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In eukaryotic genomes, DNA methylation is an important type of epigenetic modification

that plays crucial roles in many biological processes. To investigate the impact of

a hypovirus infection on the methylome of Cryphonectria parasitica, the chestnut

blight fungus, whole-genome bisulfite sequencing (WGBS) was employed to generate

single-base resolution methylomes of the fungus with/without hypovirus infection. The

results showed that hypovirus infection alters methylation in all three contexts (CG,

CHG, and CHH), especially in gene promoters. A total of 600 differentially methylated

regions (DMRs) were identified, of which 144 could be annotated to functional genes.

RNA-seq analysis revealed that DNAmethylation in promoter is negatively correlated with

gene expression. Among DMRs, four genes were shown to be involved in conidiation,

orange pigment production, and virulence. Taken together, our DNAmethylomes analysis

provide valuable insights into the understanding of the relationship between DNA

methylation and hypovirus infection, as well as phenotypic traits in C. parasitica.

Keywords: Cryphonectria parasitica, hypovirus, methylome, RNA-Seq, virulence

INTRODUCTION

In eukaryotes, DNA methylation is an important epigenetic modification mechanism that is
involved in many cellular processes such as genomic imprinting, gene expression regulation,
cellular differentiation, genome integrity, and disease development (Bird, 2002; Suzuki and Bird,
2008; Conerly and Grady, 2010; Kulis and Esteller, 2010). Recently, advances in whole genome
bisulfite sequencing (WGBS) have generated single-base resolution methylomes of more than
20 eukaryotic organisms, including invertebrates, vertebrates, and plants. In these studies, many
elaborate methylation patterns and functional roles of DNAmethylation have been revealed (Lister
et al., 2008, 2009; Zemach et al., 2010; Zhong et al., 2013; Wang X. et al., 2014).

Characteristics of DNA methylation have also been reported on fungi and it was found that
the degree, distribution, and function of DNA methylation varied greatly among fungal species
(Zemach et al., 2010). For example, the Neurospora genome is methylated by 1.5%, whereas DNA
methylation inAspergillus flavus is negligible (Foss et al., 1993; Liu et al., 2012). InNeurospora,DNA
methylation is mainly regarded as a genome defense mechanism to silence transposable elements
and DNA repeats (Martienssen and Colot, 2001; Selker et al., 2003). In Candida albicans, DNA
methylation takes place predominantly in structural genes and regulates transcriptional activity,
with repeat regions largely devoid of methylation (Mishra et al., 2011). In Magnaporthe oryzae,
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DNA methylation serves as a dynamic epigenetic modification
functioning in genome defense and fungal development (Jeon
et al., 2015) and DNA methylation was shown to be a dynamic
process during sexual development in Cordyceps militaris (Wang
et al., 2015). However, relationship between DNA methylation
and virulence regulation has not been reported in fungi.

Cryphonectria parasitica is the causal agent of chestnut blight
disease and hypovirulence caused by hypovirus infection has
been used to probe fungal pathogenicity/virulence regulation
(Dawe and Nuss, 2001). Wild-type C. parasitica strain EP155
can incite big cankers on chestnut stems and is with orange
pigmentation and normal filamentous hyphae on PDA plate,
produces abundant asexual conidial spores and is able to
produce sexual spores through mating with opposite sexual
strain. Hypovirus infection profoundly reduces virulence and
causes pleiotropic effects in multiple traits, including reduced
colony growth rate and pigmentation, diminished asexual spore
production, and suppression of female sterility to its host
fungus (Nuss, 2005).Transcriptional analysis based on EST
(Dawe et al., 2003; Shang et al., 2008) and cDNA microarray
(Allen et al., 2003) revealed significant impacts of hypovirus
infection on the host gene expression. Recently, comparative
proteomic analysis also showed selective regulation of host
protein expression by hypovirus (Wang et al., 2013) and
two DNA methyltransferases were found to be up-regulated
significantly in the hypovirus-infected strain EP155/CHV1-
EP713 (Wang J. et al., 2014). Deletion of sahh, a hypovirus-
regulated gene encoding S-adenosyl-homocysteine hydrolase,
resulted in the elevated accumulation of intracellular SAM (a
methyl donor), and a significant reduction in virulence (Liao
et al., 2012). These findings imply that hypovirus may perturb the
methylation pattern of the fungus to modulate fungal virulence
and other important traits.

