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Experimental evolution can be used to test for and characterize parasite and

pathogen adaptation. We undertook a serial-passage experiment in which a single

parasite population of the obligate fungal (chytrid) parasite Rhizophydium megarrhizum
was maintained over a period of 200 days under different mono- and multiclonal

compositions of its phytoplankton host, the bloom-forming cyanobacterium Planktothrix.
Despite initially inferior performance, parasite populations under sustained exposure to

novel monoclonal hosts experienced rapid fitness increases evidenced by increased

transmission rates. This demonstrates rapid adaptation of chytrids to novel hosts

and highlights their high evolutionary potential. In contrast, increased fitness was not

detected in parasites exposed to multiclonal host mixtures, indicating that cyanobacterial

intraspecific diversity hampers parasites adaptation. Significant increases in intensity

of infection were observed in monoclonal and multiclonal treatments, suggesting high

evolvability of traits involved in parasite attachment onto hosts (i.e., encystment). A

comparison of the performance of evolved and unevolved (control) parasite populations

against their common ancestral host did not reveal parasite attenuation. Our results

exemplify the ability of chytrid parasites to adapt rapidly to new hosts, while providing

experimental evidence that genetic diversity in host populations grants increased

resistance to disease by hindering parasite adaptation.

Keywords: algae, attenuation, genetic diversity, phytoplankton, Planktothrix, Rhizophydium, serial passage,

transmission

INTRODUCTION

In recent years, it has become evident that the impact of disease goes beyond direct effects on
host abundance. Parasites (used here to refer generically to pathogens, parasites, and parasitoids)
can modulate large-scale nutrient and carbon cycles (e.g., Suttle, 2007), establish alternative
trophic links (e.g., Agha et al., 2016), and promote genetic diversity (e.g., Turko et al., 2018). The
antagonistic interaction between host and parasite is among the most intense selective pressures in
nature, which manifests as an evolutionary arms race of reciprocal adaptations (Thompson, 1998;
Woolhouse et al., 2002). In this race, parasites are usually ahead and are expected to adapt rapidly to
their hosts, as they often show higher evolutionary rates (Gandon and Michalakis, 2002). Parasite
adaptation to novel hosts frequently leads to reduced infectivity against former ones, causing
attenuation (Ebert, 1998). Understanding the evolutionary trajectories of parasite adaptation
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(and attenuation) is critical to predicting patterns of local
adaptation (Kawecki and Ebert, 2004; Greischar and Koskella,
2007), the success of biological invasions (Lafferty and Kuris,
1996; Torchin and Mitchell, 2004; Dunn, 2009), and the
emergence of zoonotic diseases (Woolhouse et al., 2005). Since
faster evolving parasites are expected to rapidly adapt and
counteract host defensive innovations, hosts populations might
be selected toward diversification in order to resist disease, as
every host genotype constitutes a unique environment for the
parasite (Altermatt and Ebert, 2008; Whitehorn et al., 2011).
Due to the often devastating effects of disease outbreaks in
monospecific crops (Leonard, 1969; Garrett and Mundt, 1999),
the idea that host genetic diversity protects from disease has
received a great deal of attention in agricultural research (e.g.,
Shipton, 1977; Sumner et al., 1981), but has rarely been tested
directly in microbial communities.

Co-evolution between host and parasite can be studied
by means of experimental evolution (Kawecki et al., 2012;
Brockhurst and Koskella, 2013). This approach allows
evolutionary effects on host and parasite to be disentangled,
by conducting asymmetric serial passage assays, where one of
the antagonists is allowed to evolve, while the other remains
in evolutionary stasis. By restricting the evolution of the host,
parasites can be maintained over a number of generations under
novel host environments and the performance of evolved and
ancestral parasite populations can be tracked in real time (Jinks
and Grindle, 1963; Rubin et al., 1993; Meaden and Koskella,
2017). Thereby, such experiments provide unequivocal evidence
of parasite and/or host adaptation. Organisms with short
generations, such as phytoplankton, are most amenable to study
evolution through serial passage experiments. Phytoplankton
constitutes the base of most aquatic food webs and drives major
biogeochemical cycles, e.g., phytoplankton is responsible for 50%
of global carbon fixation (Falkowski, 2012). Phytoplankton is
known to be attacked by different parasites (e.g., viruses, bacteria,
fungi; Park et al., 2004; Gachon et al., 2010; Gerphagnon et al.,
2015), but the evolutionary feedbacks between phytoplankton
and their parasites have been studied almost exclusively with
regard to viral infections. For instance, viruses have been
shown to induce rapid diversification of the widespread marine
cyanobacterium Synechococcus, as a result of co-evolution
(Marston et al., 2012).

