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Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV).
This infection is responsible for a wide range of public health costs and is associated
with several adverse outcomes during pregnancy. Improving our understanding of
G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the
first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell
surface using a shaving approach. The 261 G. vaginalis proteins identified using this
approach were analyzed with bioinformatic tools to detect characteristic motifs from
surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17
proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins).
One third of the identified proteins were found to have at least one typical motif of
surface-exposed proteins. Furthermore, the subcellular location was examined using
two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17%
of the identified proteins as surface-associated proteins. Interestingly, we identified 13
members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in
the translocation of various substrates across membranes. To validate the location of the
G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies
against Escherichia coli GroEL was performed to reveal the extracellular location of the
moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna
protein were produced and used to validate the location of Cna on the surface of the
G. vaginalis. These high affinity anti-Cna mAb represent a useful tool for the study of this
pathogenic microorganism and the BV.

Keywords: Gardnerella vaginalis, cell shaving, surface proteins, ABC-transporters, trypsin digestion, GroEL, Cna

INTRODUCTION

Bacterial vaginosis (BV) is the most common vaginal disorder among women of reproductive age
(Koumans et al., 2007). Its prevalence is high among vulvovaginal infections, although its exact
percentage depends on the study group (Sobel, 2000; Sabour et al., 2018). It is responsible for
various symptoms including vaginal discharge, which is typically homogenously milky or gray-
colored and malodorous. BV causes a rise in the production of amines that increase vaginal pH
to over 4.5 and is characterized by the presence of epithelial “clue cells,” which are indicative
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of the Gardnerella vaginalis infection; however, it is usually
asymptomatic and does not feature an inflammatory reaction
(Catlin, 1992). In healthy vaginal epithelium, commensal
Lactobacillus species produce hydrogen peroxide and lactic acid,
resulting in an acidic pH and inhibiting the proliferation of
other bacteria (Machado et al., 2013). BV is characterized by
an imbalance in this vaginal microbiota from the commensal
lactobacilli to obligate anaerobes; for this reason, BV has a
polymicrobial etiology (Kenyon and Osbak, 2014). BV has
been linked to serious public health consequences, including
postoperative infections (Kavoussi et al., 2006) and the
acquisition and transmission of the human immunodeficiency
virus (HIV) (Atashili et al., 2008; Masson et al., 2014). It also
increases susceptibility to acquire the human papillomavirus
(HPV) (Peres et al., 2015), the herpes simplex virus type 2 (HSV-
2) (Kaul et al., 2007) and other pathogens that infect the lower
genital tract (St John et al., 2007). Furthermore, BV enhances
the risk of preterm birth and is associated with several adverse
outcomes in pregnancy (Bretelle et al., 2015; Giakoumelou et al.,
2015). Due to the lack of specific symptoms of BV (Kenyon and
Osbak, 2014), highly accurate molecular assays are needed. With
this objective, methods as quantitative real-time PCR (qPCR)
have been used in order to obtain molecular cutoff values for BV
diagnosis (Menard et al., 2008) and also a confident laboratory
tool to assist in the asymptomatic BV (Hilbert et al., 2016). But
these techniques require trained specialist and equipment, for all
these reasons, developing a test based on an immunoassay could
be an alternative for the diagnosis of BV at any point of care, even
in developing countries.

Gardnerella vaginalis had been found in 87% of women
without a BV diagnosis and in almost all BV-positive samples
(Janulaitiene et al., 2017). G. vaginalis appears in association
with other anaerobes in BV, such as Atopobium vaginae,
Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum,
and Peptoniphilus species, highlighting the polymicrobial
etiology of this pathology (Machado and Cerca, 2015; Jung
et al., 2017). While the specific role of G. vaginalis in BV
remains controversial, two outcomes are generally recognized:
the formation of a biofilm on the vaginal epithelium and the
presence of G. vaginalis as the predominant species of bacteria
in this pathology (Machado and Cerca, 2015). G. vaginalis
is a Gram-positive, rod-shaped bacterium with a cell wall
composed of a thin peptidoglycan (PG) layer (Catlin, 1992).
It is characterized by Gram-variable staining and a high GC-
content. The taxonomic classification of G. vaginalis has proved
controversial as it was initially named Haemophilus vaginalis
(Gardner and Dukes, 1955) then renamed Corynebacterium
vaginale (Zinnemann and Turner, 1963). Finally, a new genus
with only one species was categorized as G. vaginalis.

The cell wall of the microorganism is the first point of
contact with the environment and is associated with the initial
adherence of the bacteria to the vaginal epithelium. The cell wall
contains cell surface proteins, which are involved in the signaling,
transport and up-take of nutrients, in addition to playing an
important role in pathogenesis due to inter- and intracellular
interactions (Navarre and Schneewind, 1999). Gram-positive
bacteria have specific mechanisms by which proteins can move

from the cytoplasm into or over the membrane, such as
twin-arginine protein translocation (Tat) and general secretory
pathways (Sec; SecYEG translocon) (Schneewind and Missiakas,
2012; Goosens et al., 2014). Proteins are directed toward
the secretory systems by N-signal peptides, followed by their
translocation across the membrane where they are cleaved by
peptidase I (Schneewind and Missiakas, 2014). Proteins can be
retained in the cell wall through covalent attachment to the PG,
which is mediated by the C-terminal sorting signal LPXTG motif,
a mechanism that is catalyzed by sortase enzymes (Schneewind
and Missiakas, 2014). In general, pre-pro-lipoproteins gain access
to the membrane via the Sec pathway or the Tat pathway
(Zuckert, 2014). Peptidase II often cleaves immediately before the
conserved cysteine residue of the lipobox motif (Dalbey et al.,
2012; Schneewind and Missiakas, 2014). This cysteine residue
is also a target for the lipid modification of lipoproteins to
retain these proteins in the plasma membrane-cell wall interface
(Kovacs-Simon et al., 2011; Krishnappa et al., 2013).

The identification of surface proteins, or surfome, by shaving
involves the application of a protease treatment to whole cells
to generate peptides followed by a LC-MS/MS analysis. This
has been used in eukaryotic (Hernaez et al., 2010; Vialas et al.,
2012; Gil-Bona et al., 2015; Marin et al., 2015) and prokaryotic
microorganisms mainly in Gram-positive bacteria (Olaya-Abril
et al., 2014). The shaving procedure bypasses several problems
associated with surface protein analyses, such as low abundance
when compared with cytoplasmic proteins and low solubility,
both of which make protein extraction more difficult. Moreover,
it avoids subcellular pre-fractionation. However, cell lysis must be
controlled to avoid cytoplasmic protein contamination. Overall,
shaving is a fast and reliable way to identify cell wall proteins,
integral membrane proteins and associated surface proteins.