In this study, the impact of hypoviral infection on DNA
methylation in C. parasitica was investigated by generating and
comparing two DNA methylomes at a single-base resolution
using BS-seq and the link between DNA methylation and
gene expression was explored via transcriptional profiling.
Furthermore, the roles of several differentially methylated
regions (DMRs) associated genes were functionally examined.
Our results provide new insights into the relationship between
hypovirulence and DNA methylation.

MATERIALS AND METHODS

Fungal Strains and Culturing Conditions
The C. parasitica strains used in this study were the wild-type
strain EP155 (ATCC 38755), its isogenic strain EP155/CHV1-
EP713 (synthetic hypovirus CHV1-EP713 infected EP155) (Chen
et al., 1994), and a highly efficient homologous recombination
strain KU80 (1ku80 of EP155,) (Lan et al., 2008). The fungal
strains were maintained on potato dextrose agar (PDA) at 24–
26◦C with a 12 h light (1,500 1x) and 12 h dark cycle (Hillman
et al., 1990). Cultures used for DNA and RNA extraction were
grown on PDA medium for 7 days. Protoplasts of C. parasitica
stain KU80 were prepared and transformed as described
previously, with hygromycin (40µg/mL) complemented in the

medium for transformant selection (Churchill et al., 1990; Chen
et al., 2011). For morphological characterization, strains were
inoculated onto PDA plates and maintained for up to 14 days to
allow sporulation.

BS-seq Library Construction and
High-Throughput Sequencing
Total genomic DNA were extracted using the method previously
described (Churchill et al., 1990). For library construction, DNA
from two independently cultured mycelium samples of a strain
was mixed equally and a total amount of 5.2 microgram genomic
DNA spiked with 26 ng lambda DNA were fragmented by
sonication to 200–300 bp with Covaris S220 (Covaris, Woburn
MA, USA), followed by end repair, adenylation, and ligation
of cytosine-methylated sequencing adapters as manufacturer’s
instructions. The bisulfite conversion was performed using an
EZ DNA Methylation-GoldTM kit (Zymo Research). Following
PCR amplification, amplicons were quantified and insert sizes
were confirmed. The library preparations were sequenced using
an Illumina HiSeq 2000/2500 platform, with raw sequencing data
processed within the standard Illumina pipeline according to
previously reported methods (Jeon et al., 2015).

Read Processing and Alignment
Raw reads from high-throughput sequencing were first
preprocessed and quality control was assessed using in-house
Perl scripts. Reads with adaptor sequences, low-quality, or those
containing more than 10% Ns (unknown bases) were removed
to obtain high-quality clean reads. The obtained bisulfite-treated
reads were then aligned to the C. parasitica genome (http://
genome.jgi-psf.org/Crypa2/Crypa2.home.html) using Bismark
software v 0.12.5 (Krueger and Andrews, 2011). First, the
reference genome was transformed into a bisulfite-converted
version (C-to-T and G-to-A converted), with sequence reads
also transformed. The similarly converted genomic versions
were then aligned in a directional manner. Two alignment
processes (original top and bottom strands) were employed
and the obtained unique best alignment was then compared
to the normal genomic sequence, with the methylation state
of all cytosine positions in the read inferred. The uniquely
mapped reads were also used to compute the sequencing depth
and coverage. The sodium bisulfite non-conversion rate was
calculated as the percentage of cytosines sequenced at cytosine
reference positions in the lambda genome as previously reported
(Hao et al., 2016).

Identification of Differentially Methylated
Regions
The swDMR software (https://sourceforge.net/projects/swdmr/)
which utilizes a sliding-window approach was used to identify
differentially methylated regions (DMRs) as previously described
(Hao et al., 2016). Only cytosines with a depth of at least four
in all libraries were used. A window size of 1000 bp with a step
length of 100 bp was used in this analysis. For each window,
the methylation level at each cytosine was analyzed for each
of the two samples. A Fisher test was then performed for each
window. The resulting P-values were corrected for multiple tests
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with a false discovery rate (FDR). Regions with a corrected P-
value <0.05 and changes of methylation level of at least two-fold
were identified as DMRs.