In addition to well-studied viruses, recent molecular surveys
have revealed a so-far disregarded diversity of ubiquitous fungal
parasites that infect all major phytoplankton groups, most of
which belong to the early diverging phylum Chytridiomycota
(hereafter referred to as chytrids; see e.g. Lefèvre et al.,
2008; Comeau et al., 2016; Gutiérrez et al., 2016). Among
the profound effects of chytrid parasitism on phytoplankton
populations and aquatic ecosystems as a whole (reviewed in
Frenken et al., 2017), chytrids’ evolutionary interactions with
their phytoplankton hosts remain poorly studied. A single
previous study experimentally demonstrated the ability of a
chytrid parasite infecting the diatom Asterionella formosa to
adapt to new genetically homogeneous hosts, but not to
genetically heterogeneous host mixtures (De Bruin et al.,
2008). This was interpreted as an indication that genetic

diversity in host populations protects against disease (De
Bruin et al., 2008). This notion is supported by field data
suggesting that chytrid parasitism might promote genetic
diversity in diatom host populations (Gsell et al., 2013). Still,
further evidence seems necessary to link the high intraspecific
genetic diversity typically found in natural phytoplankton
populations with protection against disease. In particular,
populations of prokaryotic phytoplankton (i.e., cyanobacteria)
are characterized by remarkable genomic (e.g., Meyer et al., 2017)
and metabolomic polymorphisms, including the production
of toxins raising public health concerns and other bioactive
peptides (Kurmayer et al., 2016; Haruštiaková andWelker, 2017).
It is commonly assumed that intraspecific polymorphic traits
confer on cyanobacteria increased versatility within and across
ecological niches (e.g., Johnson et al., 2006; Rohrlack et al.,
2008; Agha et al., 2014). Still, although hypothesized (Sønstebø
and Rohrlack, 2011; Agha and Quesada, 2014), a link between
cyanobacterial intraspecific diversity and increased resistance to
fungal parasites has not been established directly.

In this work we aimed to evaluate (1) the ability of
chytrids to adapt to host genotypes not previously exposed
to the parasite (onwards referred to as new suboptimal host
environments) and (2) whether host genetic diversity hampers
parasite adaptation. To do so, we undertook a serial passage
experiment, where a single parasite population was maintained
over a period of 200 days under different mono- and multiclonal
host compositions.We assessed the performance of each evolving
parasite population over time, both against their respective new
host environments (testing for parasite adaptation) and against
their common ancestral host, i.e., host genotype on which the
parasite is routinely maintained in culture (testing for parasite
attenuation). We measured different parasite traits to evaluate
which ones are more prone to evolve in response to novel host
challenges. First, parasite transmission rate was calculated as a
proxy for overall parasite fitness. Secondly, intensity of infection
was scored to assess the ability of the parasite to find and
successfully adhere to the host and, thereby, evade its barrier
defenses. Lastly, the size of mature fungal reproductive structures
(i.e., sporangia) was recorded as a proxy of parasite per capita
reproductive output (i.e., greater sporangial sizes arguably imply
more zoospores being released upon maturation) that negatively
correlates with the intensity of infection (Agha et al., 2018).