In this study, we aimed to investigate the surface-associated
proteins of G. vaginalis to identify diagnostic markers or
therapeutic targets of BV. We carried out a gel-free proteomic
approach by direct trypsin digestion (shaving) over whole
G. vaginalis bacteria. To the best of our knowledge this is the first
time this approach has been used for this purpose. We identified
261 G. vaginalis proteins, one third of which predicted motifs
typical of surface-associated proteins, including signal peptide
(SP), lipobox, LPXTG motif and transmembrane alpha-helix
domains (TMDs).

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The G. vaginalis strain used in this study was ATCC14018 (JCM
11026T), it was isolated from vaginal samples (Oshima et al.,
2015). Bacteria cells were exclusively cultured in Brain Heart
Infusion (BHI) at 37◦C and 5% CO2.

The strain of Escherichia coli used for cloning was DH10B
T1R, and for gene expression it was BL21 DE3. Both strains were
provided as gifts from the Dr. Luis A. Fernández Laboratory.
The E. coli strains used in the experiments were grown in Luria
Bertani (LB) medium at 37◦C and 200 rpm. The antibiotic used
was kanamycin (Km) at 50 µg/ml.
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Surface Shaving
Bacteria cells from an early exponential growth phase culture
(100 ml; OD600 ∼ 0.2) were harvested by centrifugation and
washed three times with sterile-filtered phosphate-buffered saline
(PBS). Cells were re-suspended in 1 ml PBS containing 30%
sucrose and 3 µg of recombinant sequencing grade trypsin
(ROCHE) was added. Incubation was done during 30 min
at 37◦C and 300 rpm. After the trypsin treatment, samples
were centrifuged at 4000 rpm for 10 min and the supernatant
(containing protein and peptides) was filtered with a filter unit of
0.22 µm. The flow-through was re-digested overnight with 2 µg
of fresh recombinant trypsin in the same conditions described
above. A volume of 100 µl of trifluoroacetic acid (TFA) 0.1%
(v/v) was added to stop the proteolytic reaction. Subsequently,
originated peptides were cleaned up with a Poros R2 resin
(AB Sciex, Framingham, MA, United States). Peptides were
eluted with 80% acetonitrile in 0.1% TFA, dried in a Speed-
Vac and re-suspended in 0.1% formic acid. The samples were
stored at −20◦C prior to nano-LC-MS/MS analysis. Cell pellets
were collected before and after the first trypsin incubation, and
the bacterial cell viability was evaluated by plating on Agar
Gardnerella (Biomerieux) and colony-forming units (CFU) were
counted. The experiment was performed in triplicate.

LTQ-Orbitrap Velos Analysis and Protein
Identification
Peptides were analyzed using RP-LC/MS in an Easy-nLC
II system coupled to an ion trap LTQ-Orbitrap-Velos-Pro
mass spectrometer (Thermo Scientific). The peptides were
concentrated (on-line) by reverse phase chromatography using
a 0.1 mm × 20 mm C18 RP pre-column (Thermo Scientific),
and then separated using a 0.075 mm × 250 mm C18 RP
column (Thermo Scientific) operating at 0.3 µl/min. Peptides
were eluted using a 110-min gradient from 0 to 40% solvent B
(solvent A: 0.1% formic acid in water; solvent B: 0.1% formic acid,
80% acetonitrile in water). ESI ionization was achieve using a
Nano-bore emitters Stainless Steel ID 30 µm (Proxeon) interface.
Peptides were detected in survey scans from 400 to 1600 amu
(1 µscan), followed by fragmentation of the 15 most intense ions
by Collision Induced Dissociation using an isolation width of 2
(in mass-to-charge ratio units), normalized collision energy of
35%, and dynamic exclusion applied in 30 s intervals.

Protein identification from mass spectra raw files was
carried out using Proteome Discoverer software version 1.4.1.14
(Thermo Scientific) on a licensed version of the search engine
MASCOT 2.3.0. Data Base Searchers were performed to identify
peptides and proteins of G. vaginalis ATCC14018/JCM 11026
strain (1,277sequences), data available on NCBI1. The following
search parameters were used: tryptic cleavage after arginine and
lysine, up to two missed cleavage sites allowed, tolerances of
20 ppm for precursor ions and 0.8 Da for MS/MS fragment ions,
optional Methionine oxidation and fixed carbamido-methylation
of cysteine.

A search of the decoy database (adopting the integrated
decoy approach) was used to calculate the FDR. The MASCOT

1http://www.ncbi.nlm.nih.gov/nuccore/AP012332.1

percolator filter was applied to the MASCOT results. The
acceptances criteria for protein identification were: a FDR < 1%
and at least one peptide identified with high confidence
(CI > 95%). The proteins identified in two out of three replicates
with at least two peptides in one were used in further analysis.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (Vizcaino et al., 2014)
via the PRIDE partner repository2 with the dataset identifiers
PXD003192 and 10.6019/PXD003192.

Bioinformatic Analysis
The signal peptide (SP) of the Sec secretion pathway was
predicted using SignalP4.13 (Petersen et al., 2011). For Tat
secretion pathway, the SP was predicted using TatP 1.04 and
the lipo-SP was predicted using PRED-LIPO5. Transmembrane
alpha-helix domains (TMD) were predicted using TMHMM6.
LPXTG domain and lipobox identification were achieved
through the PATTINPROT program7. The pattern used to
identify the lipobox was [DERK](6)-[LIVMFWSTAG](2)-
[LIVMFYSTAGCQ]-[AGS]-C, which was taken from (Sutcliffe
and Harrington, 2002). Using the LocateP database of G. vaginalis
ATCC14019 strain, we were able to identify additional proteins
with LPXTG domain8 by homology between protein sequences.
Always identity between protein sequences was between 95 and
100%. Subcellular localization probabilities were determined
using the PSORT server9, which also predicted SP and TMDs.
Additionally, subcellular location was achieved using the Gpos-
mPLoc server, which is specific for Gram-positive bacterial
proteins10. We created topological representations of proteins
using the PROTTER program, which identified SP and TMDs11.
The Pfam server12 allows the analysis of the protein primary
sequence to find a Pfam family classification. Blastp was used
to identify homology with proteins in other microorganisms13.
Finally, to represent the consensus sequence of the ABC
transporters WebLogo tools were used14.