RNA-Seq Analysis
Total RNAs extracted from two independently cultured
mycelium samples of a strain was mixed in equal amount for
cDNA library construction using NEBNext R© UltraTM RNA
Library Prep Kit (NEB, USA). The libraries were sequenced
with a Illumina HiSeq platform following the manufacturer’s
instructions. Prior to mapping reads to the reference database,
raw reads were processed to remove adaptor sequence, low
quality reads and reads containing ploy-N. All clean reads were
aligned to the C. parasitica reference genome using TopHat
v2.0.12. HTSeq v0.6.1 was applied to count the reads numbers
mapped to each gene, and the FPKM (expected number of
Fragments Per Kilobase of transcript sequence per Millions
mapped reads) values were used for quantification of gene
expression level (Mortazavi et al., 2008). Prior to differential
gene expression identification, the read counts for each library
were adjusted using edgeR program package through one scaling
normalized factor. We used the DEGseq R package (1.20.0) to
analyze the differential expression genes (DEGs) between EP155
and EP155/CHV1-EP713. The P-values were adjusted by the
Benjamini and Hochberg’s method (Anders and Huber, 2010).
We used a corrected P-value of ≤0.005 and log2 (fold change)
≥1 as the criteria to judge the significance of gene expression
difference.

Confirmation of BS-seq and RNA-seq
Results
DNA sample of 1 µg was bisulfite-converted as previously
reported (Espada et al., 2014) and primers were designed
to amplify target DMRs (Table S1). Purified amplicons were
cloned into pMD-18T vectors (Takara) and a minimum of ten
independent clones were analyzed for each target region. The
relative accumulation of gene transcripts was evaluated using
quantitative real-time RT-PCR (Lin et al., 2007), with primers
specific for the targeting genes (Table S1) and 18S rRNAwas used
as a normalization reference. For each of the examined genes, 3
independent replicates were performed.

Construction of Gene Deletion Mutants
Targeted gene deletion was performed by homologous
recombination, using a hygromycin B resistance (hph) cassette
to replace the targeted gene in C. parasitica as described
previously (Lan et al., 2008). In the case of Tpk gene, the
990-bp 5′ and 890-bp 3′ flanking regions were amplified with
the Tpk-left and Tpk-right primers using total DNA from
EP155 as template, respectively. Primer left-reverse contains 26
nucleotides identical to the 5′-end of the hph cassette, and primer
right-forward contains 26 nucleotides identical to the 3′-end of
the hph cassette. The hph cassette was amplified using plasmid
pCPXHY2 as template with primers Hyg-forward/Hyg-reverse.
The 990-bp 5′ flanks region, the 2,146-bp hph cassette and the
890-bp 3′ flanks region were joined to form a 4.0-kb cassette
by fusion PCR. After verification by agarose gel electrophoresis

and gel extraction, the PCR product was resuspended in
TE buffer to a final concentration of 1 µg/µL and used to
transform KU80 protoplasts as described previously. Putative
Tpk disruptants were identified by PCR with primers Tpk-all,
and purified to nuclear homogeneity by single-spore isolation.
Confirmed transformants were designated as 1Tpk strains. The
detailed methods used to generate mutants 1Abh, 1Met, 1Stk
generation are similar to that described above. Gene cloning and
PCR analysis (detailed primer sequences are listed in Table S1)
were performed according to Sambrook and Russell (2001).

Pathogenicity Assay
Fungal pathogenicity was analyzed using dormant stems of
Chinese chestnut (Castanea mollissima) according to Shi et al.
(2014). For each fungal strain, 3 replicates were performed. After
inoculation, the stems were incubated in a plastic bag at 25◦C
to allow lesion development. Canker sizes were measured and
analyzed 25 days after inoculation.

