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Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis,
a group of neglected tropical diseases whose clinical manifestations vary depending
on the infectious Leishmania species but also on host factors. Recognition of the
parasite by host myeloid immune cells is a key to trigger an effective Leishmania-
specific immunity. However, the parasite is able to persist in host myeloid cells by
evading, delaying and manipulating host immunity in order to escape host resistance
and ensure its transmission. Neutrophils are first in infiltrating infection sites and could
act either favoring or protecting against infection, depending on factors such as the
genetic background of the host or the parasite species. Macrophages are the main host
cells where the parasites grow and divide. However, macrophages are also the main
effector population involved in parasite clearance. Parasite elimination by macrophages
requires the priming and development of an effector Th1 adaptive immunity driven by
specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline
of how myeloid cells regulate innate and adaptive immunity against Leishmania, and
the mechanisms used by the parasites to promote their evasion and sabotage.
Understanding the interactions between Leishmania and the host myeloid cells may
lead to the development of new therapeutic approaches and improved vaccination to
leishmaniases, an important worldwide health problem in which current therapeutic or
preventive approaches are limited.
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INTRODUCTION

The trypanosomatid protozoa Leishmania spp. belonging to the order kinetoplastida are the
causative agents of leishmaniases, whose clinical manifestations can range from cutaneous,
mucocutaneous or diffuse cutaneous forms to visceral forms, depending on both the parasite
species and the host’s immune response (Pace, 2014). Leishmania is a digenetic parasite, whose
life cycle involves two hosts, the insect vector and a vertebrate host. Leishmania parasites are
transmitted to the vertebrate host by the bite of infected female sandflies belonging to the
genera Phlebotomus and Lutzomyia (Akhoundi et al., 2016). Inside the sandflies the extracellular
flagellated, motile form, called procyclic promastigotes generate the infective, non-dividing
metacyclic promastigotes, which are inoculated into the host during blood feeding. Once there,
Leishmania become into the aflagellate intracellular form, called amastigotes, that undergo
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replication within host cells, mainly phagocytes such as
macrophages. The transmission cycle is complete when infected
phagocytes are taken up during a sandfly blood meal, and
amastigotes then convert into promastigotes in the sandfly
midgut. As a successful parasite, Leishmania has developed
strategies to evade host immune mechanisms in order to survive
within the host. The ability of Leishmania to maintain a
chronic infectious state within its host depends largely on its
immune evasion potential (Geiger et al., 2016). We will review
how myeloid cells drive innate and adaptive immunity against
Leishmania and how the parasites escape host resistance.

INNATE AND ADAPTIVE IMMUNITY
AGAINST Leishmania

The generation of protective immunity against Leishmania
requires the cooperation between the innate and adaptive host
immune cells. Clearance of Leishmania parasites that promotes
healing requires IFN-γ-producing effector cells, mainly CD4+ T
helper 1 (Th1). IFN-γ production by NK cells (Bajenoff et al.,
2006) and type 1 CD8+ T cells (Belkaid et al., 2002b) also
correlates with protection against L. major in mice, whereas
CD8+ T cells play an important role in controlling visceral
leishmaniasis (Stäger and Rafati, 2012). However, cytotoxic T
lymphocytes (CTLs) play a detrimental role during infection with
other Leishmania species, such as L. braziliensis (Novais and
Scott, 2015). IFN-γ signaling in infected macrophages promotes
expression of inducible nitric oxide (NO) synthase (iNOS,
NOS2) and NO production that, together with reactive oxygen
species (ROS) generated during phagocytosis, are essential to
kill intracellular parasites (Bogdan et al., 1990; Green et al.,
1990). However, L. amazonensis are resistant to IFN-γ-mediated
killing, and parasite control during the early stages of infection
in mice is independent of this cytokine (Kima and Soong,
2013). Besides IFN-γ, other inflammatory cytokines, such as
TNF, can activate the infected macrophages in an autocrine
manner to produce NO (Bronte and Zanovello, 2005). On
the contrary, CD4+ T helper 2 (Th2)-related cytokines, such
as IL-4, IL-13, IL-10, and antibody production are associated
with alternative activated macrophages (Gordon, 2003), which
favors parasite survival inside the macrophages (Kropf et al.,
2005), and a non-healing phenotype (Scott et al., 1988; Heinzel
et al., 1989; Chatelain et al., 1992; Sacks and Noben-Trauth,
2002).

Although macrophages are the primary host cell for
Leishmania parasites, monocytes, dendritic cells (DCs) and
neutrophils can be infected and contribute differentially to the
immune response and the outcome of the infection. Acting as
a bridge between innate and adaptive immune system, DCs
have a prominent role for the development of immune response
against the parasite. Leishmania infection of DCs results in
IL-12 production (Marovich et al., 2000), an essential cytokine
for the polarization of naïve T cells toward Th1 subset and
subsequent IFN-γ production to control the infection (Heinzel
et al., 1993; Sypek et al., 1993; von Stebut et al., 1998). DCs derived
from inflammatory monocytes (moDCs) and the migratory

CD103+ DCs are the main source of IL-12 upon Leishmania
infection (Leon et al., 2007; Martinez-Lopez et al., 2015).

Leishmania infection resolution generates a long-lasting
immunity to reinfection mediated primarily by a population of
short-lived Leishmania-specific effector CD4+ T cells maintained
by low number of parasites that persist after resolution (Peters
et al., 2014). Apart from this, Leishmania-specific effector
memory T (TEM) cells and central memory T (TCM) cells are
detected upon Leishmania infection (Zaph et al., 2004; Colpitts
et al., 2009). Only TCM cells can proliferate, differentiate into
effector T cells, and migrate to the lesion site, protecting the
host against the infection (Zaph et al., 2004). In addition,
CD4+ T resident memory cells (TRM) have been identified
at sites distant from the primary lesion in L. major immune
mice and increase the ability of circulating effector cells to
mediate protection against the infection (Glennie et al., 2015).
After resolution of infection, there are also CD8+ T cells,
which can contribute to host protection after reinfection or
vaccination (Gurunathan et al., 1997; Muller et al., 1997; Rhee
et al., 2002; Colmenares et al., 2003; Jayakumar et al., 2011).
Understanding how parasites subvert the host innate immune
response could help to target these mechanisms in future
vaccine strategies that promote more effective and longer-term
protection in leishmaniasis mediated by these TCM and TRM
cells.