Plasmid, DNA Constructs and
Oligonucleotides
DNA manipulation, ligation, transformation and plasmid
preparation were performed following standard techniques.
All DNA constructs were sequenced in the Center of Genomic
and Proteomics of Universidad Complutense of Madrid. PCR
reactions were performed using the Expand High Fidelity

2https://www.ebi.ac.uk/pride/archive/
3http://www.cbs.dtu.dk/services/SignalP
4http://www.cbs.dtu.dk/services/TatP
5http://www.compgen.org/tools/PRED-LIPO
6http://www.cbs.dtu.dk/services/TMHMM
7https://npsa-prabi.ibcp.fr
8http://bamics2.cmbi.ru.nl/websoftware/locatep2/locatep2_start.php
9http://psort.hgc.jp/form.html
10http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/
11http://wlab.ethz.ch/protter/start/
12http://pfam.xfam.org/
13https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
14http://weblogo.berkeley.edu/logo.cgi
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PCR system (ROCHE). Plasmid selected for gene expression
was pET-29a (+) (Novagen) with a 6xHis-tag at C-terminal
and a Km resistance cassette as marker. Sigma Genosys
was used to synthesize the oligonucleotides NdeI-up 5′-
GGAATTCCATATGCAGTCGAGCAATGATAATGCTT-3′ and
XhoI-down 5′- CTGGCTCGAGGTTAGCATCAAACCACACGC-
3′ (restriction enzymes were underlined). DNA fragment
corresponding to amino acids 35 to 540 of Cna (indicated in
Supplementary Data) was subject to PCR amplification using
the genomic DNA of G. vaginalis ATCC 14018 with these
oligonucleotides, digested with NdeI and XhoI, and ligated into
the same sites of the vector backbone pET29a. The M protein
repeat protein was cloned following the same procedure, for the
amino acid 51 to the end. The oligonucleotides designed were
NdeI-up 5′-GGAATTCCATATGGCCGACGCGACTACAA-3′
and XhoI-down 5′- CTGGCTCGAGCTTGCGACGGATTCG-3′.

Protein Purification
The purification of the His-tagged C-terminal Cna protein was
performed as described below. The E. coli BL21 DE3 cells carrying
plasmid pET29a-Cna were grown in 1 liter culture of LB broth
at 37◦C with agitation (250 rpm). When the OD600 reached
around 0.5, they were induced with 0.1 mM IPTG for 4 h. Cells
were subsequently harvested by centrifugation (4,000 × g for
10 min) and each gram of cell-pellet was resuspended in 5 ml of
purification buffer [buffer P: 50 mM NaH2PO4, 200 mM NaCl
at pH 8 containing a cocktail of protease inhibitors (Complete
EDTA-free; Roche)]. Lysozyme was added at 1 mg/ml and
incubated for 30 min at 4◦C. The following steps were carried
out at 4◦C. The suspension of cells was sonicated with ten pulses
of 20 s (Vibra-cell; Sonics & Materials), followed by centrifugation
(4,000× g for 10 min) to discard non-lysed cells. The supernatant
was centrifuged once more (22,000 × g for 30 min). The pellet
was resuspended in 10 ml of buffer P containing 1.5% (wt/vol)
N-lauroylsarcosine sodium salt (Sarkosyl; Sigma) and a cocktail
of protease inhibitors, incubated for 1 h in a wheel and sonicated
briefly to favor solubilization. After incubation, the mixture was
centrifuged again (22,000 × g for 30 min). An 8-ml aliquot
of a nickel-containing agarose resin (50%, vol/vol) (Ni-NTA)
equilibrated in buffer P was then added. The resulting suspension
was incubated overnight with slow agitation on a gyratory wheel
to favor binding of the Cna-His-tagged protein. The next day,
this mixture was passed through a chromatography column
containing an additional 2 ml of Ni-NTA resin. This column was
washed with buffer P containing imidazole, first with 10 mM
and a second time with 50 mM. The Cna-His-tagged protein
was eluted in 1-ml fractions with the same buffer containing
150 mM of imidazole. Aliquots with a higher amount of protein
were concentrated with a centrifugal filter unit cut-off of 50 kDa
(Amicon; Millipore) and dialyzed against water with a dialysis
cassette cut-off of 10 kDa (Slide-A-Lyzer; Thermo Scientific).

Custom Mouse Monoclonal Antibody
Production
Monoclonal antibody fusion, enzyme-linked immunosorbent
assays (ELISA) screening and sub-cloning were performed

using standard technologies (Kohler and Milstein, 1975). The
maintenance, expansion and scaling up of the cell cultures were
carried out in a humidified atmosphere (94% air and 6% CO2)
at 37◦C. Female BALB/cAnNHsd mice (Harlan) were immunized
with a recombinant Cna fusion protein according to the following
protocol. Seventy-five micrograms of Cna protein diluted in PBS
was used as an emulsion with a Complete Freund’s adjuvant
(Sigma) for the initial subcutaneous immunization. Subsequent
immunizations were given at days 14 and 35 with an Incomplete
Freund’s adjuvant. At day 50, a final boost of 40 µg of Cna
protein diluted in PBS was given to the mouse via intraperitoneal
injection using the highest titrated serum. Fusion was done
four days after the last injection. Clones were derived from
the fusion of myeloma cells with spleen cells from the selected
mouse at a ratio of 1/10, using PEG-1500 (Roche Diagnostics)
as a fusion inducer. Then, cells were plated in 96 microwell
dishes in a medium containing HAT (Invitrogen) for hybrid
selection. Hybridoma supernatants were screened using ELISA
for reactivity against recombinant Cna coated at 1 µg/ml. Ninety-
five positives clones were re-screened using ELISA for their
ability to recognize the native antigen present on the surface
of G. vaginalis, which was achieved by coating 108 cells/ml and
comparing these with the un-specific signals of E. coli cells (data
not shown). Finally, by limiting dilution seven selected clones
with highly antigen-specific reactivity were subcloned to obtain
hybridoma secretory cell lines. For subsequent experiments, the
purified monoclonal antibody from each selected hybridoma cell
line was obtained. To this end, cells were cultured in serum
free conditions. After filtration, supernatants were purified on
protein A columns (MabSelect SureTM LX; 25 ml; Amersham)
using an ÄKTA purifier FPLC system. Fractions were analyzed
by SDS-PAGE. The elution buffer was exchanged to PBS and the
antibody was concentrated with Amicon R© Ultra-15 centrifugal
filter devices with low-binding Ultracel R© membranes (30000
NMWL; Millipore). The final purified antibodies were quantified
at 280 nm.

Enzyme-Linked Immunosorbent Assays
(ELISA)
A volume of 100 µl of intact bacterial cells or total extracts
were absorbed into the ELISA plates (Maxisorb; Nunc) at an
OD600 of 3.0 and 2 µg/µl, in PBS for 2 h. Next, plates were
blocked for 1.5 h with PBS containing 3% (w/v) of skimmed
milk. Anti-GroEL POD conjugate (Sigma-Aldrich) was added
at 1:5000 dilution to the same buffer and incubated for an
additional hour. Anti-Cna mAb mouse custom antibodies were
used at 10 µg/ml in the same buffer for 1 h. The plates were
then washed five times with PBS, and the presence of bound
antibodies were developed using O-phenylenediamine (OPD;
Sigma), and absorbance was read at 490 nm. The ELISA values
reported were from two independent experiments performed
in quadruplicates. The Excel Software was used to create the
Graphs of the mean and standard deviation values. Total extracts
were obtained from the same culture of intact cells resuspended
on PBS and briefly sonicated through three pulses of 20 s
(Vibra-cell; Sonics & Materials). All incubations were at room
temperature.
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The statistical significance of the differences in absorbance
measures was evaluated using the Student t-test (∗p < 0.05,
∗∗p < 0.01).