MATERIALS AND METHODS

Host and Parasite Strains
The chytrid parasite strain Chy-Kol2008 and seven
cyanobacterial host strains were used (Table S1). The parasite was
previously identified as Rhizophydium megarrhizum (Sønstebø
and Rohrlack, 2011). As with other chytrids, R. megarrhizum
is characterized by presenting free-swimming infective stages
in the form of flagellated zoospores that actively seek suitable
hosts in the water column. Upon encystment, chytrids penetrate
the host and extract nutrients from it, always leading to host
death. Over the course of the infection, encysted zoospores
develop into sporangia, reproductive structures that release
asexually-produced zoospores upon maturation.
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Host strains belong to the filamentous, bloom-forming,
toxin-producing cyanobacterial genus Planktothrix (Table S1).
P. rubescens (one strain) and P. agardhii (six strains) are,
according to current taxonomy, affiliated to different species
based on their pigmentation (P. rubescens contains the
photosynthetic red pigment phycoerithrine, while P. agardhii
lacks it and shows green pigmentation). However, based on
their high genetic similarity (Humbert and Le Berre, 2001) and
the fact that red pigmentation has been shown to be acquired
by horizontal gene transfer (Tooming-Klunderud et al., 2008),
all strains are considered here conspecific. All cyanobacterial
strains were maintained in Z8 medium (Kotai, 1972) as non-
axenic batch cultures under 16◦C and constant light of 15 µmol
photons m−2 s−1. Previous analyses showed that all host strains
could be successfully infected by the parasite strain (data not
shown). Individual cyanobacterial strains used represent distinct
genotypes, as evidenced by different patterns of oligopeptide
production (Table 1; see next section for details on oligopeptide
analysis). A sympatric and an allopatric strain were selected as
monoclonal treatments to explore if adaptation potential might
be influenced by the origin of the host: Strain NIVA-CYA630 and
the chytrid parasite were isolated from nearby lakes (between
which gene flow exists, Kyle et al., 2015). Conversely, NIVA-
CYA588 was isolated from a German lake and arguably had not
any previous contact with the parasite. The selection of NIVA-
CYA588 among the other German strains used was entirely
random.

The parasite was maintained by transferring zoospore
suspensions into uninfected cultures of the cyanobacterium
P. rubescens NIVA-CYA98 (Table S1) every 2 weeks. Considering
that this cyanobacterial strain has been used to maintain
the parasite since isolation (i.e., 9 years), it will henceforth
be referred to as “original host.” Previous experimentation
with this host-parasite system indicates that the generation
time of the chytrid Rhizophydium megarrhizum (defined as
the period between the addition of zoospores to a healthy
host culture and the observation of empty sporangia in
the culture) is approximately 1–1.5 days at 20◦C (unpubl.
data).

Analysis of Oligopeptides Compositions in
Cyanobacterial Strains
Intracellular oligopeptide compositions were used as phenotypic
markers to characterize the diversity of the cyanobacterial
strains used. Since the production of individual oligopeptides
is constitutively regulated and thus solely determined by
the presence or absence of their respectively-encoding gene
clusters (Welker and von Dohren, 2006), different patterns
in oligopeptide production imply genetic differences among
strains. Oligopeptide compositions of the cyanobacterial strains
isolated from Norwegian lakes (i.e., strains NIVA-CYA98 and
NIVA-CYA630) were analyzed as reported elsewhere (Rohrlack
et al., 2009; Sønstebø and Rohrlack, 2011). For the remaining
cyanobacterial strains, anabaenopeptins and microcystins were
extracted from filters with freeze dried Planktothrix using
50% methanol. Detection and identification of oligopeptides

TABLE 1 | Intracellular oligopeptide compositions of the cyanobacterial strains

used.

Oligopeptide Molecular

mass [M+H]+

N
IV
A
-C

Y
A
9
8
*

N
IV
A
-C

Y
A
6
3
0
*

N
IV
A
-C

Y
A
5
5
7

N
IV
A
-C

Y
A
5
6
2

N
IV
A
-C

Y
A
5
7
8

N
IV
A
_C

Y
A
5
8
0

N
IV
A
-C

Y
A
5
8
8

Aeruginosin 593.5 + n.a n.a n.a n.a n.a

Aeruginosin A 617.5 + n.a n.a n.a n.a n.a

Oscillaginin B 581.5 + n.a n.a n.a n.a n.a

Oscillaginin A 615.5 + n.a n.a n.a n.a n.a

Anabaenopeptin C 809.6 + n.a n.a n.a n.a n.a

Me-Anabaenopeptin C 823.6 + n.a n.a n.a n.a n.a

Anabaenopeptin B 837.6 + + + + + +

Anabaenopeptin A 844.6 + + + +

Anabaenopeptin F 851.6 + + + + +

Oscillamid Y 858.6 + + +

Microcystin desmethyl LR 981.6 + + + + +

Microcystin desmethyl RR 1024.7 + + + + +

Microcystin desmethyl YR 1031.7 +

Microcystin YR 1045.6 +

Oscillapeptin G 1112.7 + n.a n.a n.a n.a n.a

Cyanopeptolin 1126.7 + n.a n.a n.a n.a n.a

Oscillatorin 1240.4 + n.a n.a n.a n.a n.a

Putative microviridin 1854.8 + n.a n.a n.a n.a n.a

Putative microviridin 1971.8 + n.a n.a n.a n.a n.a

Strains marked with an asterisk (i.e., Norwegian strains) were analyzed elsewhere for all
oligopeptides (Rohrlack et al., 2009) and are reported in the table. The other strains (i.e.,
German strains) were analyzed for anabaenopeptins andmicrocystins only (see methods);
n.a.: not analyzed

