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Photosynthetic organisms oxidize P700 to suppress the production of reactive
oxygen species (ROS) in photosystem I (PSI) in response to the lower efficiency of
photosynthesis under high light and low CO2 conditions. Previously, we found a positive
relationship between reduction of plastoquinone (PQ) pool and oxidation of P700, which
we named reduction-induced suppression of electron flow (RISE). In the RISE model,
we proposed that the highly reduced state of the PQ pool suppresses Q-cycle turnover
to oxidize P700 in PSI. Here, we tested whether RISE was relieved by the oxidation of
the PQ pool, but not by the dissipation of the proton gradient (1pH) across the thylakoid
membrane. Formation of 1pH can also suppress electron flow to P700, because
acidification on the luminal side of the thylakoid membrane lowers oxidation of reduced
PQ in the cytochrome b6/f complex. We drove photosynthetic electron transport using
H2O2-scavenging peroxidase reactions. Peroxidase reduces H2O2 with electron donors
regenerated along the photosynthetic electron transport system, thereby promoting the
formation of 1pH. Addition of H2O2 to the cyanobacterium Synechococcus elongatus
PCC 7942 under low CO2 conditions induced photochemical quenching of chlorophyll
fluorescence, enhanced NADPH fluorescence and reduced P700. Thus, peroxidase
reactions relieved the RISE mechanism, indicating that P700 oxidation can be induced
only by the reduction of PQ to suppress the production of ROS in PSI. Overall, our data
suggest that RISE regulates the redox state of P700 in PSI in cooperation with 1pH
regulation.

Keywords: P700 oxidation, photosynthesis, reactive oxygen species, plastoquinone, Q-cycle

INTRODUCTION

Oxygenic phototrophs adjust photon energy utilization to environmental conditions in an attempt
to alleviate photo-oxidative damage. Solar photon energy often exceeds photosynthetic CO2
assimilation needs, which has the potential to overflow into O2 in photosystem I (PSI), thereby
generating reactive oxygen species (ROS), including superoxide anion radical, hydroxyl radical,
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and singlet oxygen (Satoh, 1970; Sonoike, 1996; Cazzaniga et al.,
2012; Sejima et al., 2014; Takagi et al., 2016b). Because of their
high reactivity, ROS immediately obliterate PSI photochemical
activity and the inactivated PSI takes days to weeks to recover
(Kudoh and Sonoike, 2002; Zivcak et al., 2015). The photo-
oxidative damage in PSI, derived from ROS high reactivity, can
be easily induced by repetitive short-pulse illumination, which
instantaneously fills the photosynthetic electron transport system
with electrons (Sejima et al., 2014). The inactivation of PSI
is suppressed if the reaction center chlorophyll (Chl) in PSI,
P700, is kept oxidized (Sejima et al., 2014; Shimakawa et al.,
2016b, 2017a; Takagi et al., 2017b). Photosynthetic organisms
flexibly oxidize P700 in response to high light intensity and
low CO2 conditions, in an attempt to suppress ROS production
(Badger and Schreiber, 1993; Golding and Johnson, 2003; Miyake
et al., 2005; Sejima et al., 2014; Shimakawa et al., 2016b, 2017a;
Takagi et al., 2017b). The oxidation of P700 strictly indicates
that the re-reduction of oxidized P700 by electrons from PSII
is prevented, but here we use the simple term “P700 oxidation”
for this physiological response. P700 oxidation is a universal
strategy used by photosynthetic organisms to decrease the risk
of ROS production by lowering the amount of ground state
P700, the source of excess electrons and energy. That is why
photo-oxidative damage in PSI rarely occurs.

Oxidation of P700 in PSI is regulated by a variety of molecular
mechanisms (P700 oxidation system). These are categorized as
either acceptor-side mechanisms, i.e., those which safely dissipate
excess electrons and energy through electron transport in order
to relax the limitation of the electron acceptor side of PSI
(alternative electron transport), or donor-side mechanisms, i.e.,
those which suppress electron transport into PSI (Shimakawa
et al., 2016b, 2017a; Takagi et al., 2017b). In the case of acceptor-
side mechanisms, photorespiration prepares a major alternative
electron sink in land plants, except for C4 plants (Takagi
et al., 2016a; Hanawa et al., 2017). Furthermore, flavodiiron
protein mediates alternative electron transport to oxidize P700
in cyanobacteria (Helman et al., 2003; Allahverdiyeva et al., 2013;
Shimakawa et al., 2015, 2016b), chlorophytes (Chaux et al., 2017),
bryophytes (Gerotto et al., 2016; Shimakawa et al., 2017a), and
probably pteridophytes and gymnosperms (Zhang et al., 2009;
Takagi et al., 2017b). Both P700 oxidation systems on the electron
acceptor side require O2 as the electron acceptor (Helman et al.,
2003; Hayashi et al., 2014; Sejima et al., 2016; Hanawa et al.,
2017). On the donor side, P700 oxidation is known to have a
strong relationship with the proton gradient (1pH) across the
thylakoid membrane. Studies on isolated chloroplasts have shown
that acidification on the luminal side of the thylakoid membrane
suppresses electron transport in the cytochrome b6/f complex
(Cyt b6/f ) (Tikhonov et al., 1981; Nishio and Whitmarsh, 1993).
This has been subsequently supported by in vivo physiological
measurements on intact plant leaves (Takizawa et al., 2008; Rott
et al., 2011; Takagi et al., 2017a) and living cyanobacterial cells
(Trubitsin et al., 2003). Additionally, energy-dependent non-
photochemical quenching (qE or qZ) is activated by 1pH to
dissipate excess photon energy as heat at photosystem II (PSII)
in plants, algae, and cyanobacteria (Niyogi and Truong, 2013;
Stamatakis and Papageorgiou, 2014; Ruban, 2016). Furthermore,

H2O oxidation in PSII is inhibited at low pH on the luminal
side of the thylakoid membrane (Krieger et al., 1993). These
mechanisms help alleviate the pressure of electron transport on
the donor side of PSI and contribute to P700 oxidation.