Confocal Fluorescence Microscopy
Bacterial cultures were centrifuged and resuspended at an OD600
of 3.0, and were then incubated for 2 h on glass coverslips
pre-coated with poly-L-lysine (1 mg/ml). Cells were fixed with
formaldehyde 4% (w/v) (in PBS) for 15 min at room temperature
(RT). Glass slides were washed twice with PBS. Then, slides
were blocked for 1 h at RT with buffer B [PBS with bovine
serum albumin (BSA) at 1 mg/ml]. The slides were washed
twice again with PBS and then incubated for 1.5 h at RT in
the same buffer with an anti-GroEL (Rabbit; Sigma-Aldrich) at
1:2000 dilution, an anti-Cna mAb at 1:1000 dilution (custom
mouse antibodies, number 41) or in buffer only, as indicated
on the figures. The slides were washed three times with PBS
and further incubation for 1 h with an anti-rabbit IgG or anti-
mouse IgG, both conjugated with Alexa-488 diluted at 1:500 in
buffer B. Nuclei were stained with DAPI dye (5 µg/ml; 5 min
at RT). Mounting medium Fluoromount-G (SouthernBiotech)
was added to the preparations. The epifluorescence of the cells
was then examined and images were collected using an Olympus
FV1200 microscope.

RESULTS

Optimization of the Shaving Approach
for the Identification of G. vaginalis
Surface-Associated Proteins
This study describes a proteomic approach to investigate the
surface protein composition of G. vaginalis, a poorly studied
microorganism. G. vaginalis is a small, rod-shaped bacterium
with a thin PG layer surrounding the plasma membrane, which
was considered during the shaving procedure. Our methodology
was based on a previous study, which used the shaving approach
for Streptococcus pneumoniae, a microorganism that is highly
susceptible to autolysis (Olaya-Abril et al., 2012). We firstly
optimized the shaving process for use with G. vaginalis to avoid
cell lysis during trypsin treatment. G. vaginalis cells were collected
at the exponential growth phase, when the rate of cell death is
lowest than in any other growth phase, to reduce cytoplasmic
protein contamination. The trypsin digestion of G. vaginalis
cells was initially performed in PBS, but cell lysis was observed.
Therefore, we added 30% sucrose to the PBS and tested different
amounts of trypsin per sample (1, 2, 3, 5, or 10 µg). To determine
the cell integrity of G. vaginalis, plate counting was performed
to the number of colony-forming units (CFUs) before and after
trypsin treatment. We found that 5 and 10 µg of trypsin induced
cell lysis, but the number of CFUs in other trypsin amounts (1,
2, and 3 µg trypsin) were comparable. Finally, 3 µg of trypsin
was chosen for the first trypsin digestion, and 2 µg of trypsin was
used for re-digestion of the supernatant obtained. This treatment
rendered good protein digestion for peptide identification using
LC-MS/MS analysis.

Protein Identification and Subcellular
Location of G. vaginalis Proteins
The cell-surface trypsin shaving and LC-MS/MS analysis
performed on three biological replicates, enabling the
identification of 261 G. vaginalis proteins. These proteins
were identified in at least two replicates with at least two peptides
in one of these (Supplementary Table S1). Most of the proteins
(84.3%) were identified in all replicates. Twenty-five proteins
were identified with an average of greater than 10 peptides, and
almost half of these were classified as plasma membrane proteins
using the PSORT server (Table 1).

The subcellular locations of all 261 proteins identified in
the G. vaginalis surfome were analyzed in silico using the
PSORT and Gpos-mPLoc servers in parallel (Supplementary
Table S2). Initially, the proteins were categorized into five
groups using PSORT: outside, lipoprotein, plasmatic membrane,
cytoplasmic and unknown. Among the proteins categorized as
cytoplasmic, eight where labeled as ambiguous because other
bioinformatic tools detected motifs typical of surface-exposed
proteins, as shown in Supplementary Table S1. The percentage
of identified proteins in each group is shown in Figure 1.
After the proteins located in the cytoplasm, the largest number
of proteins was found to be in the plasma membrane, with
23% of G. vaginalis proteins located there. Three proteins were
classified as unknown by PSORT due to their low scores,
which did not allow classification into any subcellular location
(BAQ32908, BAQ33209, and BAQ33277). The double analysis,
by PSORT and Gpos-mPLoc, separated the identified proteins
into three main groups according to the prediction of subcellular
location: (i) “Inside,” (ii) “Both,” and (iii) “Surface-associated”
(Supplementary Table S2). Among the proteins identified, 43
(17%) were predicted to have an extra-cytoplasmic location by the
two servers. Alternatively, 86 proteins (33%) were predicted to be
classified as both, as one server predicted they were cytoplasmic
and the other predicted they were extra-cytoplasmic.

Among the proteins classified as “inside” there are several
described in other Gram-positive microorganisms with dual
locations (cytoplasm and bacterial surface) or as moonlighting
proteins (indicated with a “∗” in Supplementary Table S1).
These include: enolase (Eno), glyceraldehyde-3-phosphate
dehydrogenase (Gap) (Henderson and Martin, 2011; Wang
et al., 2014), phosphoglycerate mutase (GpmA), inosine 5′-
monophosphate dehydrogenase (IMPDH), pyruvate kinase
(PyK), DnaK, GroEL, the elongation factors Tu (EF-Tu) and G
(EF-G) and the protein translocase subunit A (SecA).

Comprehensive in Silico Analysis of
Protein Motifs Typical of
Surface-Exposed Proteins
An exhaustive analysis of the identified proteins was performed
using bioinformatic tools to detect the characteristic motifs of
surface-exposed proteins, such as the SP, lipobox domain, LPXTG
PG-anchoring motif and TMD (Supplementary Table S1). These
motifs were detected in a total of 80 proteins, accounting
for 31% of the proteins identified. The number of proteins
predicted to contain each motif is shown in Figure 2A.
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TABLE 1 | Gardnerella vaginalis proteins identified with more than 10 peptides and their subcellular location.