was done using liquid chromatography mass spectroscopy
(LC-MS/MS). The instrumental setup included a Waters
Acquity Ultra-Performance Liquid Chromatography (UPLC)
System equipped with a Waters Atlantis C18 column (2.1
× 150mm, 5µm particle size) and directly coupled to a
Waters Quattro Premier XE tandem quadrupoleMS/MS detector
(Waters Norge, Oslo, Norway). The UPLC system was set
to deliver a linear gradient from 10 to 45% acetonitrile in
water (both acidified with 0.1% formic acid) within 10min
at a flow rate of 0.25mL min−1. The column and auto
sampler temperatures were 20 and 4◦C, respectively. The
MS/MS detector was run in positive electrospray mode (ESI+).
Other general settings included a source temperature of
120◦C, a desolvation temperature of 350◦C, a drying gas
flow rate of 800 L h−1, a gas flow at the cone of 50 L
h−1, and standard voltages and energies suggested by the
manufacturer for the ESI+ mode. Only the cone voltage
and the settings for the collision cell were adapted to
the respective compounds using in-house reference material.
Nitrogen, continuously delivered by a nitrogen generator
(model NG, Parker Balston, Haverhill, MA, USA), served
as drying, nebulizing, and cone gas. Anabaenopeptins and
microcystins were identified by comparing fragmentation
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patterns of suspected oligopeptides with those of in-house
reference material.

Experimental Setup
A schematic representation of the experimental setup is provided
in Figure 1. Ten days before the start of the experiment, a culture
of the original host (i.e., NIVA-CYA98) was infected with the
chytrid parasite and incubated at 20◦C and 20µmol photonsm−2

s−1. After 10 days, a purified zoospore suspension was obtained
by sequential filtration through sterile 10 and 5µm nylon
meshes and a 3µm polycarbonate filter. The purified zoospore
suspension was split among twenty 50mL flasks, representing
four different serial passage lines, each replicated five times. Serial
passage lines (maintained under the above temperature and light
conditions) provided different host compositions (Figure 1). For
simplicity, we refer to each serial passage line as Chy-x, where x
is the host strain number (Table S1) used to maintain the parasite
in each line. The first line (Chy98) consisted of the original
host and served as a control. The second (Chy630) and third
lines (Chy588) were used to assess the ability of the parasite
to adapt to suboptimal monoclonal hosts (NIVA-CYA630 and
NIVA-CYA588, respectively; one replicate of Chy588 line was
lost during passage). Lastly, we established an additional serial
passage line (ChyMix) providing a multiclonal mixture of hosts
in equal proportions to test whether host diversity can hamper
parasite adaptation (six strains, see Table S1; original host was
not included). For each host strain, filament densities were
correlated with optical density at 750 nm before the start of the
experiment and used to provide an initial filament density of
6,000 mL−1 in all lines. In the multiclonal line, each host strain
was added in equal proportions to obtain the desired filament
density. Individual parasite populations were maintained over
200 days by refreshing the cultures every 2 weeks. This was done
by transferring 5mL from the 2 week-old culture (>100,000
zoospores) into fresh host suspensions, thereby resetting host
densities.

Fitness Tests
An initial fitness test was conducted to assess the performance
of the parasite on each host composition at the beginning of
the experiment. Two additional fitness tests were conducted after
100 and 200 days of experimental evolution, respectively. Here,
individual parasite populations from each serial passage line
were challenged against (1) their respective novel host(s) and
(2) the original host (i.e., NIVA-CYA98). All fitness tests were
performed under identical conditions: 2-week pre-acclimated
host suspensions (50mL; 6,000 filaments mL−1) were infected
with zoospores stemming from each passage line. Zoospores
were obtained from each passage line by sequential filtration,
quantified under an inverted microscope using a Sedgewick
Rafter chamber after fixation of a 1ml aliquot with acid Lugol,
and added into the fresh host cultures to provide a final
concentration of 2,600 zoospores ml−1. The resulting infection
cultures were incubated for 7 days at 20◦C and 20 µmol
photons m−2 s−1. Aliquots (2mL) were sampled daily, fixed
in 2% formaldehyde stored at 4◦C, and analyzed within 2–
4 weeks. All sample identities were blinded before analysis,