Leishmania TARGETING NEUTROPHILS
AS FIRST LINE OF DEFENSE

Neutrophils are recruited early after Leishmania infection in
response to several factors derived from the host, the sand
fly, or the parasite itself. These cells contribute to kill the
invading pathogens by formation of neutrophil extracellular
traps (NETs) or by a potent oxidative burst generation and
granule-derived toxic compound secretion in the surrounding
environment or into the phagosome (Kolaczkowska and Kubes,
2013). Neutrophils from visceral leishmaniasis patients are highly
activated and degranulated (Yizengaw et al., 2016). In addition,
CCL3 secreted by neutrophils also attracts monocytes to the
site of infection in an experimental model of L. major infection
(Charmoy et al., 2010b). However, depending on the parasite
species and the host, neutrophils can contribute to parasite
elimination, or, conversely, favor immune escape by the parasite
(Carlsen et al., 2015; de Menezes et al., 2016; Hurrell et al.,
2016). Notably, the parasite itself can cause a delay in neutrophil
apoptosis that allows parasite replication within these cells (see
Regli et al., 2017 for a recent review on how Leishmania parasites
are able to survive into these myeloid cells).

NETs in Leishmania Infection
Neutrophils release NETs composed by granule proteins together
with chromatin that form extracellular fibers that can kill
microorganisms (Brinkmann et al., 2004). This process can be
ROS-dependent and concludes with the death of the neutrophil
by a process named NETosis (Fuchs et al., 2007; Kirchner et al.,
2012). In addition, there is a ROS-independent early NETosis
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(Pilsczek et al., 2010). Leishmania promastigotes induce both
types of NET formation in human and mouse neutrophils both
in vitro and in vivo (Figure 1A) (Rochael et al., 2015; Regli
et al., 2017). Depending on the species, some promastigotes are
resistant to NET-mediated killing as described for L. mexicana
in mice and L. donovani in humans, while others are susceptible
as demonstrated for L. amazonensis in response to human
neutrophils, and this is dependent on lipophosphoglycan (LPG),
a glycolipid molecule abundantly found in the surface of the
promastigote forms (Guimaraes-Costa et al., 2009; Gabriel et al.,
2010; Hurrell et al., 2015). Moreover, Leishmania can escape from
NET-mediated killing, through the expression of nucleases, as
well as by the presence of endonuclease (Lundep) in the vector’s
saliva, allowing parasites to survive (Figure 1B), as occurred in
the interaction between L. infantum and L. major and human
neutrophils (Chagas et al., 2014; Guimaraes-Costa et al., 2014).
On the other hand, NETs formation in response to Leishmania
can interfere with the generation of adaptive immunity, given
that NETs isolated from human neutrophils activated by L.
amazonensis promastigotes are able to inhibit monocyte-derived
DCs differentiation and function, thus favoring parasite survival
(Barrientos et al., 2014; Guimaraes-Costa et al., 2017).

Inhibition of Neutrophil-Mediated
Oxidative Burst
Leishmania promastigote has evolved to survive within
neutrophils following phagocytosis. Promastigotes from some
Leishmania species like L. donovani or L. major express particular
molecules, like LPG, that inhibit phagosome maturation
(Gueirard et al., 2008; Mollinedo et al., 2010). In addition,
others molecules from L. donovani, like tartrate-resistant acid
phosphatase (ACP) and Leishmania chemotactic factor (LCF)
inhibit the respiratory burst, (Figure 1C) (Remaley et al.,
1984; Al Tuwaijri et al., 1990; Wenzel and Van Zandbergen,
2009). LCF from some Leishmania species, including L. major,
L. aethiopica, and L. donovani, shares features of both LTB4 and
LXA4 mediators. Similar to LTB4, LCF contributes to increased
neutrophil recruitment in vitro either directly or by inducing
IL-8 secretion by neutrophils (Figure 1D). Similar to LXA4, LCF
from the cited species, increases parasite engulfment and survival
within neutrophils in vitro through the inhibition of oxidative
burst, mediating its effects via the LXA4 receptor (ALX/FPRL-1)
(Figure 1E) (van Zandbergen et al., 2002). In line with this,
L. major-infected neutrophils release an increased amount of
LTB4, whereas LXA4 production is reduced, contributing to
the initial establishment of the infection (Plagge and Laskay,
2017). On the other hand, the presence of apoptotic cells at
the site of infection could contribute to the parasite evasion of
the oxidative-mediated killing, since apoptotic cells promote
L. major survival within neutrophils by downregulating ROS
production (Figure 1F) (Salei et al., 2017).

Extending Neutrophil Lifespan
Neutrophils could be considered non-suitable host cells
for intracellular parasites due to their short lifespan.
Notwithstanding, Leishmania infection increases the survival of

neutrophils both in vitro and in vivo (Aga et al., 2002). L. major
increases neutrophil lifespan by activation of ERK1/2 and
induction of anti-apoptotic proteins Bcl-2 and Bfl-1 (Figure 1G)
(Sarkar et al., 2013). However, the neutrophil response to
Leishmania infection may depend on its location, since L. major
delays mouse peritoneal and human blood-derived neutrophil
apoptosis (Aga et al., 2002; Charmoy et al., 2010a), but this
apoptosis delay is not observed in infected mouse dermal
neutrophils (Ribeiro-Gomes et al., 2012).