Protein_IDa Gene namea Descriptiona Peptide averageb Unique peptidesc Location by PSORTd

BAQ32758 M protein repeat proteine 53 67 Plasmatic membrane

BAQ33431 Hypothetical protein 33 47 Plasmatic membrane

BAQ33644 Hypothetical protein 26 36 Plasmatic membrane

BAQ33076 Xylulose-5-phosphate/fructose-
6-phosphate
phosphoketolase

23 29 Cytoplasm

BAQ32771 Conserved hypothetical protein 22 27 Plasmatic membrane

BAQ32803 Dipeptide/oligopeptide ABC
transporter substrate binding
component

21 23 Plasmatic membrane (lipoprotein)

BAQ33274 Transketolase 17 22 Cytoplasm

BAQ33156 clp-ATP ATP-dependent Clp protease
ATP-Binding subunit

17 24 Cytoplasm

BAQ32981 ef-G Elongation factor G 16 20 Cytoplasm

BAQ33548 alaS Alanyl-tRNA synthase 15 22 Plasmatic membrane

BAQ33427 Putative cell surface protein 15 21 Plasmatic membrane

BAQ33074 ackA Acetate kinase 14 17 Cytoplasm

BAQ33315 Conserved hypothetical protein 13 21 Cytoplasm

BAQ33818 atpD ATP synthase beta subunit 13 16 Cytoplasm

BAQ32792 Cna protein B-type domaine 13 22 Plasmatic membrane

BAQ33052 Conserved hypothetical protein 12 16 Cytoplasm

BAQ33322 Dehydrogenase 12 13 Cytoplasm

BAQ32818 Putative ABC transporter
substrate binding component

12 16 Plasmatic membrane (lipoprotein)

BAQ33450 pyK Pyruvate kinase 12 15 Cytoplasm

BAQ32849 Conserved hypothetical protein 11 16 Cytoplasm

BAQ33816 Hypothetical protein 11 11 Plasmatic membrane

BAQ33428 rplY 50S ribosomal protein L25 11 13 Cytoplasm

BAQ33018 Conserved hypothetical protein 10 13 Cytoplasm

BAQ33606 Conserved hypothetical protein 10 13 Plasmatic membrane

BAQ33723 rpmC 50S ribosomal protein L29 10 12 Cytoplasm

aProtein_ID, gene name and description from (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=585528) (Oshima et al., 2015), listed in order of peptide
average. bPeptide average of triplicate biological replicates. cTotal number of unique peptides identified in all biological triplicates. dSubcellular location was analyzed with
PSORT server (http://psort.hgc.jp/form.html). eProteins selected for antibodies production are indicated in bold.

A SP was identified in 36 G. vaginalis proteins using different
bioinformatics tools, and these were associated with the following
secretion pathways: 31 with the Sec secretion pathway, 10
with the Tat secretion pathway and 5 included lipo-SP motifs
(Supplementary Table S3 and Figure 2B). For some proteins,
the SP was predicted for more than one secretion pathway
simultaneously. The five proteins containing the LPXTG motif
identified in our study are annotated in the databases as follows:
one as a hypothetical protein, two as putative cell surface
proteins, one as a conserved hypothetical protein and one as a
cell wall associated fibronectin-binding protein (Supplementary
Table S1).

The presence of TMDs, distinctive of integral membrane
proteins, was detected using the PSORT, PROTTER, and
TMHMM servers. The number of TMDs predicted using each
bioinformatic tool is summarized in Supplementary Table S3.
TMDs were detected in 66 G. vaginalis proteins, 56 of which
had 1 TMD, 7 of which had 2 TMDs and 3 of which had more
than 6 TMDs. A schematic of the secondary prediction of poly-
transmembrane proteins (more than two TMDs) and examples

of proteins with different topologies according to the PROTTER
server are shown in Figure 3.

A more comprehensive analysis of the sequence of the 43
proteins with surface-exposed motifs mapping the MS identified
peptides was done (Supplementary Data). Overlapping was
detected between the identified peptides and the surface-exposed
region, excluding BAQ33051 and BAQ33368 where the peptides
correspond to a cytoplasmic region (Figure 3).

Analysis of Relevant Groups of Proteins
The proteins identified in this study include proteins involved
in important functions. Thirteen proteins belonging to the ATP
binding cassette (ABC) superfamily were identified, seven of
which were classified as ABC transporters using the Pfam server
(Supplementary Table S4). ABC transporters are composed of
two regions that can be organized into one or two polypeptides,
with a highly conserved ABC and a less conserved TMD. The
primary sequence of the seven ABC transporters of G. vaginalis
identified by shaving was analyzed by looking for the typical
phosphate-binding loop (Walker A motif), which contained the
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FIGURE 1 | Percentage representation of the subcellular classification of proteins identified in Gardnerella vaginalis using a shaving proteomic approach, as
determined using the PSORT server. In total, 261 G. vaginalis proteins were identified by shaving and were classified by the PSORT server in the following
categories: lipoprotein, outside, plasmatic membrane, unclassified and cytoplasm.

FIGURE 2 | Representation of G. vaginalis identified proteins for which surface-exposed domains were found. (A) The number of proteins with motifs characteristic
of surface-exposed proteins including LPXTG, lipobox, signal peptide (SP) and transmembrane alpha-helix domain (TMD). (B) SP prediction for the different
secretion system of Gram-positive bacteria. SPs were identified using SignalP 4.1, the PSORT server, the TatP server and the PRED-LIPO server. The lipobox of
lipid-anchored proteins and LPXTG motif of cell wall proteins were identified using the PATTINPROT program. TMDs were identified using the TMHMM, PROTTER
and PSORT servers. There were 80 unique proteins identified with surface-exposed domains in the G. vaginalis surfome.

conserved lysine amino acid (Figure 4). The Walker A motif
GXXGXGKS/T (where X represents any residue) was clearly
observed in this family (Rees et al., 2009). The logo obtained for
the seven G. vaginalis ABC transporters (Figure 4A) was very
similar to the logo of the ABC transporter family (Pfam PF00005)
(Figure 4B).

The 52 G. vaginalis proteins identified by the shaving approach
and annotated as conserved hypothetical proteins, putative cell
surface proteins and hypothetical proteins were analyzed using
Pfam. Of these, 38 were mapped to a Pfam family (Supplementary
Table S5). The protein sequences were also analyzed with
Blastp against the G. vaginalis strain ATCC14019, which has a
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FIGURE 3 | Schematic representation of membrane proteins using the PROTTER server to show-up types of protein architectures. The (upper) panel represents
membrane proteins with more than two predicted transmembrane alpha-helix domains (TMDs). The (lower) panel represents proteins with different topologies, with
and without a signal peptide (SP) or with either the N-terminal or C-terminal exposed on the outer membrane leaflet. The protein_ID is shown under each scheme.
The SP is represented by a white rectangle, and the TMD as a transmembrane helix. For each schematic protein representation, the N-terminal is depicted on the
left and the C-terminal on the right. The identified peptides were matched with the primary sequence, and a circle indicates the matched region.

better-annotated genome. Most of the Pfam family predictions
and Blastp results were consistent. Remarkably, two proteins were
identified as being involved in septum formation (BAQ33018
and BAQ3210), one was identified as being involved in cell
division (BAQ32849) and another two were described as proteins
with an uncharacterized sugar-binding domain (BAQ32771 and
BAQ33606). Two proteins, BAQ33051 and BAQ33368, were
found to be membrane proteins in ATCC14019. Furthermore,
BAQ33427 was classified as a member of proteins with a Listeria-
bacteroides repeat domain found in families of internalins of
Listeria species (Breitsprecher et al., 2014), and BAQ33672 was
classified as having a Rib/alpha-like repeat, which is present in
bacterial surface proteins of group B streptococci (Larsson et al.,
2006).