except those from the initial fitness tests. Three different parasite
traits were investigated: prevalence of infection, intensity of
infection, and size of mature/empty sporangia after methods
described in Agha et al. (2018). In brief, prevalence of infection
was determined from daily collected samples as the proportion
of infected filaments after screening 200 filaments per sample.
Intensity of infection (the mean number of infections present
on single infected hosts) was determined after examining 200
infected filaments per sample. Higher intensity of infection
would indicate increased affinity of the parasite toward the cell
surface of the host. Mean sporangial volumes were estimated
from 40 empty or mature (i.e., fully developed) sporangia per
sample by measuring their two semi-axes and assimilating their
shape as rotational ellipsoids. In case multiple sporangia were
present on the filament, only the biggest one was measured.
Sporangial volume was used as a tentative proxy for reproductive
output, as bigger sporangia imply more zoospores produced
(Bruning, 1991b; Gerphagnon et al., 2013). Intensity of infection
and size of sporangia were determined on samples from day
7 only, in order to ensure well-established levels of infection
and fully developed/empty sporangia. Overall parasite fitness was
expressed as transmission rate, based on the formulation by May
and Anderson (1983):

Ro = βN/α + b + ν (1)

where Ro is the number of infections caused by a single primary
infection, β is the parasite transmission rate, N is the density
of hosts (kept constant in our experiment), α is the parasite
virulence (equal to 1 here, as every infection is lethal), b is the
rate of parasite independent mortality (assumed constant and
negligible), and ν is the host recovery rate (equal to zero here).
Therefore, under the standard conditions provided in the fitness
tests, changes in parasite fitness could be attributed solely to
changes in transmission rates. Transmission rates were estimated
by logistic regression of the data reflecting the development of
prevalence of infection over 7 days.

Statistical Analyses
Parasite performance was evaluated against different host
compositions (vs. original/vs. new/vs. mix) and over evolutionary
time. To evaluate potential adaptation of every parasite
population to their respective new host(s) in each passage line,
fixed effects of evolutionary time and host type (original/new
host) were tested on each fitness parameter (transmission rate,
intensity of infection and size of sporangia). This was done by
conducting two-way ANOVAs, comparing parasite performance
before and after 100 (or 200) days of experimental evolution.
Data on sporangia needed to be log-transformed to meet
distributional assumptions of the residuals. In addition, to test
for parasite attenuation, differences in the performance of each
evolved parasite population against its common original host
were evaluated after 100 (or 200) days of experimental evolution.
This was done by conducting one-way ANOVAs and subsequent
Dunnett tests for multiple comparisons, testing for differences
in the performance of each evolved parasite population against
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FIGURE 1 | Schematic representation of the experimental setup.

the non-evolved (control) one. All statistical analyses were
performed using RStudio (v.0.99.903).

RESULTS

Figure 2 shows the performance of the different parasite
populations infecting their respective new host(s) and infecting
the original host. In the initial fitness test, the parasite
consistently scored higher in all fitness parameters on the
host it was maintained on, than on novel hosts (Figure 2,
day 0). Adaptation of each evolving parasite population to
the new host(s) was evaluated along the course of the
experiment. Adaptation can be pictured as crossing parasite
reaction norms when expressing parasite performance against
new and original host(s) over evolutionary time [i.e., statistically
significant interactions between evolutionary time and host
type (original/new host)]. When expressing parasite fitness
as transmission rate, parasite populations maintained on new
monoclonal hosts showed adaptation to their respective new host
(Chy630 or Chy588) after 200 days of evolution (Figure 2A;
see significant interactions in Table 2). Such adaptation was
not observed in the multiclonal treatment (Figure 2A, Table 2),
where the parasite was maintained on a heterogeneous mixture
of host genotypes each of which produced a different set of
oligopeptides (Table 1). In contrast, increases in intensity of
infection were observed after 100 and 200 days in multiclonal
lines and in passage line Chy630 and, after 200 days in line
Chy588 (Figure 2B, see significant interactions in Table 2).