MACROPHAGES AS KEY HOSTS AND
EFFECTORS AGAINST Leishmania

Leishmania infects macrophages directly after being released
from neutrophils (Peters et al., 2008) or following the
phagocytosis of apoptotic neutrophils containing intact
parasites. The later mechanism mediates a silent transmission of
Leishmania promastigotes to macrophages and couples to the
triggering of an anti-inflammatory response associated to uptake
of apoptotic cells, with TGF-β secretion, which favors the survival
and division of parasites within the macrophages in a model of
transmission so that called “Trojan Horse” (Figure 1H) (Laskay
et al., 2003, 2008; John and Hunter, 2008). MIP-1β secretion
by infected neutrophils favors attraction of macrophages to the
site of the infection (van Zandbergen et al., 2004). This process
requires Leishmania-mediated neutrophil apoptosis, which
does not occur in all species (Hurrell et al., 2015). In addition,
in vivo imaging revealed that parasites can also escape dying
neutrophils to infect macrophages, which was termed the ‘Trojan
rabbit’ strategy (Ritter et al., 2009). Once inside macrophages,
Leishmania amastigotes differentiate and multiply, which
requires manipulating macrophage function to escape ROS
generation and the action of lysosomal enzymes and the acidic
milieu of the phagolysosome. In addition, parasites modulate the
cytokine repertoire secreted by the infected macrophages and
their ability to act as antigen presenting cells, in order to avoid a
proper generation of the adaptive immune response (de Menezes
et al., 2016).

Interfering Phagosome Maturation in
Macrophages
Leishmania parasites delay phagosome formation and
maturation, as shown by hindered expression of late endosomal
markers LAMP-1 and Rab7, as occurred with L. donovani
(Figure 2A) (Scianimanico et al., 1999; Seguin and Descoteaux,
2016). In addition, some Leishmania (such as L. amazonensis and
L. mexicana) promote the formation of large parasitophorous
vacuoles by the lysosomal trafficking protein to dilute the
leishmanicidal effect of NO (Wilson et al., 2008). Several factors
from the parasite participate in this evasion strategy, depending
on the different Leishmania species. L. donovani LPG prevents
the assembly of the NADPH oxidase complex (Figure 2B)
(Lodge et al., 2006), excludes the proton-ATPase from the
phagosome (Vinet et al., 2009), and reduces its fusion with the
endosome (Desjardins and Descoteaux, 1997; Scianimanico
et al., 1999), what has also been demonstrated for L. major LPG
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FIGURE 1 | Some Leishmania species evade neutrophils and target them for silent transmission. (A) L. major and L. amazonensis promastigotes induce apoptosis
and/or NETosis in neutrophils. (B) NET-mediated killing inhibition by L. infantum and L. major nucleases and vector’s endonuclease (Lundep). (C) LPG from
L. donovani or L. major contributes to evade phagosome maturation while ACP and LCF from L. donovani inhibit the respiratory burst. (D) Recruitment of
neutrophils to the site of the infection is mediated by LTB4 and might be induced by LCF from several Leishmania species, including L. major, L. donovani, and
L. aethiopica. (E) LCF from the mentioned species inhibits the oxidative burst via the LXA4 receptor (ALX/FPRL-1) in vitro. (F) Apoptotic cell-mediated ROS
downregulation promoting L. major survival. (G) L. major extends neutrophils lifespan by induction of anti-apoptotic protein Bcl-2 within other mechanisms (see the
main text for more detailed information). (H,I) Silent transmission of Leishmania or “Trojan Horse” hypothesis. (H) Phagocytosis of apoptotic neutrophils containing
intact parasites promotes an anti-inflammatory response by macrophages. (I) The engagement of MERTK on DCs by infected apoptotic neutrophils, upon infection
with L. major Friedlin V1 strain, inhibits CD8+ T-cell priming. LPG, lipophosphoglycan; ACP, tartrate-resistant acid phosphatase; LCF, Leishmania chemotactic factor;
LTB4, leukotriene B4; LXA4, lipoxin A4; ROS, reactive oxygen species; Bcl-2, B-cell lymphoma 2; MERTK, receptor tyrosine kinase Mer.

(Dermine et al., 2000). Moreover, L. donovani LPG promotes
the accumulation of periphagosomal F-actin (Holm et al.,
2001) (Winberg et al., 2009), avoiding in this manner the

phagosome acidification and favoring the parasite intracellular
survival (Figure 2B). The L. donovani metalloprotease GP63
(a surface and secreted glycoprotein of 63 kDa) downregulates

Frontiers in Microbiology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 883

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00883 May 4, 2018 Time: 16:39 # 5

Martínez-López et al. Leishmania Hijacking of Myeloid Cells

FIGURE 2 | Leishmania subversion of macrophage-mediated killing. (A) Delayed phagosome maturation by affecting the expression of late endosomal markers
LAMP-1 and Rab7, as occurred with L. donovani (B) LPG from L. donovani mediates F-actin accumulation and LPG from L. donovani or L. major prevents NADPH
oxidase complex assembly in the phagosome. (C) L. donovani metalloprotease GP63 modulation of phagosome Rab5a expression. (D) L. amazonensis-mediated
host iron pool manipulation. (E) Some Leishmania species (detailed in the main text) mediate arginase upregulation to favor polyamines synthesis and parasite
survival. (F) JAK/MAPK signaling inhibition by SOCs, SHP1 and A20 described for some Leishmania species, including L. major, L. donovani, L. mexicana and
L. amazonensis. (G) PKC inhibition by L. donovani amastigotes-mediated ceramide overexpression. (H) PS expression by L. amazonensis amastigotes favors the
production of anti-inflammatory cytokines. (I) L. donovani uses Siglec-5 and L. major some CRs to silence the macrophages pro-inflammatory response.
(J) L. infantum SIGNR3 interaction inhibits Dectin-1 mediated IL-1β production. (K) Opsonized-L. major parasites recognition by FcγR promotes anti-inflammatory
cytokines. (L) MHC-II degradation by GP63 from L. amazonensis and L. donovani amastigotes. Rab7, Ras-related protein 7; LAMP-1, lysosomal-associated
membrane protein 1; LPG, lipophosphoglycan; Rab5a, Ras-related protein 5A; GP63, glycoprotein 63; LIT1, Leishmania iron transporter 1; LIT2, Leishmania iron
transporter 2; ROS, reactive oxygen species; NO, nitric oxide; TLRs, Toll-like receptors; SHP1, Src homology region 2 domain-containing phosphatase-1; SOCS,
suppressors of cytokine signaling; A20, tumor necrosis factor alpha-induced protein 3; PS, phosphatidylserine; CRs, complement receptors; FcγR, Fcγ receptor.