RESULTS

Hypovirus Infection Changes the DNA
Methylation Profile of the Fungal Genome
To generate a genome-wide DNA methylation map of
C. parasitica, DNA was extracted from the mycelia and
high throughput whole-genome bisulfite sequencing (WGBS)
was performed. With unmethylated lambda DNA as a reference
to calculate the conversion rate (99.97% for both samples),
13,502,819 and 13,948,110 raw reads were obtained for the
wild type strain EP155 and its isogenic virus-infected strain
EP155/CHV1-EP713, respectively. After trimming off low-
quality reads and retaining unique mapped reads, 7,183,382
and 8,586,367 reads were used for further analysis. The read
depths ranged from 16.21× to 19.38× per base for each DNA
strand, with more than 96% of cytosine covered by at least five
sequencing reads (Table S2).

In virus-free strain EP155, 1.02% of methylation (0.04% at
CG, 1.20% at CHG, and 1.30% at CHH sites) at the genome-
wide scale was detected based on WGBS data, compared with
1.14% (0.04% at CG, 1.38% at CHG, 1.44% at CHH sites)
for virus-infected EP155/CHV1-EP713 (Table 1). Although no
significant differences were observed in overall methylcytosine
(mC) percentages, many variations were found in the distribution
of mC between the two genomes (Figure 1), indicating that

TABLE 1 | DNA methylation levels in EP155 and EP155/CHV1-EP713.

Sample C_rate (%) CG_rate (%) CHG_rate* (%) CHH_rate*

(%)

EP155 1.02 0.04 1.20 1.30

EP155/CHV1-

EP713

1.14 0.04 1.38 1.44

*H = A, T, or C.
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FIGURE 1 | Distribution of DNA methylation in the genome of C. parasitica. The identified methylcytosines densities on scaffold 2 and scaffold 4 are shown. Arrows

indicate representative regions showing dynamic changes in DNA methylation between EP155 and EP155/CHV1-EP713.

DNA methylation of C. parasitica were changed in response to
hypovirus infection.

When examining mC distribution, higher methylation levels
were seen at mCHH and mCHG sites relative to mCG
(Figure 2A). Moreover, methylated sites were found to be
concentrated in the non-CG sites, especially mCHH (Figure 2B),
with basic group HH or mCHH tending to comprise two-fold
more A or T (Figure 2C). Additionally, the mC distribution was
noted to be in high mC percentage in scaffolds 12–21 and 24–25
across C. parasitica chromosomes (Figure S1).

By calculating and comparing DNA methylation levels at
regions of promoters, untranslated regions (UTRs), exons and
introns, it was revealed that the methylation levels in promoters
were significantly higher than in gene-body regions (UTRs, exons
and introns); in the gene body, the methylation levels in exons
were higher than those in introns, 5′- and 3′-UTRs. Furthermore,
the methylation levels of the three C contexts in EP155/CHV1-
EP713 were always higher than those in EP155, especially in
promoters (Figure 3).

To investigate the relation of DNA methylation pattern and
hypovirus infection, differentially methylated regions (DMRs) of
EP155 and EP155/CHV1-EP713 were searched and a total of
600 DMRs were identified (Table S3). Among the 144 DMRs
with gene annotation, 89 (61.8%) were located in promoters and
17 (11.8%) in gene bodies (Table 2 and Table S4). Moreover,
79 hypermethylated genes were identified in EP155/CHV1-
EP713 and 65 in EP155, indicating that hypovirus infection
changes DNA methylation level of its host. To obtain gene
expression profiles for the two strains, 27,560,950 and 27,003,506
raw reads were generated for EP155 and EP155/CHV1-EP713,
respectively, by RNA-seq and 24,060,546 and 11,727,947 reads,
respectively, were uniquely mapped to the C. parasitica reference
genome (Table S5). A total of 2,717 (1207 genes up- and 1510
down-regulated) differentially expressed genes were found in

EP155/CHV1-EP713, as compared with EP155 (Table S6). Gene
Ontology enrichment analysis unveiled that the differentially
expressed genes were markedly enriched in oxidoreductase
activity and catalytic activity domains and KEGG pathway
analysis demonstrated that metabolic pathways were enriched
significantly (Figure S2).

