HTLV-1-infected T-cells is worthy of
further study, given the current interest in the use of miR-34a
mimics, nutlin-3a analogs, and SIRT1 inhibitors to treat various
cancers.
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