miR-494, which induces Rab5a expression in the phagosome
to prevent lysosome fusion (Figure 2C) (Verma et al., 2017).
Moreover, the cysteine peptidase B from L. mexicana regulates
GP63 expression, thus indirectly influencing phagosome
formation (Casgrain et al., 2016). Leishmania can also exploit
host sphingolipids and lipid droplets as energy source and to
neutralize the acidic environment inside the phagolysosome (Ali
et al., 2012; Rabhi et al., 2016).

To proliferate intracellularly, Leishmania amastigotes require
iron and arginine-derived polyamines, essential nutrients for
their survival within the macrophage phagolysosome (Iniesta
et al., 2001; Huynh and Andrews, 2008). L. amazonensis
compensates the host iron efflux pump by the activation of
its own iron transporters, LIT1 and LIT2, providing their
mitochondria with iron to generate ROS and regulate the
differentiation of virulent Leishmania amastigotes (Figure 2D)
(Huynh et al., 2006; Mittra et al., 2013; Mittra et al., 2016; Mittra
et al., 2017). During infection, the macrophage arginine pool is
utilized to produce metabolites (NO and polyamines) for the host
defense and its suppression, respectively. Leishmania infection
up-regulates arginase activity in host macrophages, which favors
polyamine synthesis and subverts NO synthase-dependent killing
by competing for arginine (Gaur et al., 2007; Reguera et al., 2009;

Rogers et al., 2009; Badirzadeh et al., 2017). In fact, the arginase
encoded by the parasite can influence macrophage responses
(Boitz et al., 2017). Polyamines contribute to proliferation and
to the synthesis of anti-oxidants, such as trypanothione, which
neutralize ROS and enable L. donovani amastigote survival inside
macrophage phagolysosomes (Figure 2E) (Colotti and Ilari, 2011;
Goldman-Pinkovich et al., 2016). However, this mechanism
seems to be not essential for the survival of L. donovani
amastigotes (Boitz et al., 2017), but it is relevant during the
promastigote stage.

Modulating Macrophage Microbicide
Response
Once inside the macrophage, Leishmania modulates the pattern
of cytokine secretion and inhibits the generation of NO
and ROS to increase its survival inside the host. L. major
promastigotes inhibit IL-12 while promoting IL-10 and TGF-
β production from infected host macrophages (Figure 2F)
(Reiner et al., 1994; Carrera et al., 1996). Most of these
immunosuppressive actions depend on Leishmania-mediated
host protein tyrosine phosphatases (PTPs) or phosphatidyl
inositol-3 kinase (PI3K) recruitment, which leads to inhibition
of JAK/STAT or MAPK signaling pathways, thus transforming
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macrophages to anti-inflammatory state as described for
L. donovani and L. amazonensis (Nandan and Reiner, 1995;
Blanchette et al., 1999; Nandan et al., 1999; Forget et al., 2006;
Ruhland and Kima, 2009; Calegari-Silva et al., 2015).

Toll-like receptors (TLRs) expressed on innate immune cells
are critical for Leishmania recognition, which determines the
outcome of the infection (Faria et al., 2012). As a strategy
to modulate the TLR response, depending on the species,
Leishmania recruits suppressors of the cytokine signaling family
proteins, SOCS-1 and SOCS-3, activates host de-ubiquitinating
enzyme A20 or the Src homology 2 domain phosphotyrosine
phosphatase 1 (SHP-1) (Figure 2F) (de Veer et al., 2003; Lapara
and Kelly, 2010; Shweash et al., 2011; Srivastav et al., 2012, 2015).
Moreover, L. donovani suppresses p38 phosphorylation while
activates ERK1/2, resulting in inhibition of TLR2 and TLR4-
stimulated IL-12 and increase in IL-10 production (Chandra
and Naik, 2008). Similarly, the activation of the ERK and
MAPK pathway in response to IgG-opsonized L. amazonensis
boosts IL-10 production (Yang et al., 2007). Several virulence
factors derived from the parasite have been implicated in this
process; LPG inhibits protein kinase C (Descoteaux and Turco,
1999), and stimulates ERK (Severn et al., 1992; Proudfoot et al.,
1996; Feng et al., 1999; Prive and Descoteaux, 2000; Delgado-
Dominguez et al., 2010), favoring downregulation of iNOS and
IL-12 production. L. donovani amastigotes similarly inhibit IL-
12 production despite lacking LPG on their surface, indicating
that other parasite-derived molecules are involved in PKC activity
inhibition (Olivier et al., 1992). For example, altering macrophage
intracellular ceramide homeostasis by L. donovani results in
impaired PKC signaling (Figure 2G) (Ghosh et al., 2001).