To validate the accuracy of the WGBS, bisulfite-
PCR/sequencing were performed for three randomly selected
DMRs in both EP155 and EP155/CHV1-EP713. As shown in
Figure S3, results of bisulfite-PCR matched well with those of
WGBS.

Relationship Between DNA Methylation
and Gene Expression
We evaluated the impacts of C. parasitica DNA methylation on
gene expression via RNA-seq. RNA-seq results indicated that
low-expression genes (bottom one-third) had significantly higher
methylation levels in their promoters than high-expression genes
(top one-third), suggesting that DNA methylation in promoter
has negative correlation with gene expression. Meanwhile,
methylation level in gene body seemed not to have a clear
correlation with gene expression (Figure 4). The accuracy of
the RNA-Seq results were validated by qRT-PCR in which six
randomly selected DMR-associated genes revealed by RNA-Seq
were examined (Figure S4).

Functional Analysis of DMR-Associated
Genes
DNA methylation is generally considered as a silencing
epigenetic modification and thus genes down-regulated at
transcriptional level after methylation would likely be a result
of hypermethylation. By comparison of methylation patterns
and transcriptomes, four down-regulated genes were identified

Frontiers in Microbiology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 1026

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Li et al. Methylome Analysis in Cryphonectria parasitica

FIGURE 2 | The global pattern of EP155 and EP155/CHV1-EP713 DNA methylomes. (A) Distribution of mCs in each sequence context (H = A, T, or C) in EP155

(Left) and EP155/CHV1-EP713 (Right). Methylation levels on the x-axis are defined as the percentage of reads showing mC cytosine at a reference cytosine site. The

y-axis shows the fraction of total mCs calculated within bins of 10%. (B) The percentage and absolute number of mCs identified in EP155 (left) and

EP155/CHV1-EP713 (right) in three sequence contexts. (C) Logo plots of the sequences proximal to sites of non-CG DNA methylation in each sequence context in

EP155 (left) and EP155/CHV1-EP713 (right).

among 65 hypermethylated DMRs in EP155, and five down-
regulated genes were identified among 79 hypermethylated
DMRs in EP155/CHV1-EP713 (Figure 5). Among these
nine genes, five were annotated to have clear function:
tyrosine protein kinase (Tpk), alpha/beta hydrolase (Abh),
S-adenosyl-L-methionine-dependent methyltransferase (Met),
serine/threonine protein kinase (Stk), and chromodomain-
helicase DNA-binding protein (Chd) (Table 3). To further
investigate the relationship between DNA methylation and
gene expression, we tried to disrupt these genes one by one
by gene replacement. A total of 8, 6, 10, and 5 of verified

knockout mutants for genes Tpk, Abh, Met, and Stk were
obtained and representative null mutants were subjected to
phenotypic characterization. When cultured on PDA plates at
24–26◦C for 14 days, all mutants were indistinguishable in the
colony growth rate from the wild-type strain EP155 and original
strain KU80. Furthermore, no obvious difference in the hypha
morphology was observed between the mutants, EP155, and
KU80 (Figure S5). While mutants 1Tpk, 1Abh and 1Met were
all with orange pigment,1Stk strains was almost white in colony.
All mutants were impaired in sporulation, and 1Stk failed to
produce any spores (Figure 6).
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The pathogenicity of four genes deletion mutants was further
analyzed on dormant chestnut stems. As shown in Figure 7, the
wild-type strain EP155 and KU80 were highly virulent, whereas

FIGURE 3 | Density of mCs in different genomic features in EP155 and

EP155/CHV1-EP713. The y- axis indicates the mCs densities for each

element, with the genomic regions listed on the x-axis, which include the

promoter (2,000 bp upstream of the transcriptional start sites), 5′UTR, exon,

intron, and 3′UTR.

TABLE 2 | Distribution of DMRs in EP155 and EP155/CHV1-EP713.