Recently, Shaku et al. (2016) identified a novel P700
oxidation mechanism operating on the donor side of PSI:
reduction-induced suppression of electron flow (RISE). In
photosynthetic linear electron flow (LEF) on the thylakoid
membrane, plastoquinol (PQH2) is oxidized to plastoquinone
(PQ) in Cyt b6/f, where the Q-cycle operates (Figure 1; Kallas,
1994; Tikhonov, 2014). In the Q-cycle, PQH2 donates one
electron to an iron-sulfur cluster at the PQH2 oxidation site
(Qp site) in Cyt b6/f ; cytochrome f (Cyt f ) accepts the electron
from the iron-sulfur cluster. The electron in the PQ semiquinone
remaining at the Qp site is transferred to a PQ at the PQ reduction
site (Qn site) in Cyt b6/f. The PQ in the one electron-reduced
form at the Qn site accepts the second electron from PSII and
becomes reduced to PQH2 at the Qn site in Cyt b6/f. When two
molecules of PQH2 are oxidized at the Qp site in Cyt b6/f, two
electrons are transported to Cyt f sequentially and the other two
circulate within Cyt b6/f to produce one molecule of PQH2 at the
Qn site (Figure 1; Kallas, 1994; Tikhonov, 2014). Theoretically,
unless PQ is supplied to the Qn site, the Q-cycle cannot operate
and the reduction of Cyt f is suppressed. Shaku et al. (2016)
showed that a reduction of the PQ pool in the Synechococcus
elongatus PCC 7942 (S. elongatus) flavodiiron protein-deficient
mutant causes suppression of electron transport from PQH2 to
PSI, which in turn results in the accumulation of oxidized P700.
That is, in the mutant, the Q-cycle function is suppressed due to
the shortage of PQ supplied for the Qn site in Cyt b6/f, resulting
in suppressed LEF under CO2 limitation. Therefore, the mutant
can survive in an air-equilibrated condition (Shimakawa et al.,
2016b).

As described above, on the electron donor side of PSI,
two molecular mechanisms for P700 oxidation can function:
the 1pH-dependent suppression of PQH2 oxidation in Cyt
b6/f and the suppression of the Q-cycle, which depends on
the accumulation of PQH2 (RISE). In order to demonstrate
that RISE is regulated by electron-sink activity, in the present
study, we tested whether RISE is relieved by a non-ATP-
consuming metabolic pathway. A previous report by Shaku
et al. (2016) showed that P700 oxidation induced by RISE is
suppressed by addition of NaHCO3 to the cyanobacterial cells.
Simultaneously, NaHCO3 starts CO2-dependent O2 evolution,
i.e., photosynthesis. Carbon assimilation consumes ATP in
addition to NADPH and dissipates 1pH formed across the
thylakoid membrane. Based on these facts, we could not exclude
the possibility that the suppression of P700 oxidation might be
driven by the increased activity of Cyt b6/f under conditions
of dissipated 1pH. Thus, we tried to show that a non-ATP-
consuming metabolic pathway, electron sink, prevents RISE
from operating. We investigated the effect of H2O2-dependent
electron flow as a non-ATP-consuming metabolic pathway on the
relaxation of RISE in S. elongatus.

Cyanobacteria detoxify H2O2 using catalase and peroxidase
reactions (Miyake et al., 1991). The peroxidase reaction
uses electron donors such as NADPH (Miyake et al., 1991;
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FIGURE 1 | Proposed model of reduction-induced suppression of electron flow (RISE). (A) Q-cycle in high electron-sink conditions (i.e., α and γ in Figure 2). The
activity of photosynthetic linear electron flow (LEF) is high. Plastoquinone (PQ) is reduced to plastoquinol (PQH2) with electrons from photosystem II (PSII) and the Qn

site in the cytochrome b6/f complex (Cyt b6/f ). Then, PQH2 is oxidized at the Qp site in Cyt b6/f. (B) The Q-cycle in low electron-sink conditions (i.e., β in Figure 2).
The activity of LEF is low, and PQ pool is highly reduced, leading the suppression of the Q cycle in Cyt b6/f to oxidize P700 in photosystem I (PSI). Blue, brown, and
yellow ellipsoid respectively indicate plastocyanin (or cytochrome c6), ferredoxin, and ferredoxin-NADP+ reductase. Red and blue lines indicate the transports of
electrons and protons, and dashed red line shows the suppressed electron flow.

Yamamoto et al., 1999). For continuous scavenging of H2O2,
these electron donors are regenerated by LEF (Miyake et al.,
1991). Therefore, addition of H2O2 to cyanobacterial cells
induces both photochemical quenching of Chl fluorescence
and O2 evolution in the light (Miyake et al., 1991). That
is, H2O2-dependent peroxidase reaction drives LEF, which
is also observed in isolated intact chloroplasts from plant
leaves (Schreiber and Neubauer, 1990; Miyake and Asada,
1992). This H2O2-dependent peroxidase reaction does
not consume ATP. Therefore, if the H2O2-dependent
peroxidase reaction results in RISE shutting off, then
it would indicate that electron sink activity regulates
RISE.