Surface Location of GroEL and Cna on
the Cell Surface of G. vaginalis
We did not found any specific antibodies against G. vaginalis’s
identified proteins to validate their surface-exposed location
by immunodetection. Therefore, two strategies were designed
to facilitate experimentation in this study: first, the use of
available antibodies against the conserved proteins of other
species homologous to those of G. vaginalis and, secondly,
the production of antibodies against proteins identified in this
surfome.

GroEL, FtsZ, and DnaK proteins were interesting proteins
identified in the G. vaginalis surfome, and antibodies against
the homologous proteins of E. coli were available. These three
proteins were described as cytoplasmic in the bibliography and
using the two servers employed in this work to evaluate protein
subcellular location. At the same time, GroEL and DnaK were
described as moonlighting proteins in other microorganisms (see

section “Discussion”) and FtsZ can be found on the surface due
to its role in septum formation.

The protein sequences of GroEL, FtsZ, and DnaK of E. coli
and the homologous G. vaginalis proteins are 56, 42, and 56%
identical, respectively. Therefore, cellular location on the cell
surface of these non-classically secreted proteins might be tested
in G. vaginalis cells with antibodies against the E. coli proteins.
For FtsZ and DnaK proteins, an ELISA using these antibodies
tested with G. vaginalis total extract did not detect specific signal
(data not shown).

The surface-exposed location of the chaperone GroEL in intact
cells and total protein extracts of G. vaginalis and E. coli was
determined by ELISA and by immunofluorescence (Figure 5).
The accessibility of GroEL in the ELISA was significantly higher
on the cell surface of G. vaginalis compared to that of E. coli,
despite the antibody being specific to E. coli (Figure 5A). The
same result was observed by immunofluorescence, with a more
intense signal found for G. vaginalis cells than E. coli cells
(Figure 5B). The signal was increased meaningfully when the full
protein extracts were tested for both microorganisms, and the
GroEL signal observed for E. coli was significantly higher than
for G. vaginalis.

In contrast, two proteins identified in the surfome were
selected due to the higher number of peptides detected by
mass spectrometry (Table 1) and their low similarity with
other microbial proteins as determined by Blastp analysis. These
proteins are annotated as M protein repeat protein (BAQ32758)
and Cna protein B-type domain (BAQ32792). The genes were
cloned with a Histidine-tag and the proteins expressed and
purified to produce monoclonal antibodies (mAb) against them
to check their subcellular location in G. vaginalis cells. The
expression was made in E. coli, but only Cna purification
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FIGURE 4 | ATP binding cassette (ABC) conserved sequence of the ABC transporters identified in G. vaginalis. (A) The consensus sequence of the seven ABC
transporters identified in the surfome of G. vaginalis ATCC14018 strain, represented using WebLogo. (B) The hidden Markov model (HMM) logo from the ABC
transporter family (Pfam PF00005) is shown. The ABC is shown between the arrows (Walker A motif).

rendered sufficient amounts of the protein to allow mouse
immunization. The M protein expression in E. coli reduced the
growth rate of the bacteria and resulted in a low protein yield.

Monoclonal antibodies against Cna were produced as
indicated in the Section “Materials and Methods.” The best three
mAb (41, 45, and 33) were purified and showed significant
differences in terms of the signal obtained with G. vaginalis
samples compared with the E. coli total extract using ELISA
(Figure 6A). The total protein extract of E. coli was used to
discard any cross-reactivity of the mAb since the Cna protein
was purified from E. coli. Furthermore, the specific signal on the
surface of G. vaginalis was observed by immunofluorescence with
the best mAb chosen using the ELISA results (Figure 6B).

DISCUSSION

In Silico Analysis of the Subcellular
Location of G. vaginalis Identified
Proteins
The cell surface shaving procedure followed by an LC-MS/MS
analysis identified 261 G. vaginalis proteins. To obtain a robust

prediction of the subcellular location of G. vaginalis identified
proteins, they were analyzed using two servers in parallel, PSORT
and Gpos-mPLoc, which was specifically designed for Gram-
positive bacterial proteins (Shen and Chou, 2009).

Only 3 of the 25 identified proteins with more than 10 peptides
(Table 1) were predicted to be in different cell compartments
according to the server used. BAQ33548 was localized in the
plasma membrane using PSORT and in the cytoplasm using
Gpos-mPLoc. Both BAQ32849 and BAQ33018 were localized
in the cytoplasm with PSORT and in the cell membrane
with Gpos-mPLoc (more details in Supplementary Table S2).
In the literature, it is common to find discrepancies between
the in silico-predicted topology and the experimental data
(Rodriguez-Ortega et al., 2006; Lee et al., 2015). We only found
two discrepancies when comparing the characteristic motifs of
surface-exposed proteins predicted using bioinformatics tools
with the mapping of the MS identified peptides on the
primary sequence of the proteins (Supplementary Table S1
and Supplementary Data). This can be explained due to the
poor scores of the surface-exposed motifs predicted, which
do not represent the physiological situation of these proteins.
The discrepancies can be resolved when these proteins or a
homolog have a well-known structure, which helps to discern
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FIGURE 5 | Detection of GroEL on the surface of G. vaginalis and Escherichia coli. (A) ELISA assay is used to detect GroEL on the cell surfaced of G. vaginalis and
E. coli. Total extracts were used as positive controls and BSA represents the background of the antibodies used. Statistically significant differences relative to E. coli
samples were indicated (∗p < 0.05, ∗∗p < 0.01). Each value is presented as the average of two independent experiment results with four replicates. The background
represents the signal without any antibody. (B) Immunofluorescence assay is used to detect GroEL on the cell surface of G. vaginalis and E. coli. Control images
showed the background of the secondary antibody (anti-rabbit-A488 IgG). Cell nuclei were stained with DAPI in all images (blue color). The green line in the bottom
right corner indicates a 5 µm scale.