Regarding volume of mature/empty sporangia, no significant
interactive effects were found, except for line Chy630, where

parasites produced smaller sporangia when infecting the new
host after 200 days of experimental evolution (Figure 2C,
Table 2).

In addition to adaptation, parasite attenuation was evaluated,
i.e., the potential loss of performance against the original host
upon adaptation to novel ones. Specifically, parasite performance
of each evolving parasite population (Chy630, Chy588, and
ChyMix) was scored on the original host, and compared with the
performance of the non-evolved parasite population (Figure 3).
There was no evidence for parasite attenuation with the exception
of intensity of infection in Chy588, with significant reductions
after 200 days of experimental evolution, compared to the control
line maintained on the original host (Figure 3B).

DISCUSSION

The results of the serial passage experiment demonstrate the
ability of the chytrid parasite to adapt rapidly to single new hosts.
Although the parasite initially showed reduced fitness against
novel monoclonal hosts, evolutionary change occurred quickly
and fitness increase was evident after 200 days. This illustrates
the strength of selection imposed by new host environments
and exemplifies the ability of parasites to adapt rapidly to
them. Increased chytrid performance can result from genetic
change, phenotypic plasticity, or some combination of the two.
Considering genetic change, the fact that our experiment was
initiated using a single parasite strain would point toward
mutation as the mechanism leading to genetic variation, upon
which selection operates. In addition to selection, genetic drift
could have potentially led to genetic changes as a result of parasite
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FIGURE 2 | Performance of the parasite serial passage lines Chy630, Chy588 and ChyMix in terms of (A) transmission rate, (B) intensity of infection, and (C) size of

mature/empty sporangia against their respective new host(s) (continuous line) and the original host (dashed line). Asterisks mark significant evolutionary time × host

type interaction terms. Error bars represent std. error.

TABLE 2 | Results of two-way ANOVAs testing for fixed effects of evolutionary time, host type and their interaction for each parasite evolution line and fitness parameter.

Chy630 Chy588 ChyMix

F0 vs. F100 F0 vs. F200 F0 vs. F100 F0 vs. F200 F0 vs. F100 F0 vs. F200

TRANSMISSION RATE

Time 0.895 0.710 0.896 0.500 0.819 0.928

Host 0.138 0.900 0.156 0.675 0.041 0.049

Time × Host 0.619 0.037 0.740 0.036 0.617 0.263

INTENSITY OF INFECTION

Time <0.001 <0.001 0.787 0.521 0.012 0.210

Host <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Time × Host <0.001 <0.001 0.569 <0.001 0.021 0.004

SIZE OF SPORANGIA

Time 0.301 0.861 0.885 0.676 0.060 0.190

Host <0.001 <0.001 0.007 <0.001 <0.001 <0.001

Time × Host 0.409 <0.001 0.258 0.697 0.404 0.809

F0, F100, and F200 stand for fitness after 0, 100, and 200 days of experimental evolution, respectively. Significant p-values are depicted in bold.

population bottlenecks caused by serial transfers. However,
bottlenecks were systematically avoided by transferring over
100,000 zoospores every passage, a population size that is orders
of magnitude above reported thresholds, below which genetic
drift starts to shape allele frequencies (Poulin and Morand,
2000). Moreover, drift produces non-adaptive random patterns,
characterized by divergent results across replicates, which
contrasts with the consistent evolutionary response obtained here
across replicate passage lines. An alternative possibility is that
adaptation to new hosts was due to phenotypic plasticity, i.e.,
the ability of a genotype to produce different phenotypes as the
environment changes; for example through mechanisms such as
differential gene expression. There is increasing evidence that
parasites rely on a variety of flexible (plastic) traits to adapt
to new environments (Mideo and Reece, 2012). For instance,

parasite traits involved in replication (such as life cycle duration
or burst sizes; Gautret et al., 1995; Leggett et al., 2013) or resource
allocation to sexual/asexual modes of reproduction (e.g., Pollitt
et al., 2011) have been shown to exhibit plastic responses that
maximize fitness across changing environments. Interestingly,
whereas host-parasite compatibility is often assumed to have
a genetic basis, it has also been showed to be shaped by
phenotypic plasticity (Little et al., 2006). Identifying the nature
and quantifying the contribution of these mechanisms to chytrid
adaptation to new hosts remains a key open question to better
understand the epidemiology of chytridiomycosis.