The NADPH redox level provides the information of the
dynamic property of the electron acceptor side of PSI, which

can be evaluated as blue green fluorescence using a Dual-PAM-
100 instrument (Heinz Walz, Effeltrich, Germany; Mi et al.,
2000; Schreiber and Klughammer, 2009; Kauny and Sétif, 2014;
Holland et al., 2015; Shaku et al., 2016). Recently, Holland et al.
(2015) investigated the dynamic response of the NADPH redox
level to CO2 limitation in the cyanobacterium Synechocystis
sp. PCC 6803. Limiting CO2 causes the suppression of the
Calvin-Benson cycle to lower the efficiency of the consumption
of NADPH, resulting in the reduction of the NADP+ pool
(Holland et al., 2015). However, the NADP+ pool is not fully
reduced even under CO2 limitation, indicating that not only the
consumption but also the production of NADPH is suppressed
in response to CO2 limitation. Overall, the abovementioned
molecular mechanisms for P700 oxidation contribute to keep part
of the NADP+ pool oxidized, and it is expected that the pool will
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be more reduced when the suppression of electron transport in
Cyt b6/f is relaxed.

MATERIALS AND METHODS

Growth Conditions and Chl a
Determination
Cyanobacterial cultures were maintained on BG-11 solid medium
(Allen, 1968) under continuous fluorescent lighting (25◦C,
50 µmol photons m−2 s−1). For all physiological experiments,
cells from the cultures were inoculated into BG-11 liquid medium
(initial OD750: 0.1–0.2) and grown on a rotary shaker (100 rpm)
under a light/dark cycle (light period: 16 h, at 25◦C, 150 µmol
photons m−2 s−1; dark period: 8 h, at 23◦C), at 2% (v/v) [CO2].
Optical density of the medium at 750 nm was measured with a
spectrophotometer (U-2800A, Hitachi, Tokyo, Japan). Cells from
the early exponential growth phase (OD750: 2–3) were used for
the experiments.

For Chl measurements, cells from 0.1 to 1.0 mL cultures were
harvested by centrifugation and resuspended by vortexing in
1 mL 100% (v/v) methanol. After incubation at room temperature
for 5 min, the suspension was centrifuged at 10,000 × g for
5 min. Total Chl a was spectrophotometrically determined from
the supernatant (Grimme and Boardman, 1972).

Measurement of Chl and NADPH
Fluorescence, and P700 Absorbance
Both Chl and NADPH fluorescence were simultaneously
measured with a Dual-PAM-100 instrument (Heinz Walz,
Effeltrich, Germany) at room temperature (25◦C ± 2◦C). The
reaction mixtures (2 mL) contained 50 mM HEPES (pH 7.5)
and the cells (10 µg Chl mL−1). During the measurement,
the reaction mixture was stirred with a magnetic micro stirrer.
Photon flux density of red actinic light (AL, LED with peak
emission at 635 nm) was 200 µmol photons m−2 s−1.
The values of incident quantum yield of PSII, Y(II), which
reflect the apparent electron flux in LEF (Genty et al., 1989;
Shimakawa et al., 2017b), were calculated from Chl fluorescence
as (Fm

′ – Fs)/Fm
′: Fm

′, maximum variable fluorescence yield; Fs,
steady-state fluorescence yield; and Fo, minimum fluorescence
yield (Schreiber et al., 1986; van Kooten and Snel, 1990).
A 300 ms saturation pulse light (LED with peak emission at
635 nm, 10,000 µmol photons m−2 s−1) was supplied for the
determination of Fm

′.
The NADPH fluorescence originated in NAD(P)H was

measured using the NADPH/9-AA module of a Dual-PAM-
100 instrument (Heinz Walz, Effeltrich, Germany; Mi et al.,
2000; Schreiber and Klughammer, 2009; Kauny and Sétif, 2014).
The NADPH/9-AA module consists of an emitter unit (DUAL-
ENADPH) and a detector unit (DUAL-DNADPH). NADPH
fluorescence was excited by UV-A (365 nm) from the DUAL-
ENADPH unit and detected by a blue-sensitive photomultiplier
with a filter transmitting light between 420 and 580 nm in
the DUAL-DNADPH unit. The measuring light intensity was
on a scale from 1 to 20, and the intensity was set at 20 in

this study. The measuring light frequency in the absence and
presence of red AL was set at 200 and 5,000 Hz, respectively. We
followed Schreiber and Klughammer (2009) for using the terms
of NADPH fluorescence parameters: Nm, the signal level for fully
reduced NADP+ pool; No, the signal level for fully oxidized
NADP+ pool; Nt , the current signal for the relative extent of
NADP+ reduction.

Measurement of P700 absorbance was performed with a
Dual-PAM-100 instrument (Heinz Walz, Effeltrich, Germany)
in almost the same conditions as described for Chl and NADPH
fluorescence analysis. The redox state of P700 was determined
according to the method of Klughammer and Schreiber (2008).
In this procedure, Pm = maximum P700 photo-oxidation level,
obtained by a saturated pulse light under far-red illumination;
P = oxidation level of P700 under AL; Pm

′ = maximum
oxidation level of P700, obtained by a saturation pulse under AL
illumination; Y(I) = (Pm

′
− P)/Pm = incident quantum yield of

photochemical energy conversion; Y(ND) = P/Pm = quantum
yield of non-photochemical energy dissipation due to a donor-
side limitation and Y(NA) = (Pm − Pm

′)/Pm = quantum
yield of non-photochemical energy dissipation due to
an acceptor-side limitation. The sum of the three factors
[Y(I) + Y(NA) + Y(ND)] = 1. For the determination of these
parameters, a 300 ms saturation pulse (10,000 µmol photons
m−2 s−1) was used, and the stirrer was turned off 5 s before the
saturation pulse was applied.