FIGURE 6 | Detection of Cna location on the surface of G. vaginalis. (A) Analysis of Cna on the surface of G. vaginalis is achieved with ELISA using three customized
monoclonal antibodies (mAb), number 41, 45, and 33. E. coli total extract was used to check the cross-reactivity of the mAb. BSA was used as a negative control in
the ELISA. Statistically significant differences relative to E. coli sample were indicated (∗p < 0.05, ∗∗p < 0.01). Each value is presented as the average of two
independent experiment results with four replicates. (B) The anti-Cna mAb number 41 was checked by immunofluorescence assay. Control images showed the
background of the secondary antibody (anti-mouse-A488 IgG). Cell nuclei were stained with DAPI in all images (blue color). The green line in the bottom right corner
indicates a 5 µm scale.

which part of the protein is exposed to the extracellular
medium.

Interestingly, two of the proteins included in Table 1 were
classified as lipoproteins. Lipoproteins can be secreted or
incorporated into the plasma membrane outer leaflet in Gram-
positive bacteria (Zuckert, 2014). The lipid modification of
lipoproteins served to retain these lipoproteins in the membrane
or cell wall interface; however, a previous study showed that the
lipobox motif can be removed at the conserved cysteine residue,

resulting in the release of the unmodified mature lipoprotein
into the growth medium (Krishnappa et al., 2013). Consistent
with these findings, we did not identify any peptide from the
lipobox domains (Supplementary Data). These regions can also
be protected from trypsin digestion if they are inserted into
the membrane. Furthermore, a surface-associated HtrA protein
was identified, which is known to play a relevant role as a
chaperone and protease, and cleaves several lipoproteins from the
cell surface in Bacillus subtilis (Krishnappa et al., 2013).
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Different protein motifs typical of surface-exposed proteins
were detected in 80 of the 261 identified proteins (SP, LPXTG
PG-anchoring motif, lipobox domain and TMD). Most comprise
TMDs or SPs. Regarding the detected SPs, most are for the
Sec secretion pathway. The SPs identified for the Tat secretion
pathway are typical of proteins that are secreted in a completely
folded state or as cofactors (Song et al., 2015). The lipo-SP
corresponded to the lipoprotein SP of the Gram-positive bacteria
(Bagos et al., 2008). The LPXTG motif was detected in five
of the identified proteins in G. vaginalis. The LPXTG motif
is responsible for the covalent attachment of proteins to the
PG layer by sortase enzymes (Hendrickx et al., 2011). Sortases
are integral membrane proteins responsible for recognizing
and cleaving the carboxyl-terminal sorting signal (LPXTG). In
the comparative genomic analysis of the ATCC14019 strain
of G. vaginalis, 4 sortase enzymes, and 13 LPXTG proteins
were identified (Yeoman et al., 2010). Moreover, four sortase
enzymes have been identified by Blastp in the ATCC14018
genome (BAQ32669, BAQ33004, BAQ33565, and BAQ33653),
which were 100% identical to the corresponding enzymes in the
ATCC14019 genome. However, the identification of these genes
did not ensure their expression under the conditions tested in the
present study. Likewise, the failure to detect more proteins with
the LPXTG motif may be related to their low abundance in the
cell wall and high hydrophobicity.

Non-classical Secreted Proteins or
Moonlighting Proteins
Several cytoplasmic proteins without any predicted
export/retention signals have been identified in the surfome
of different bacteria. These proteins are classified as being
cytoplasmic proteins; however, they are more correctly named
non-classical secreted proteins (Bendtsen et al., 2005). Of the 261
identified proteins, 70% were classified as cytoplasmic, a result
comparable to the findings obtained in relation to other Gram-
positive and negative bacterial surfomes (Olaya-Abril et al.,
2014). Furthermore, some cytoplasmic proteins are described
as moonlighting due to their different functions according
to their subcellular location. Interestingly, a meta-analysis of
many surface proteomics studies reveals novel candidates for
intracellular/surface moonlighting proteins in Gram-positive
and negative bacteria (Wang and Jeffery, 2016). Many of
these proteins, found on the surface of bacteria and classified
as intracellular, are involved in central metabolic pathways
or stress responses if found in the cytoplasm, as this work
attests. We identified several Gardnerella proteins homologous
to moonlighting proteins described in other Gram-positive
microorganisms involved in metabolism, such as enolase
(Eno) (Kainulainen and Korhonen, 2014; Wang et al., 2014),
glyceraldehyde-3-phosphate dehydrogenase (Gap) (Henderson
and Martin, 2011; Wang et al., 2014), phosphoglycerate
mutase (GpmA), inosine 5′-monophosphate dehydrogenase
(IMPDH) (Kainulainen and Korhonen, 2014) and pyruvate
kinase (PyK) (Henderson and Martin, 2011; Kainulainen and
Korhonen, 2014). Also, certain relevant chaperones, such as
DnaK (Kainulainen and Korhonen, 2014; Wang et al., 2014) and

GroEL (Bendtsen et al., 2005; Kainulainen and Korhonen, 2014),
were identified. The co-chaperonin GroES is not described to be
a classical moonlighting protein; however, it forms a cytoplasmic
complex with GroEL, which is a moonlighting protein (Xu et al.,
1997). This finding supports a previous study that identified
GroES and GroEL on the surface of Lactobacillus rhamnosus
using a shaving approach (Espino et al., 2015). GroEL was
described as part of the interactions between microorganisms
and insect (Kupper et al., 2014). The elongation factors Tu
(EF-Tu) (Kainulainen and Korhonen, 2014; Wang et al., 2014)
and G (EF-G) and the protein translocase subunit A (SecA)
(Kainulainen and Korhonen, 2014) were also identified. Notably,
in yeast cells, metabolic proteins, chaperones or stress-related
proteins and elongation factors are also consistently identified
as surface proteins since many are moonlighting proteins, as
recently reported in relation to the opportunistic pathogen
(Gil-Bona et al., 2015, 2017; Marin et al., 2015).

In bacteria, through non-classical secretion, these proteins
can reach the surface of the microorganism or the extracellular
media, developing important roles in virulence, modulating the
host immune response and adhesion to or competition with
other bacteria. This is due to protein’s ability to bind to several
components of the host, such as plasminogen and salivary
mucin, or other bacteria (Dallo et al., 2002; Bendtsen et al.,
2005; Henderson and Martin, 2011; Kainulainen and Korhonen,
2014; Wang et al., 2014; Espino et al., 2015). Curiously, some
moonlighting proteins of Candida albicans also have the ability
to bind plasminogen, which is relevant to infection (Jong et al.,
2003). As previously stated, in-depth analysis based on 22 surface
proteomics studies, elaborated with 10 Gram-negative and 12
Gram-positive microorganisms, was undertaken by Wang and
Jeffery (2016). The authors examine the relevance of bacterial cell
surface in infection and virulence and their study can be applied
in vaccine and biomarker development.