Similar to other Leishmania factors, like the elongation
factor-1alpha (EF-1alpha) and fructose-1,6-bisphosphate
aldolase described in L. donovani (Nandan et al., 2002, 2007),
L. major GP63 can also promote the activation and recruitment
of host PTPs, like SHP-1, which suppresses several kinase
pathways, inhibiting several microbicidal macrophage functions
(Gomez et al., 2009) (Figure 2F). Moreover, GP63 can inhibit
macrophages inflammatory response through mTOR signaling
pathway, which regulates the IL-12/IL-10 axis (Jaramillo et al.,
2011; Cheekatla et al., 2012). GP63 also mediates proteolysis of
some macrophage transcriptions factors, like AP-1 and NF-κB,
and adaptor molecules, such as Dok family proteins (Gregory
et al., 2008; Contreras et al., 2010; Alvarez de Celis et al., 2015).
Using the same mechanism, GP63 also modulates protein
tyrosine kinases and PKC activity (Chawla and Vishwakarma,
2003; Halle et al., 2009). In addition, the L. mexicana cysteine
peptidase B promotes SHP-1 function in the macrophage,
inhibiting NF-κB signaling and consequently IL-12 and NO
production (Cameron et al., 2004; Abu-Dayyeh et al., 2008, 2010).
In addition, the glycosylphosphatidylinositol structure common
for different Leishmania surface molecules (including LPG
and GP63) inhibits TNF expression and dampens macrophage
response to infection (Tachado et al., 1997). The kinetoplastid
membrane protein-11 is another pathogenicity factor expressed
in different Leishmania spp., including L. amazonensis amastigote
stage (Matos et al., 2010) that increases IL-10 production and
arginase activity while reduces NO production by macrophages

(Lacerda et al., 2012). At this stage, L. amazonensis amastigotes
can expose phosphatidylserine analogs, promoting TGF-β and
IL-10 and inhibiting NO synthesis (Figure 2H) (Wanderley et al.,
2006).

Leishmania can also target macrophage membrane-bound
receptors to subvert the inflammatory response. Sialic acids in
the parasite surface bind to Siglecs receptors on macrophages
to dampen the immune response. Sialic acids recognition by
Siglec-5 reduces levels of ROS, NO generation and promotes
a Th2-prone cytokine response to L. donovani (Figure 2I)
(Roy and Mandal, 2016). The C-type lectin receptor (CLR)
SIGNR3 is targeted by L. infantum to inhibit Dectin-1-mediated
IL-1β secretion, favoring parasite survival (Figure 2J) (Lefevre
et al., 2013). Mannose receptor (MR) expressed by dermal
macrophages is targeted by a non-healing strain of L. major.
These cells are permissive for parasite grow even in a Th1-
immune environment, affecting the severity of cutaneous disease
(Lee et al., 2018). In addition, the engagement of complement
receptors (CRs) type 1 and type 3 by L. major inhibits respiratory
burst and IL-12 production (Da Silva et al., 1989; Ricardo-Carter
et al., 2013) (Figure 2I). Moreover, the engagement of the
Fc receptor (FcγR) by opsonized-parasites promotes IL-10 and
TGF-β production by L. major infected macrophages (Figure 2K)
(Padigel and Farrell, 2005). L. amazonensis and L. major can also
induce the expression of CD200 in macrophages, mediating iNOS
inhibition and promoting the virulence of the parasites (Cortez
et al., 2011). Additional mechanisms like secretion of exosomes
or microRNA-mediated post-transcriptional regulation of
inflammatory immune response genes have been described for
L. donovani and L. amazonensis, which can modulate cytokine
and NO generation by macrophages (Silverman et al., 2010;
Muxel et al., 2017; Tiwari et al., 2017).

Modulating Macrophage Antigen
Presentation and Costimulatory Signals
Another way used by Leishmania to perpetuate its presence
inside the host is suppressing T cell-mediated immune
responses by inhibiting presentation of Leishmania antigens
in major histocompatibility complex (MHC) and dampening
costimulatory signals provided by macrophages. Infection of
macrophages affects their membrane lipid rafts fluidity and
the disposition of MHC class II (MHC-II) molecules, leading
to defective antigen presentation and T cell priming (Courret
et al., 1999; Chakraborty et al., 2005; Roy et al., 2016). In
addition, cysteine proteases from L. amazonensis and L. donovani
amastigotes contribute to this process by degrading MHC-II
molecules (Figure 2L) (De Souza Leao et al., 1995; Antoine
et al., 1999). L. donovani-infected macrophages exhibit decreased
expression of the co-stimulatory molecule B7-1 (Saha et al., 1995).

Increasing Macrophage Survival
Leishmania has evolved several mechanisms to extend the
survival of the infected macrophages. Programmed death-1
receptor (PD-1), which mediates T-cell exhaustion, is negatively
modulated by L. donovani to avoid macrophage apoptosis
(Roy et al., 2017). In addition, L. donovani triggers AKT
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activation of the anti-apoptotic β-catenin, inhibiting the pro-
apoptotic transcriptional regulator FOXO-1 (Gupta et al., 2016).
L. donovani also prevents mitochondria-dependent apoptosis by
inducing anti-apoptotic protein MCL-1 (Giri et al., 2016). Some
factors encoded by the parasite, like the orthologs of the cytokine
macrophage migration inhibitory factor (MIF), are involved
in blocking macrophage apoptosis and prevent clearance of
internalized parasites upon L. major infection (Holowka et al.,
2016).

DENDRITIC CELLS COMMANDING
IMMUNITY AGAINST Leishmania

Dendritic cells play a unique role in the immune system as
antigen presenting cells that promote and sustain adaptive
immunity while contribute at the same time to the induction of
tolerance to self-antigens. DCs uptake and process Leishmania
parasites or their antigens and subsequently migrate to lymph
nodes (LNs) to prime T cells. Leishmania sensing by DCs
triggers IL-12p70 production in both human and mouse DCs,
a key cytokine to prime and maintain Th1 responses that
ultimately lead to the control of the parasite (Gorak et al.,
1998; von Stebut et al., 1998; Marovich et al., 2000; Leon
et al., 2007). In order to escape, Leishmania parasites target DC
activation either being silent or even inhibiting DC activation,
motility and migration to draining LNs (Ponte-Sucre et al., 2001;
Jebbari et al., 2002; De Trez et al., 2004; Revest et al., 2008;
Sanabria et al., 2008; Figueiredo et al., 2012; Hermida et al.,
2014; Iborra et al., 2016; von Stebut, 2017). DC-Leishmania
interaction can vary depending on the different DC subset
involved, as they are equipped with different pattern recognition
receptors. In addition, several Leishmania species and different
strains might be endowed with different pathogen associated
molecular patterns and/or immune evasion strategies. Moreover,
the interaction of the parasite and DCs can be direct or indirect,
through other infected cells, and even the sandfly saliva may also
modulate DCs function.