In spite of rapid adaptation of the parasite to novel
monoclonal hosts, fitness improvement was not observed in
the multiclonal treatment. This demonstrates that cyanobacterial
genetic diversity prevents, or at least slows, parasite adaptation.
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FIGURE 3 | Performance of each evolving parasite population in terms of (A) transmission rate, (B) intensity of infection, and (C) size of mature/empty sporangia

against the original host after 100 and 200 days of experimental evolution. Asterisks depict significant differences between the parasite serial passage line and the

control line (Chy98) (Dunnett test). Error bars represent std. error.

Similar effects of genetic diversity have been observed for a
diatom population infected by a chytrid fungus (De Bruin
et al., 2008). In water flea Daphnia, more genetically diverse
populations showed higher resistance against a microsporidian
parasite (Altermatt and Ebert, 2008). These findings support
the general idea that high host genetic diversity reduces disease
prevalence (King and Lively, 2012). In genetically diverse host
populations, after a successful primary infection, parasites of
the next generation encounter different host genotypes, whose
optimal infection may require different adaptations. In our
experiment, the multiclonal treatment did not include any fully
resistant strain that could act as a transmission dead-end. Instead,
we attribute unchanged transmission to an overall inability of
chytrids to efficiently overcome defenses of hosts with dissimilar
genetic backgrounds (Sønstebø and Rohrlack, 2011).

Our experiment tested for asymmetric evolution (i.e., host
remained in evolutionary stasis). However, in nature, hosts
and parasite selection is reciprocal. If cyanobacterial genetic
diversity protects against disease spread, it is tempting to
hypothesize that chytrid parasitism can induce diversification
in cyanobacteria. Diversification of marine cyanobacteria as
a co-evolutionary response against bacteriophages has been
demonstrated experimentally (Marston et al., 2012), and
indications of chytrid parasitism promoting increased genetic
diversity in natural diatom populations further support this idea
(Gsell et al., 2013). In nature, long-term reciprocal adaptation
between chytrids and their cyanobacterial hosts has been
proposed to lead to a Red Queen co-evolutionary dynamics
(Sønstebø and Rohrlack, 2011; Kyle et al., 2015), in which
parasites impose strong negative frequency-dependent selection
on host populations (i.e., common host genotypes are more
strongly decimated by matching parasites). Such dynamics
buffers competitive differences between conspecific genotypes
and leads thereby to long-term maintenance of genetic diversity
in host and parasite populations (Hamilton et al., 1990).

Natural cyanobacterial populations display a mosaic structure
of highly dynamic subpopulations with regard to various
polymorphisms, such as the production of hypervariable
secondary metabolites (e.g., oligopeptides; Welker and von
Dohren, 2006; Agha and Quesada, 2014). Maintenance of such
polymorphisms over decades (Rohrlack et al., 2008), despite

associated high metabolic costs for the host (Amoutzias et al.,
2008) is consistent with Red Queen evolutionary models and
speaks for the strength of the selective forces fueling such
diversity. Indeed, parasites impose strong selection on their
hosts and there are indications that cyanobacterial oligopeptides
are involved in resistance against chytrid parasites (Rohrlack
et al., 2013), by analogy with other hypervariable cyanobacterial
traits conferring resistance to phages (Avrani et al., 2011).
Hypervariable oligopeptide production is largely attributable
to relaxed specificity in the incorporation of amino acids
during non-ribosomal biosynthesis, leading to the existence of
multiple structurally similar oligopeptide variants with diverse
bioactive properties (Nagarajan et al., 2013). Interestingly,
genetic regions responsible for such amino acid promiscuity are
often under positive selection (e.g., Tooming-Klunderud et al.,
2008; Rounge et al., 2010), suggesting that oligopeptide chemical
diversity might be evolutionarily promoted. This, together
with other mechanisms, including frequent horizontal gene
transfer, module reshuffling or recombination in oligopeptide-
encoding gene-clusters strongly suggests the existence of
different mechanisms in cyanobacteria that generate metabolic
diversity with minimal genetic changes and is consistent with
host diversification predicted by Red Queen co-evolutionary
models (Agha and Quesada, 2014). Further experiments will
aim at directly relating chemical diversification in cyanobacteria
and the co-evolutionary interaction with their (chytrid)
parasites.