In the in silico analysis presented in this work, of the
17 G. vaginalis surface proteins identified and described as
moonlighting in other microorganisms, 15 were classified as
“inside” and only 2 (Eno and IMPDH) were identified as
“both,” indicating that the bioinformatic tools do not predict
the extracellular location of this type of proteins in most
cases. Interestingly, the two servers (PSORT and Gpos-mPLoc)
classified SecA (BAQ33096) as “inside” and AtpD as “both,”
while according to the Universal Protein Resource database
(Uniprot), these proteins are located in the cell membrane, as
peripheral membrane proteins. SecA is a peripheral component
of the membrane translocon SecYEG, which mediates the general
secretion pathway across the cytoplasmic membrane (Randall
et al., 2005), which explains their detection using our shaving
approach. Another discrepancy of the predicted locations was
observed for FtsY (BAQ33899), as although it was classified as
“outside,” it is also known to be involved in protein secretion
across the plasma membrane and located in both the cytoplasm
and the plasma membrane inner leaflet (Angelini et al., 2005).
FtsZ and FtsE were classified as located in the cytoplasm, and both
proteins were involved in septum formation and assembling the
cytoplasmic membrane, which may explain why these proteins
were found to be surface-exposed (Huang et al., 2013). During
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cell division, due to septum formation and remodeling of the cell
wall, some of the cytoplasm components are released into the
medium and exposed on the cell surface.

The ABC Superfamily,
Peptidoglycan-Related Proteins and
Hypothetical Proteins
Seven proteins identified in this study belong to the ATP binding
cassette (ABC) superfamily. The analysis of their sequence
showed that they include a typical phosphate-binding loop
(Walker A motif). The strong similarity between the logo
obtained for the G. vaginalis ABC transporters and the logo of
the ABC transporter family (Pfam PF00005) demonstrates that
this domain is highly conserved in G. vaginalis.

A different group of relevant membrane-associated proteins
are the penicillin-binding proteins. Among the G. vaginalis
proteins identified, two penicillin-binding proteins were
identified (BAQ32970 and BAQ32781). In Gram-positive
microorganisms, these proteins can selectively interact and
non-covalently bind to penicillin or any other antibiotic that
contains a condensed beta-lactam thiazolidine ring. Therefore,
these proteins play an important role in pathogenesis due to
their contribution to the development of antibiotic resistance.
Interestingly, four proteins involved in PG biosynthesis, essential
for the integrity of the cell wall, were also identified: DdI, MurA,
MurD, and MurC.

In addition, the in silico analysis of the hypothetical proteins
identified in this work revealed noteworthy results as some
of the proteins have typical roles or domains found in cell-
wall associated proteins. There are proteins involved in cell
division and septum formation, proteins with an uncharacterized
sugar-binding domain, with a Listeria-bacteroides domain of
internalins and having a Rib/alpha-like repeat. These analyses
support the location of the G. vaginalis identified proteins on the
surface as found using the shaving proteomic approach.

Validation of G. vaginalis Surface
Proteins
The data presented above supports our ability to identify many
relevant G. vaginalis surface proteins, even though most are
classified as located inside the cell by the bioinformatic tools.
However, as in any other proteomic analysis, the validation assays
are of outstanding interest. Also, it must be considered that,
although cell lysis controls were introduced, a very low level of
contamination with intracellular proteins remains possible. For
these reasons, and despite of the lack of antibodies, the surface
localization of the GroEL chaperone and Cna were tested using
immunodetection. Surprisingly, using the antibodies anti GroEL
from E. coli, the signal intensities obtained with G. vaginalis
were higher than with E. coli cells. The good recognition of
G. vaginalis GroEL at the cell surface may be due to G. vaginalis
being a Gram-positive bacterium with a thin PG layer as its
cell envelope is more permeable for protein secretion and/or the
accessibility of antibodies. GroEL has been found on the surface
of several Gram-positive microorganisms, including Clostridium
difficile (Hennequin et al., 2001), Mycobacterium tuberculosis

(DnaK was also identified) (Hickey et al., 2009), Bacillus anthracis
(Somani et al., 2016) and Lactobacillus rhamnosus as stated
above (Espino et al., 2015). Furthermore, GroEL and DnaK
were found as part of the cell wall and secreted in Streptococcus
pyogenes (Cole et al., 2005). For the immunodetection of Cna,
1 of the 25 more abundant proteins detected by shaving at
the G. vaginalis cell surface, mAb were generated. The Cna of
Staphylococcus aureus is a collagen-binding surface protein with
a B-type domain. Cna has a collagen-binding domain that is
necessary and sufficient for S. aureus cells to adhere to cartilage
(Patti et al., 1994). Cna is also able to attach to complement
system protein C1q and to the extracellular matrix protein
laminin (Valotteau et al., 2017). For these reasons, the generated
antibodies are a useful tool for studying the putative role of
G. vaginalis Cna in pathogenesis, and they would be also useful
in the development of future diagnostic immunoassays for BV
in combination with antibodies against other of the anaerobes
present in this disorder. Immunochromatography assays are easy
and rapid (approximately 15 min) and they would be alternative
methods to other diagnostic assays as qPCR (Kikuta et al.,
2008). In some cases, they show up less sensitivity and specificity
than qPCR; but, they represent an interesting alternative that
do not require equipment or experienced personal. Thus, a
new immunochromatography assay could be developed not
specifically to be used in hospitals but as a point of care diagnostic
test also in developing countries.

CONCLUSION

This study represents the first proteomic approach adopted to
investigate the surface of G. vaginalis, one of the main etiological
agents responsible for BV. Cell surface trypsin shaving and
LC-MS/MS analysis allowed the identification of 261 surface-
associated proteins of G. vaginalis. Bioinformatics tools were used
to provide a comprehensive analysis of the motifs characteristic of
surface-exposed proteins, and 80 G. vaginalis proteins were found
to have these motifs. Among these, 36 proteins had a SP motif, 17
had a lipobox domain, 5 proteins had a LPXTG motif, 56 proteins
had a TMD, 7 proteins had 2 TMDs and 3 proteins had 6 or more
TMDs. Furthermore, close to one third of the identified proteins
were classified as surface-exposed proteins by the PSORT server.
Subcellular location was also analyzed using the Gpos-mPLoc
server, which validated the classification of half of the surface-
exposed proteins found by the PSORT server. Moreover, the
surface location of GroEL and Cna was validated by ELISA and
immunofluorescence assays. mAb against G. vaginalis Cna could
be a useful tool to enable the identification of this microorganism
in biological samples and for further studies of G. vaginalis,
considering the narrow availability of specific antibodies. To
conclude, these results contribute to our understanding of this
fastidious and poorly understood microorganism.
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