L. major inoculation induces a huge infiltration of neutrophils
that phagocytose the majority of parasites but fails to kill them,
although this is not the case for other Leishmania species (Regli
et al., 2017). DCs reaching the inflammation site would thus
mainly encounter apoptotic neutrophils harboring intracellular
parasites. The capture of infected neutrophils by DCs in the skin
acts as a key mechanism to inhibit their functions, delaying the
development of adaptive immunity (Figures 1I, 3A) (Ribeiro-
Gomes et al., 2012). In fact, treatment of mice with two
neutrophil-depleting antibodies, the GR-1-specific antibody RB6-
8C5, which recognizes an epitope shared by Ly6G and Ly6C, and
the Ly6G-specific antibody, 1A8, just before infection augments
DCs maturation in the skin and the priming of L. major
specific CD4+ T cells in vivo, which correlates with faster
parasite clearance (Peters et al., 2008; Ribeiro-Gomes et al., 2012).
Moreover, uptake of infected neutrophils inhibits DC maturation
and their subsequent function as cross-priming DC in vivo
(Ribeiro-Gomes et al., 2015). Upon L. major infection (Friedlin
strain FV1), the engagement of the receptor tyrosine kinase Mer

(MERTK) on the DCs phagocytosing apoptotic neutrophils led to
the impaired capacity for CD8+ T-cell priming in vitro. MERTK
acted as a tolerogenic receptor in resting macrophages and in
the absence of inflammation (Figures 1I, 3A) (Zagorska et al.,
2014). Interestingly, the related protozoan parasite Toxoplasma
gondii does not elicit this inhibitory response to the same extent
(Ribeiro-Gomes et al., 2015). In addition, the parasites co-evolved
a strategy where the virulent inoculum comprises viable and
dying promastigotes, which expose phospholipids analogs to
phosphatidylserine (Weingartner et al., 2012), a prototypical
apoptotic eat-me signal promoting phagocytosis in a “silent”
way. Thus, DCs can also engulf free extracellular Leishmania
promastigotes (Ng et al., 2008).

Leishmania Modulates DC Maturation
and Migration
Upon recognition of pathogen-derived molecules, DCs migrate
to lymphoid tissues and undergo a process of “maturation”
that enhances antigen processing and presentation, expression of
costimulatory molecules and cytokine secretion, governing the
fate of adaptive immunity. Several in vivo studies demonstrate
the importance of fully activated migratory DCs (CD86high,
CD40high, CCR7+, and IL-12+) in activation of NK cells
and in the generation of protective Th1 responses against
Leishmania parasites (Soong, 2008). Therefore, incomplete
and delayed DC maturation could favor the establishment
and amplification of Leishmania infection before the onset
of immune responses. Of note, in an experimental model
mimicking natural infection (low number L. major metacyclic
promastigotes challenged in the ear dermis) a silent phase
was observed with parasite replication in the absence of an
inflammatory response. In this model, IL-12+ DCs were not
detected until week 4 post-infection, peaking at week 6 and
preceding full development of T cell-associated IFN-γ release
(Belkaid et al., 2000). L. major internalization by DCs is
facilitated by IgG via FcγRI and FcγRIII, and engagement of
these receptors is required for development of Th1 dependent
immunity (Figure 3B) (Woelbing et al., 2006). However, it is
unknown when B-cell priming against Leishmania occurs, and
whether natural IgGs can opsonize Leishmania and promote
DC engulfment. The existence of a “silent phase” suggests that
Leishmania is able to modulate DC maturation, motility or
migration. In fact, upon in vitro infection with high doses of
L. major promastigotes, DCs did not exhibit upregulation of
MHC class I/II, costimulatory molecules, such as CD40, CD86,
as well as release of proinflammatory cytokines (Figure 3C) (von
Stebut et al., 1998). Similarly, the presence of live L. amazonensis
parasites during human DC differentiation in vitro decreased
CD80 expression and IL-6 secretion (Favali et al., 2007).
Mouse bone marrow-derived DCs (BMDCs) infected with
L. amazonensis, L. braziliensis, L. major, or L. infantum
metacyclic promastigotes showed decreased MHC-II and CD86
expression, and exhibited an impaired ability to induce T-cell
proliferation (Neves et al., 2010; Figueiredo et al., 2012). In
addition, some L. infantum excreted/secreted proteins (LipESP)
reduced the ability of human DCs to respond in vitro to LPS,
inhibiting maturation and IL-12p70 production (Figure 3D)
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FIGURE 3 | Leishmania inhibits DC function. (A) Apoptotic cell clearance of L. major-infected neutrophils by DCs shuts down cross-priming of CD8 T cells in vitro by
MERTK-dependent signaling. (B) Internalization of opsonized L. major by DCs via FcγR promotes DC activation and IL-12 production. (C) Downregulation of
costimulatory molecules, CD40 and CD86 upon L. major infection in vitro. (D) L. infantum excreted/secreted factors (LipESP) reduce LPS- and CD40-mediated
responses. (E) Binding of soluble Leishmania ligand(s) to Mincle promotes SHP-1 interaction and inhibitory signaling. (F) L. amazonensis exploits A(2B) receptor to
inhibit DCs function. (G) GP63 cleaves SNAREs protein, preventing the assembly of the NADPH oxidase complex. FcγR, Fcγ receptor; MERTK, tyrosine-protein
kinase Mer; LipESP, L. infantum excreted/secreted proteins; A(2B) receptor, adenosine; GP63, glycoprotein 63; SNAREs, soluble NSF attachment protein receptor.