Measurement of O2 Exchange
Uptake and evolution of O2 were measured with a Clark-type
O2 electrode at 25◦C (Hansatech, King’s Lynn, United Kingdom)
with a high time resolution (Sejima et al., 2016; Hanawa
et al., 2017). The O2 amount in the reaction mixture were
obtained in an analog recorder with the signal amplitude and
the time scale properly adjusted as in Shimakawa et al. (2016a).
The reaction mixture (2 mL) contained 50 mM HEPES (pH
7.5) and the cyanobacterial cells (10 µg Chl mL−1). Red AL
(620 < λ < 695 nm, 200 µmol photons m−2 s−1) was
provided by a halogen lamp (Xenophot HLX 64625, Osram,
München, Germany) with an LS2 light source (Hansatech, King’s
Lynn, United Kingdom). During the measurement, the reaction
mixture was stirred with a magnetic micro stirrer.

Generation of Mutants
The S. elongatus katG deficient mutant (Synpcc7942_1656)
was generated by the method of Shaku et al. (2016).
To obtain the knock-out construct (Supplementary
Figure S1A), polymerase chain reaction (PCR) was used
to amplify the genomic region encoding katG with a
primer set (f, TTCCAATTTTGCTGCGCTTA; r, GCATT
CATCACCTTCGTCCA). The PCR product was then
cloned into the pGEM-T Easy vector (Promega, Tokyo,
Japan). The recombinant plasmid was linearized and
amplified by inverse PCR with a primer set (f, TTG
GGCTTCGGAATATGGCAGTGGGAACCGATTA; r, AAAC
CGCCCAGTCTAGACAGCGTTGCGACCAATAC), and then
applied to the In-Fusion reaction (Takara, Shiga, Japan) with a
kanamycin-resistance gene (Kanr) derived from pUC4K vector
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(Taylor and Rose, 1988; Shimakawa et al., 2015). Transformation
of wild type S. elongatus was performed by the standard
procedure (Williams, 1988), and the mutant, 1katG, was selected
on BG-11 agar plates containing kanamycin (20 µg mL−1).
Complete segregation was confirmed by PCR (Supplementary
Figure S1B).

RESULTS AND DISCUSSION

Experimental Scheme
In general, CO2 consumption under constant light suppressed
cyanobacterial photosynthesis, as observed in the decrease in
incident quantum yield of PSII, Y(II), which is estimated from
Chl fluorescence analysis (Figure 2A; Hayashi et al., 2014;
Shimakawa et al., 2015, 2016b). Addition of NaHCO3 to the
cyanobacterial cells restored photosynthesis, as observed in the
increase in Y(II) (Figure 2A; Hayashi et al., 2014; Shimakawa
et al., 2015, 2016b). Experimentally, this can be observed as a
three-phase (α, β, and γ; Figure 2A) time course. Reduction state
of the PQ pool, reflected in Fs/Fm, responds to these three phases.
In phase α, during which high photosynthetic rate is observed,
PQ is oxidized, and in phase β, during which low photosynthetic
rate is observed, PQ is reduced, as inferred from the increase
in the Chl fluorescence parameter Fs/Fm (Figure 2B; Hayashi
et al., 2014). The reduced state of PQ is relieved in phase γ.
Furthermore, the oxidation state of P700, reflected in quantum
yield of non-photochemical energy dissipation due to donor-side
limitation, Y(ND), from P700 absorbance analysis, also responds
to these three phases in a similar fashion to the redox state of PQ
(Figure 2C; Shaku et al., 2016; Shimakawa et al., 2016b). We refer
to these responses of Y(II), Fs/Fm, and Y(ND) as RISE (Shaku
et al., 2016).

We can explain RISE using the model of the Q-cycle, as
shown in Figure 1. In phase α and γ, the Q-cycle operates
in a high-electron sink condition (Figure 1A). The occupancy
of the oxidized form of PQ is high, and an electron from the
reduced form of PQ at the Qp site in Cyt b6/f can be rapidly
transferred into the Qn site for the reduction of PQ; that is,
the high-electron sink condition makes Q-cycle turnover rapid
(Figure 1A). Conversely, in phase β, in which electron sink
activity is low (i.e., low-electron sink condition; Figure 1B),
Q-cycle turnover is slowed down. A low-electron sink condition
reduces PQ, as inferred from the increase in Fs/Fm (Figure 2B;
Hayashi et al., 2014; Shaku et al., 2016); that is, the ratio of PQ to
PQH2 decreases and the efficiency of the donation of electrons
from Qp to Qn sites decreases. This results in the suppression
of Q-cycle turnover, which in turn suppresses the reduction of
cytochrome f, plastocyanin (or cytochrome c6), and eventually
oxidizes P700 (Figure 1B). This is the mechanism for oxidation
of P700 in phase β (Figure 2C). We refer to this modulation of
Q-cycle turnover for P700 oxidation as RISE (Shaku et al., 2016).