In our experiment, no evidence for attenuation was found.
Adaptation often results in a specialization process, where
parasite performance against new hosts trades-off with that
against former ones. Although this may be the case sometimes,
especially when different hosts represent different species (Ebert,
1998), adaptive changes may also result in unchanged or even
increased performance on foreign hosts. Little et al. (2006) argued
that a generalization about the occurrence of attenuation between
host genotypes (i.e., belonging to the same species) is difficult
to make. A mechanistic understanding of the infection process
seems necessary to make better predictions about the evolution
of host ranges and specialism in this host-parasite system.

As chytrid infection always leads to the death of the host
(virulence equals 1), increases in chytrid fitness are solely the
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result of changes in transmission. However, parasite transmission
is a composite variable (sensu Antolin, 2008) that is the
result of different traits, such as the affinity of the parasite
to encyst on its host, the number of zoospores produced per
sporangium, its sporulation/generation time, or the infective
lifetime of zoospores (Bruning, 1991a,b). In our experiment, we
first addressed the encystment phase of the infection. Consistent
increases in intensity of infection observed across passage lines
(i.e., higher parasite encystment on hosts) indicate that traits
involved in cell-to-cell recognition are evolutionarily highly
dynamic in this host-parasite system. Knowledge from other
fungi (e.g., Levitz, 2010; Petre and Kamoun, 2014) suggests that
these traits likely involve lectins and complex carbohydrates
at the chytrid and cyanobacterial cell surfaces, respectively. In
analogy, cell surface traits of marine cyanobacteria have been
shown to be encoded in hypervariable genomic islands, which
are strongly related to viral susceptibility (Avrani et al., 2011).
We predict the existence of analogous genomic co-evolutionary
hotspots in Planktothrix, which could be used as diagnostic tools
for mapping host-parasite specificity. Secondly, in light of the
correlations between sporangial size and the number of produced
zoospores (Bruning, 1991b; Gerphagnon et al., 2013; Van den
Wyngaert et al., 2014), we addressed sporangial size as a tentative
proxy for the efficiency with which the parasite exploits it host
after encystment. However, we did not observe any increase,
but, in fact an occasional decrease in sporangial sizes over
time. Higher intensity of infection arguably leads to increased
competition between co-infecting zoospores for host resources,
which impacts final sporangial sizes, as suggested by negative
correlations between intensity of infection and final sporangial
sizes reported elsewhere for this system (Agha et al., 2018). In
that same study, both sporangia and zoospores sizes varied along
temperature gradients, leading to the hypothesis that chytrids
may exploit trade-offs between size of sporangia and zoospores

to stabilize their reproductive output and maximize transmission

across changing environments (Agha et al., 2018). Highly dense
and virtually unlimited host conditions provided in the present

experiment might have selected for short parasite generation
times (i.e., small sporangia that display short maturation
times) and maximal reproductive output (i.e., relatively smaller
zoospores) to maximize transmission. This is consistent with
demographic and epidemiological models predicting selection
for short generation times and early transmission in expanding
parasite populations (Bull and Ebert, 2008). However, zoospores

rely on internal energy reserves to find new hosts and reductions
in zoospore size thus come at the expense of shorter infective
lifetimes. Under natural conditions, host densities are typically
lower and far more variable than in our experiment and,
therefore, the inability to find a suitable host arguably constitutes
a major bottleneck for chytrid transmission. We argue that
investing in long infective lifetimes is likely the dominant strategy
in the wild. Testing these predictions demands addressing
additional parasite traits that act as component variables of
transmission, such as sporulation times, and zoospore size
and longevity. On top of this, further studies should address
how natural conditions, including environmental variation and
additional biotic interactions (e.g., with heterotrophic bacteria)
affect chytrid-host evolution (Wolinska and King, 2009).

All in all, our results demonstrate the adaptive potential of
chytrid parasites and support the finding that genetic diversity
protects phytoplankton populations from disease (De Bruin et al.,
2008). High susceptibility to disease among low diversity host
populations can be attributed to the ability of parasites to rapidly
adapt to them, quickly leading to high transmission among
homogeneous hosts. Conversely, we show that host genetic
diversity, in addition to hindering efficient parasite transmission
between heterogeneous hosts, grants resistance to disease by
hampering parasite adaptation.
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