(Markikou-Ouni et al., 2015). Exosomes from L. donovani
failed to prime monocyte-derived human DCs to drive the
differentiation of naive CD4 T cells into IFN-γ-producing Th1
cells in vitro. Interestingly, vesicles from L. donovani deficient
in HSP100, which exhibit a distinct protein cargo, have more
proinflammatory phenotype in human DCs in vitro (Silverman
et al., 2010).

The outcome of the DC interaction with the parasite
depends on the Leishmania species and the developmental stage.
DC maturation is not observed upon L. major promastigote
infection, but can be induced by L. major amastigotes in vitro
(von Stebut et al., 1998). In contrast, DCs infected with
L. mexicana amastigotes do not show detectable levels of
IL-12, or any other signs of activation (Bennett et al., 2001).
Likewise, L. amazonensis amastigotes failed to induce CD40-
dependent IL-12 in vitro production in DCs (Figure 3D) (Qi
et al., 2001; Boggiatto et al., 2009). Notably, DCs infected with
L. amazonensis promastigotes displayed a “semi-activation”
phenotype, produced relatively low levels of IL-12, and
preferentially induced pathogenic CD4+ T cells (Xin et al.,
2007). L. amazonensis amastigote-infected DCs were less mature

and with lower antigen presenting capacity in vitro compared
with promastigote-infected DCs (Xin et al., 2008). In contrast
to parasite extract stimulation or infection, internalization
of antibody-opsonized L. amazonensis promastigotes or
amastigotes induces DC maturation, as shown by the over-
expression of costimulatory, adhesion and MHC-II (Prina et al.,
2004).

The mechanisms that Leishmania uses to sabotage DCs
are still not fully defined. L. mexicana infection of the DC
line DC2.4, inhibits the MAPK-signaling cascade, decreasing
antigen-presentation capacity and IL-12 secretion (Figure 3D)
(Contreras et al., 2014). This inhibition is mediated by the
activation of PTPs. Leishmania can be detected by different
PRRs, such as TLRs, CLRs and opsonizing antibodies via Fc
receptors, which trigger activating and/or inhibitory signals
(Woelbing et al., 2006; Lefevre et al., 2013). Mincle (Clec4e)
mediates dampening of DC activation and migration following
sensing of a ligand released by Leishmania (Iborra et al., 2016).
Mincle couples to the Fc receptor γ (FcRγ) chain that bears
immunoreceptor tyrosine-based activation motif (ITAM). Upon
canonical signaling through Mincle, tyrosine residues in the FcRγ
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chain are phosphorylated by Src-family kinases, followed by the
recruitment and activation of the kinase Syk, which generates
an activating signal that boosts inflammation (Sancho and Reis
e Sousa, 2012, 2013). Notably, upon recognition of Leishmania
ligand, Mincle shifts to an inhibitory ITAM configuration that
recruits SHP-1 and dampens DC activation and migration
induced by heterologous receptors sensing activating signals
from Leishmania (Figure 3E) (Iborra et al., 2016). Thus, we
observed a more robust IFN-γ-producing-CD4+ T cell response,
milder dermal pathology and 10-fold reduction of the parasite
burden compared to wild-type mice. Selective loss of SHP1
in CD11c+ cells phenocopies enhanced adaptive immunity to
Leishmania (Iborra et al., 2016). Another way to dampen DC
activation related to purinergic signaling has been demonstrated
in DCs infected with L. amazonensis. Whereas extracellular
ATP induces inflammation, adenosine is an important anti-
inflammatory mediator. In the presence of MRS1754, a highly
selective A(2B) adenosine receptor antagonist, DCs exhibit an
increased expression of MHC-II, CD86 and CD40, enhancing
their ability to induce T-cell proliferation. In conclusion, A(2B)
receptor activation may be used by Leishmania to inhibit DC
function and evade the immune response (Figure 3F) (Figueiredo
et al., 2012).

Leishmania may also subvert adaptive immunity by interfering
with DC migration. In the steady state, dermal DCs are highly
motile, continuously crawling through the interstitial space.
Intradermal delivery of L. major immobilizes dermal DCs (Ng
et al., 2008). Products secreted by L. major promastigotes
inhibit the motility of DCs by up to 93%, in a dose-
dependent and reversible manner (Jebbari et al., 2002). Co-
incubation with Leishmania in vitro, changes the migratory
pattern of DCs when they are adoptively transferred to mice
(Hermida et al., 2014). Similarly, we described that Leishmania
inhibits DCs migration via Mincle (Iborra et al., 2016). DCs
from mice with chronic L. donovani infection fail to migrate
from the marginal zone to the periarteriolar region of the
spleen. However, DCs eventually migrate and promote Th1 cell
immunity and macrophage microbicidal activity (Leon et al.,
2007).

Different DC subsets can coordinate the mounting of anti-
Leishmania response. L. major infection recruits monocytes
to the dermis that generate Th1-promoting dermal monocyte-
derived DCs (Leon et al., 2007). In addition, cDC1s (Batf3-
dependent DCs) are essential for the control of L. major (Ashok
et al., 2014; Martinez-Lopez et al., 2015). Although this DC subset
does not seem essential for Th1 or CTL priming (Martinez-Lopez
et al., 2015), probably because cDC1 are resistant to infection
(Henri et al., 2002), they excel in IL-12 production, which is
crucial for maintenance of local Th1 immunity against L. major
infection (Martinez-Lopez et al., 2015).

Interfering With CD8+ T Cell
Cross-Priming
CD8+ T lymphocytes are components of the adaptive immune
response that play an important role in protection against
intracellular pathogens. The role of CD8+ T cells in the primary
control of Leishmania is still controversial, given the different

results obtained in different infection models. CD8+ T cells
contribute to parasite control in visceral leishmaniasis (Stäger
and Rafati, 2012), probably by recruiting inflammatory cells and
maintaining granulomas. CD8+ T cells also contribute to parasite
clearance against low doses of L. major (Belkaid et al., 2002b),
where they also contribute to the cutaneous pathology associated
to the infection, and even exacerbate disease (Novais and Scott,
2015). However, L. donovani induces defective antigen-specific
CD8+ T cell responses, with a very limited clonal expansion
(Joshi et al., 2009), compared with viral infections or following
injection of irradiated Plasmodium (Sano et al., 2001). In fact,
visceral leishmaniasis patients do not show CD8+ T cell effector
responses (Gautam et al., 2014).