In the present study, we aimed to further characterize the
possible mechanism underlying RISE. In our previous report
(Shaku et al., 2016), we activated photosynthesis with NaHCO3
to relax RISE. The activation of photosynthesis dissipates 1pH
across the thylakoid membrane by the consumption of ATP.

The acidification of the lumen also suppresses the oxidation
activity of PQH2 in Cyt b6/f (Tikhonov et al., 1981; Nishio
and Whitmarsh, 1993), similar to RISE. We tried to relieve
RISE by stimulating electron flow in phase β to prove that
RISE is regulated by the redox state of PQ and the electron
sink activity. We used H2O2-dependent electron flow (Miyake
et al., 1991; Miyake and Asada, 1992). Cyanobacteria have several
peroxidases, which utilize electron donors to reduce H2O2 to
H2O (Miyake et al., 1991; Yamamoto et al., 1999). For continuous
scavenging of H2O2, the oxidized electron donor is reduced by
the photosynthetic electron transport system (Miyake and Asada,
1992). That is, addition of H2O2 to cyanobacterial cells drives
LEF. The H2O2-dependent electron flow induces 1pH across
the thylakoid membrane because no ATP is consumed (Schreiber
and Neubauer, 1990; Miyake and Asada, 1992).

To elucidate the occurrence of RISE and the response to the
electron sink activity in S. elongatus, we simultaneously evaluated
Chl and NADPH fluorescence after the establishment of phase
β by the consumption of CO2 in the reaction mixture. In phase
β, Fs/Fm is kept at higher values (Figure 2B). Addition of an
electron acceptor to the photosynthetic electron transport system
should decrease Fs/Fm. The decrease in Fs/Fm would show the
acceleration of electron flow driven by the electron acceptor.

Relaxing of RISE and Acceleration of
Linear Electron Flow by Exogenous
NaHCO3 in S. elongatus
Cells of S. elongatus were illuminated with red AL (200 µmol
photons m−2 s−1) without the supplement of an inorganic
carbon source. Steady-state Chl fluorescence yield (i.e., Fs)
immediately increased in response to AL and then gradually
decreased to a constant value during phase α (Figure 3A).
Thereafter, Fs dramatically increased (Figure 3A), accompanying
the decrease in Y(II) from 0.32 ± 0.04 at 20 min in phase
α to 0.023 ± 0.003 at 40 min in phase β (mean ± standard
deviation, n = 3). In this study, we sought to evaluate the
NADPH redox level during the measurements following the
method by Schreiber and Klughammer (2009). Because the
base line signal of the NADPH fluorescence can drift during
a long-term measurement (Schreiber and Klughammer, 2009;
Kauny and Sétif, 2014; Holland et al., 2015), the maximum
reduction level of NADP+ pool, defined as Nm, was periodically
determined by applying a saturated short-pulse light (1 s,
10,000 µmol photons m−2 s−1; Figure 3B). Additionally, the
maximum oxidation level of NADP+ pool, defined as No, was
determined in the dark just after applying the short-pulse light
(Figure 3B). The current NADPH fluorescence signal (Nt)
was continuously monitored. That is, the oxidation fraction
of NADP+ pool was estimated as (Nm−Nt)/(Nm−No) during
the measurements (Schreiber and Klughammer, 2009). During
the transition to CO2 limitation (from phases α to β), we
periodically determined (Nm−Nt)/(Nm−No), and found that
the redox level of NADP+ pool did not change in response
to CO2 limitation (Figure 3C). On the other hand, adding the
Calvin-Benson cycle inhibitor glycolaldehyde caused the decrease
in (Nm−Nt)/(Nm−No) (Figure 3D). These facts indicate that
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NADP+ pool is not fully reduced even under CO2 limitation,
which is consistent with the preceding report (Holland et al.,
2015). In response to CO2 limitation, LEF is suppressed in Cyt
b6/f and P700 is kept oxidized (Shaku et al., 2016; Shimakawa
et al., 2016b), which should lower the production of NADPH
to save the oxidation fraction of NADP+ pool. On the other
hand, it is expected that the more severe suppression of the
Calvin-Benson cycle can cause the reduction of NADP+ pool,
which is supported by the effect of glycolaldehyde on the NADPH
fluorescence signal (Figure 3D; Holland et al., 2015). That is,
the NADPH redox level severely depends on the degree of the
suppression of the Calvin-Benson cycle, which might cause a
different response of the NADPH redox level to CO2 limitation
(Holland et al., 2015). In this study, we note that electron flow to
the oxidized P700 in PSI was suppressed strongly enough not to
reduce NADP+ in phase β. We refer to the suppressed electron
flow to P700 in phase β as RISE.

We evaluated the relaxation of RISE by adding NaHCO3 to
the cells of S. elongatus in phase β. NaHCO3-dependent relief of
RISE would be expected to increase the electron flow to NADP+
by oxidizing PQH2 and/or dissipating 1pH for ATP synthesis.
We added 50 µM NaHCO3 to S. elongatus in phase β and
observed photochemical quenching reflected as a rapid decrease
in Fs (Figure 4). That is, PQH2 was oxidized. We determined
Y(II) at three points in time during the experiment (Figure 4):
I, before NaHCO3 was added; II, while Chl fluorescence was
photochemically quenched; and III, after Fs returned to a
high level (0.028 ± 0.006, 0.12 ± 0.02, and 0.029 ± 0.007,
respectively [mean ± standard deviation, n = 3]). The results
showed that NaHCO3 enhanced electron flux in LEF, which led
us to expect that stimulated photosynthetic CO2 assimilation
would enhance NADPH consumption (Hayashi et al., 2014).
Additionally, NADPH fluorescence rapidly increased by the
addition of NaHCO3 and then gradually decreased (Figure 4).
These results suggest that addition of NaHCO3 transiently
reduced NADP+ and then gradually oxidized NADPH. As shown
by the pattern of Chl fluorescence, PQH2 accumulated in phase
β was oxidized to relieve RISE, which accelerated the electron
flux to NADP+. Oxidation efficiency of NADPH in NaHCO3-
stimulated photosynthesis was overwhelmed by the reduction
efficiency of NADP+ in LEF, accelerated by the relaxing of
RISE. This would explain why the oxidation of NADPH was
not observed upon NaHCO3 addition to the cells. Overall, the
addition of NaHCO3 relaxed RISE. However, we could not
conclude whether the oxidation of PQH2 or the dissipation of
1pH across the thylakoid membrane relaxed RISE.

Relaxing of RISE and Acceleration of
Linear Electron Flow by Exogenous H2O2
in S. elongatus
Next, we studied the effect of exogenous H2O2 on Chl
and NADPH fluorescence in phase β in S. elongatus. The
measurement was performed in the presence of hydroxylamine
(25 µM), a catalase inhibitor. Upon addition of 50 µM H2O2,
Fs decreased, which resulted in Y(II) values of 0.027 ± 0.004,
0.120 ± 0.011, and 0.027 ± 0.007 at points in time I, II, and III,

FIGURE 2 | Time courses of the incident quantum yield of PSII, Y(II) (A), the
chlorophyll fluorescence parameter inferring the reduction of the
plastoquinone (PQ) pool, Fs/Fm (B), and the electron donor-side limitation of
photosystem I, Y(ND) (C) in response to CO2 limitation in Synechococcus
elongatus PCC 7942. Cyanobacterial photosynthesis starts at 0 min with an
actinic light. Thereafter, Y(II) decreases due to a shortage of CO2, which is
defined as the transition from phase α to β. The addition of CO2 in the form of
NaHCO3 restores photosynthetic activity (phase γ). Data are mean ± the
standard deviation of three measurements (technical replicates).

respectively (mean ± standard deviation, n = 3) (Figure 5). In
other words, photochemical quenching occurred in response to
the addition of H2O2 in phase β. Thereafter, Fs increased with the
consumption of H2O2 (Figure 5; Miyake et al., 1991). NADPH
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FIGURE 3 | Responses of relative chlorophyll (Chl) and NADPH fluorescence to CO2 limitation in Synechococcus elongatus PCC 7942. (A) Time courses of relative
Chl (red line) and NADPH (blue line) fluorescence during the transition from phase α to β of photosynthesis. Inverted red triangles show the application of the
saturated short-pulse light. (B) The kinetics of NADPH fluorescence for the calculation of the oxidation fraction of NADP+ pool during the measurement. The use of
the term Nm, No, and Nt are according to Schreiber and Klughammer (2009) (see “Materials and Methods”). The line graphs (A,B) show the representative results of
three experiments (technical replicates). (C,D) Time courses of the oxidation fraction of NADP+ pool, (Nm−Nt)/(Nm−No), in the transition from phase α to β of
photosynthesis (C) and in response to added 25 mM glycolaldehyde (D). Data are mean ± the standard deviation of three experiments (technical replicates).

FIGURE 4 | Effects of exogenous NaHCO3 on relative chlorophyll (Chl, red
line) and NADPH (blue line) fluorescence in phase β in Synechococcus
elongatus PCC 7942. Black arrow shows the point in time at which NaHCO3

(50 µM) was added. The incident quantum yield of PSII, Y(II), was measured
at the points in time indicated by red inverted triangles: I, 0.028 ± 0.006; II,
0.12 ± 0.02; and III, 0.029 ± 0.007 (mean ± standard deviation, n = 3). The
line graphs show the representative results of three experiments (technical
replicates).

fluorescence immediately decreased in response to the addition
of H2O2, and then gradually increased (Figure 5). The increase
in NADPH fluorescence was accompanied by enhanced electron
flux through LEF, as observed in the increase in Y(II). Thereafter,

FIGURE 5 | Effects of exogenous H2O2 on relative chlorophyll (Chl, red line)
and NADPH (blue line) fluorescence in phase β in Synechococcus elongatus
PCC 7942. Black arrow shows the point in time at which H2O2 (50 µM) was
added. Catalase activity of the cyanobacterial cells was inhibited by adding
hydroxylamine (25 µM). The incident quantum yield of PSII, Y(II), was
measured at the points in time indicated by red inverted triangles: I,
0.027 ± 0.004; II, 0.120 ± 0.011; and III, 0.027 ± 0.007 (mean ± standard
deviation, n = 3). The line graphs show the representative results of three
experiments (technical replicates).

NADPH fluorescence decreased with the consumption of H2O2,
as evidenced by the increase in Fs (Figure 5).

Simultaneously, we analyzed the response of the redox state of
P700 in PSI to the addition of H2O2 to the cyanobacterial cells
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FIGURE 6 | Induction of O2 evolution by exogenous H2O2 through
peroxidase and catalase activities in Synechococcus elongatus PCC 7942.
Peroxidase-dependent O2 evolution was measured in the presence of
hydroxylamine (25 µM) in phase β in the wild type (black circles) and the
1katG mutant (red triangles). Exogenous H2O2 (50 µM) was added at 0 s.
Catalase-dependent O2 evolution in the wild type (blue diamonds) was
measured in the dark without adding hydroxylamine. Data are mean ± the
standard deviation of three experiments (technical replicates).