Limited and poor Leishmania antigen-processing and
presentation into MHC Class I, could be one potential
explanation. Processing of Leishmania antigens occurs in
a TAP-independent, intraphagosomal pathway that is less
efficient and requires higher amounts of secreted antigen
than the endoplasmic reticulum-based, TAP-dependent cross-
presentation pathway (Bertholet et al., 2006). In addition to other
mechanisms discussed above, the major surface metalloprotease
of Leishmania GP63 cleaves a subset of SNAREs, including
VAMP8. The inactivation of VAMP8 prevents the assembly
of the NADPH oxidase complex (NOX2), which is critical to
limit the acidification in these cross-presentation compartments
(Figure 3G) (Matheoud et al., 2013; Matte et al., 2016). The
inhibition of acidification is critical to prevent the complete
and premature destruction of MHC class I epitopes by the
protease activity (Savina et al., 2006). As a consequence, the
cross-presentation of Leishmania antigens on MHC class I
molecules is actively inhibited by the parasite. CD8+ T cells
undergo a second round of activation, become dysfunctional,
and ultimately die from exhaustion during infection (Joshi
et al., 2009). Given that high and constant antigenic stimulation
causes CD8+ T cell “exhaustion” during chronic viral infections
(Mueller and Ahmed, 2009), we could speculate that Leishmania
antigens might be available for cross-presentation from other
sources, like death infected macrophages.

FIGHTING BACK IMMUNE EVASION BY
VACCINATION

Inoculation of live virulent L. major parasites causing auto-
curing cutaneous leishmaniasis lesions, a procedure known
as leishmanization (Khamesipour et al., 2005) is the only
efficient vaccine that induces immunity in human subjects
(Saljoughian et al., 2014; Mendonca, 2016). Resistance to
reinfection with L. major in mice has been linked to the
induction of parasite persistence by CD4+CD25+ regulatory T
cells secreting IL-10 (Belkaid et al., 2001, 2002a). The presence
of small number of parasites in macrophages and DCs after
primary challenge (Mandell and Beverley, 2017) preserves the
concomitant immunity necessary to induce long-lasting defense
(Sacks, 2014), consisting of migrating IFN-γ-producing effector
T cells to the site of reinfection (Uzonna et al., 2001; Peters et al.,
2014; Romano et al., 2015), and CD4+ resident memory T cells
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in the infected skin (Glennie et al., 2015) that can further recruit
effector T cells and inflammatory monocytes to the infected
dermal site (Glennie et al., 2017).

Generation of long-lasting cellular immunity is the main
objective of vaccines based on parasite proteins or extracts.
Immunotherapy using DC-based vaccination is an emerging
potent approach for harnessing the potential of a patient’s own
immune system to induce protection. DCs can be pulsed with
parasite extracts alone (Ahuja et al., 1999; Carrion et al., 2008;
Majumder et al., 2012; Masic et al., 2012), combined with
adjuvants such as CpG-ODN (Carrion et al., 2008; Agallou
et al., 2011, 2012; Majumder et al., 2012; Masic et al., 2012)
or peptidoglycan (ligand of the TLR-2) (Jawed et al., 2016)
or in DCs engineered to secrete IL-12 (Ahuja et al., 1999).
These different treatments boost their immunogenicity in murine
models (Ahuja et al., 1999; Majumder et al., 2012; Jawed
et al., 2016), dampening IL-10 responses associated to parasite
infection (Schwarz et al., 2013), and decreasing the tissue damage
induced by the inflammatory response after infective challenge
in vaccinated animals (Masic et al., 2012). Due to the high
cost of these procedures, an alternative to the use of DCs
primed with recombinant parasite proteins in humans will be to
target Leishmania proteins to DCs by constructing recombinant
chimeras, such as recombinant antibodies recognizing DC-
specific receptors and containing leishmanial proteins. Using this
strategy, antigen-specific CD4+ T cells producing IFN-γ, IL-2,
and TNF were found in vaccinated mice (Matos et al., 2013).

CONCLUDING REMARKS

Myeloid cells, including neutrophils, monocytes, macrophages
and DCs, orchestrate the generation of protective innate and
adaptive immunity against Leishmania. Neutrophils are the first
line of defense and generate an inflammatory response that
restrains the parasite but, at the same time, and for some
Leishmania species, neutrophils may act as carriers that facilitate
silent infection of macrophages (Laskay et al., 2003, 2008; John
and Hunter, 2008). Once within the macrophage, and depending
on the Leishmania species, parasites delay phagosome formation
and maturation, preventing phagosome acidification and action
of proteases, while securing the nutrients needed for their
survival. Moreover, the parasites modulate the pattern of cytokine
secretion and inhibit the generation of NO and ROS, while

extending the survival of the infected macrophages. Similarly,
L. major-infected neutrophils are silently phagocytozed by DCs
in the skin and inhibit DC maturation and migration, delaying
the development of adaptive immunity (Ribeiro-Gomes et al.,
2012, 2015; Peters et al., 2014). Both monocyte-derived DCs
and cDC1s are essential for the generation of Th1 immunity
resulting in the control of L. major (Leon et al., 2007; Ashok
et al., 2014; Martinez-Lopez et al., 2015). Leishmania acts
at different levels to inhibit DCs, including dampening the
MAPK pathway, decreasing antigen presentation capacity, IL-
12 secretion and migration, being this inhibition mediated
by the activation of PTPs (Contreras et al., 2014; Iborra
et al., 2016). Understanding which DC populations are key to
trigger and achieve immunity to Leishmania and how parasites
inhibit their activation and migration will help to improve
a rational design of vaccines aimed to counteract parasite
virulence factors, along with the use of the most adequate
adjuvants.
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