FIGURE 7 | Relationship between the incident quantum yield of PSII, Y(II), and
photosynthetic O2 evolution rate accelerated by exogenous H2O2 in
Synechococcus elongatus PCC 7942. Photosynthetic O2 evolution rate is
shown as the sum of net O2 evolution rate and dark respiration rate (Rd). Data
of both Y(II) and O2 evolution rate were obtained in (1) phase α, (2) phase β,
and (3) phase β with exogenous H2O2 (50 µM), respectively, in the wild type
(black circles) and in the 1katG mutant (red triangles). Experiments were
performed three times (technical replicates).

in phase β. Compared with the redox state of P700 at point I, the
addition of H2O2 increased incident quantum yield of PSI, Y(I),
and decreased Y(ND), at point II (Table 1). Thereafter, both Y(I)
and Y(ND) recovered to the original values at point III (Table 1).
Quantum yield of non-photochemical energy dissipation due
to acceptor-side limitation Y(NA), did not show any changes
(Table 1). These results indicate that in the scavenging of H2O2
the electron flux to NADP+ was enhanced, although P700+ was
reduced, that is, the scavenging of H2O2 induced the oxidation

of PQH2, which accompanied enhanced electron flux to NADP+
transiently. This shows that RISE was indeed relaxed only by the
oxidation of PQH2, as observed in the decrease in Y(ND).

In cyanobacteria, H2O2 can be scavenged via two types of
reactions, (i) catalase and (ii) peroxidase (Miyake et al., 1991;
Tichy and Vermaas, 1999; Yamamoto et al., 1999; Stork et al.,
2009):

H2O2 → 1/2O2 + H2O (1)

H2O2 + Red ·H2 → 2H2O + Oxi (2)

Catalase detoxifies H2O2 to H2O and O2 is evolved, whereas
peroxidases utilize electron donors (indicated by Red and Oxi
as the reduced and oxidized forms of electron donors). For
example, in S. elongatus, thioredoxin functions as the electron
donor in both thioredoxin peroxidase and peroxiredoxin Q
reactions (Stork et al., 2009). Thioredoxin is reduced by NADPH-
thioredoxin reductase with NADPH (iii) (Miyake et al., 1991;
Yamamoto et al., 1999). The NADP+ produced in the peroxidase
reactions is reduced back to NADPH in the photosynthetic
electron transport system (iv); the scavenging of H2O2 by the
peroxidase reactions is coupled with LEF, which is linked to the
evolution of O2 in PSII (v) (Miyake et al., 1991; Yamamoto et al.,
1999; Miyake and Asada, 2003).

Oxi + NADPH + H+ → Red ·H2 + NADP+ (3)

H2O + NADP+ → 1/2O2 + NADPH + H+ (4)

H2O2 → 1/2O2 + H2O (5)

Thus, exogenous H2O2 functions as the alternative electron
acceptor to stimulate LEF, as supported by photochemical
quenching of Chl fluorescence (Figure 5). The rapid decrease
in NADPH fluorescence immediately after H2O2 addition might
be due to consumption of NADPH via the abovementioned
peroxidase reactions, with the accumulation of the oxidized form
of the electron donors, NADPH fluorescence increased by the
relaxation of RISE.

We conclude that some parts of electron transport suppression
in phase β in S. elongatus, depend only on the redox state of
the PQ pool, but not on 1pH (Figure 5). Exogenous H2O2
accelerated LEF to reduce NADP+; the gradual increase in
NADPH fluorescence was clearly related to the photochemical
quenching of Chl fluorescence (Figure 5). From the above-
mentioned formulae, peroxidase-dependent H2O2-scavenging

TABLE 1 | Effects of exogenous H2O2 on the redox state of P700 in phase β in
Synechococcus elongatus PCC 7942 (mean ± standard deviation, n = 3).

Y(I) Y(ND) Y(NA)

I 0.36 ± 0.03 0.55 ± 0.01 0.09 ± 0.02

II 0.51 ± 0.03 0.37 ± 0.05 0.12 ± 0.02

III 0.34 ± 0.01 0.56 ± 0.02 0.10 ± 0.03
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reactions do not require ATP; 1pH formation is rather promoted
(Schreiber and Neubauer, 1990). In other words, the oxidized
electron donor produced in the peroxidase reactions effectively
relieved RISE.

The acceleration of LEF by exogenous H2O2 was evaluated
also by measuring O2 evolution rate in S. elongatus. Scavenging
of H2O2 by the peroxidase reactions caused O2 evolution at PSII,
because the regeneration of the reductants is coupled to LEF (v).
H2O2-dependent O2 evolution was measured in the presence of
hydroxylamine (25 µM), as the activity of catalase in S. elongatus
is so large that it masks O2 evolution derived from the peroxidase
reactions (Shimakawa et al., 2017b). Unfortunately, we could
not completely inhibit the catalase activity of S. elongatus wild
type by hydroxylamine at 25 µM. A portion of the catalase-
dependent O2 evolution rate was detected in the dark even in
the presence of hydroxylamine (15 ± 5 µmol O2 mg−1 Chl h−1,
mean ± standard deviation, n = 3), or approximately 5% of the
intact activity (Figure 6). To solve this problem, we constructed
an S. elongatus mutant (1katG) deficient in the dominant gene
encoding catalase (Supplementary Figure S1). In the dark, the O2
evolution by the catalase reaction was not observed in 1katG in
the presence of hydroxylamine at 25 µM. In the dark, the addition
of H2O2 to the wild type of cyanobacterial cells rapidly induced
the evolution of O2, indicating instantaneous decomposition of
H2O2 to H2O and O2 by catalase (Figure 6); H2O2 rapidly
entered the cells. However, induced O2 evolution proceeded more
slowly in the presence of hydroxylamine in both, wild type and
1katG, compared with the catalase reaction (Figure 6). The
retardation of O2 evolution induction reflects the slow relaxation
of RISE, which is consistent with the slow decrease in Fs and
the slow increase in NADPH fluorescence (Figure 5), probably
due to the low production rate of the oxidized form of electron
donors for the peroxidase reaction. We evaluated the relationship
of Y(II) to overall O2 evolution (the sum of O2 evolution rate and
dark respiration rate [Rd]) in wild type and 1katG of S. elongatus,
validating the relationship between scavenging of H2O2 and LEF
(Figure 7). Linearity of the relationship was recognized in 1katG,
which supported the idea that H2O2-dependent O2 evolution
rate reflected peroxidase reaction scavenging H2O2 coupled to
photosynthetic electron transport reactions.

We need to point out that the acceleration of LEF by
H2O2 via the peroxidase reaction might not occur as long as
the P700 oxidation system and the catalase-dependent H2O2-
scavenging reaction are in operation. Firstly, the production
of H2O2 in PSI would be strictly suppressed where P700 is
oxidized. Especially flavodiiron protein dissipates excess photon
energy in PSI to prevent the production of superoxide anion
radical, which significantly decreases the physiological relevance
of H2O2-dependent LEF in cyanobacteria (Helman et al., 2003;
Allahverdiyeva et al., 2013; Weenink et al., 2015; Shimakawa et al.,
2016b). Secondly, cyanobacteria show the greater scavenging
activity of H2O2 in the catalase reaction, compared with the
peroxidase reaction (Figure 6) (Shimakawa et al., 2017b).
Therefore, we eliminated the effects of catalase on the cells with
hydroxylamine and the mutant 1katG to create the situation
where peroxidase-dependent H2O2-scavenging reactions operate
in S. elongatus. Overall, in this study, we used the peroxidase

reaction in S. elongatus as an experimental tool for verification
of RISE in phase β in S. elongatus, because the peroxidase
reaction functions with photosynthetic electron transport and the
scavenging of H2O2 does not dissipate 1pH across the thylakoid
membrane for ATP regeneration, but rather, it promotes the
formation of 1pH. That is, RISE can only be relieved by the
oxidation of PQH2. Conversely, RISE can be induced only by the
reduction of PQ to oxidize P700 in PSI.

CONCLUSION

In the present research, we showed that RISE functioned on the
donor side of PSI to oxidize P700 in wild type cyanobacterium,
S. elongatus. In phase β, P700 in PSI is oxidized in response to
suppressed photosynthetic CO2 assimilation (Figure 2C; Shaku
et al., 2016; Shimakawa et al., 2016b). The oxidation of P700
is driven by two mechanisms: (1) acidification of luminal side
of the thylakoid membrane (i.e., 1pH) lowers the oxidation
activity of PQH2 in Cyt b6/f (Trubitsin et al., 2003; Kramer
et al., 2004); and (2) accumulation of PQH2 suppresses the
Q-cycle in Cyt b6/f to lower the oxidation activity of PQH2 (i.e.,
RISE) (Shaku et al., 2016). Under low CO2 in phase β, addition
of NaHCO3 stimulated LEF and caused the reduction of the
NADPH pool (Figure 4). These results suggest that a donor-
side limitation of electron flow in PSI arises, as shown in the
oxidation of P700 (Shaku et al., 2016; Shimakawa et al., 2016b).
Added NaHCO3 relieves the donor-side limitation to enhance
electron flux to oxidized P700, leading to NADPH production.
Unfortunately, NaHCO3-dependent acceleration of LEF cannot
be considered conclusive evidence for RISE operating, because
stimulated photosynthesis by NaHCO3 not only oxidizes PQH2
but also dissipates 1pH. Thus, at this point, we could not
exclude the possibility that a 1pH-dependent control of electron
flux from Cyt b6/f to oxidized P700 functions as depicted in
Figure 4. We therefore continued to determine whether the
H2O2 scavenging reaction stimulated reduction of NADP+,
in order to elucidate the mechanism of suppressed PQH2
oxidation. Some peroxidases, including thioredoxin peroxidase
and peroxiredoxin Q, require LEF-supplied NADPH as the
electron donor for continuous scavenging of H2O2 (Yamamoto
et al., 1999; Miyake and Asada, 2003; Stork et al., 2009). In
other words, the H2O2 scavenging reaction by peroxidases drives
LEF with the formation of 1pH (Schreiber and Neubauer, 1990;
Yamamoto et al., 1999; Miyake and Asada, 2003; Stork et al.,
2009). The reduction of NADP+ was enhanced by electron flux
through LEF upon addition of H2O2 to S. elongatus cells in
phase β (Figure 5); concomitantly, oxidation of PQH2 enhanced
electron flux to NADP+, which strongly supports the idea that
RISE is regulated by the redox state of PQ, as reported by Shaku
et al. (2016).
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