Total Promoter Gene body Promoter and

Gene body

Total 144 89 17 38

Hypera 79 42 5 32

Hypob 65 47 12 6

aHypermethylation in EP155/CHV1-EP713.
bHypomethylation in EP155/CHV1-EP713.

the hypovirus-infected strain EP155/CHV1-EP713 produced
much smaller cankers. Compared with EP155 and KU80, 1Abh
and 1Stk showed no significant change in virulence, while 1Tpk
and 1Met were attenuated in virulence with canker size about
1/3-1/2 of the wild-type strain. These results indicate that Tpk
and Met genes contribute to the virulence of C. parasitica, but
not Abh and Stk.

DISCUSSION

Toward elucidation of mechanism of hypovirulence by a
hypovirus, three main cellular processes, signal transduction
(Nuss, 1996), vesicular secretory pathways (Kazmierczak et al.,
2012; Wang et al., 2013, 2016) and primary metabolism (Allen
et al., 2003; Dawe et al., 2009) have been shown to be perturbed
by hypovirus infection. Consistent with these studies, RNA
profiling in this study showed significant effects of hypovirus
infection on the expression of host genes which function in
catalytic activity and metabolic pathways (Figure S2). It has been
reported that the metabolic state of the cell can affect DNA
methylation through a variety of mechanisms: (i) the expression
or activity of the enzymes involved in cytosine methylation can
be affected by metabolic signaling; (ii) metabolites can modulate
DNA methylation by influencing the function/localization of
proteins that recruit or regulate DNA-modifying enzymes; (iii)
cellular metabolites serve as the substrates and cofactors for
DNA-modifying enzymes, and alterations of these metabolite
levels can in turn result in global changes of DNA methylation
patterns (Sharma and Rando, 2017). Therefore, we propose that
hypovirus may perturb the DNA methylation pattern of its host
through regulation of the metabolic state of C. parasitica.

While the DNA methylation level is higher in plants and
mammals, fungi generally have lower level of methylation,
ranging from negligible to just barely detectable (Lister et al.,
2008, 2009; Liu et al., 2012; Li et al., 2017). DNA methylation in
C. parasitica was determined to be at level of 1.02% (methylated
cytosines) in the wild-type strain EP155 and 1.14% in the

FIGURE 4 | Relationship between DNA methylation and gene expression in C. parasitica. (A) The methylation level trend (y- axis) of three different gene clusters

(Genes were classified into three categories based on expression levels: high, medium, and low expression, from the bottom one-third to the top one-third) in genomic

regions (x-axis) in EP155. (B) The methylation level trend (y- axis) of three different gene clusters in genomic regions (x-axis) in EP155/CHV1-EP713.
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FIGURE 5 | Down-regulated genes and hypermethylated DMR-associated genes in C. parasitica. The number of down-regulated genes and hypermethylated

DMR-associated genes in (A) EP155 and (B) EP155/CHV1-EP713.

TABLE 3 | Down-regulated and hypermethylated DMR-associated genes in EP155 and EP155/CHV1-EP713.

Gene_id DMR location Annotation Accession number

EP155

estExt_Genewise1Plus.C_20119 Promoter Tyrosine protein kinase 286354

Crypa1.e_gw1.18.38.1 Promoter Alpha/beta hydrolase 53336

Crypa1.fgenesh1_pg.C_scaffold_14000121 Promoter Hypothetical protein 75832

fgenesh1_kg.7_#_296_#_CEST_15_H_03 Promoter Hypothetical protein 323714

EP155/CHV1-EP713

fgenesh1_pg.5_#_525 Promoter S-adenosyl-L-methionine-dependent methyltransferase 330939

e_gw1.2.2145.1 Promoter Serine/threonine protein kinase 251174

Crypa1.fgenesh1_pg.C_scaffold_2000113 Promoter Chromodomain-helicase DNA-binding protein 67838

Crypa1.fgenesh1_pg.C_scaffold_15000088 Promoter Hypothetical protein 75956

Crypa1.estExt_fgenesh1_pg.C_120009 Promoter Hypothetical protein 109204

hypovirus-infected strain EP155/CHV1-EP713 (Table 1) in this
study, consistent with the methylation levels reported for other
fungi.

Earlier studies suggested that infection by Epstein-Barr
virus induces widespread demethylation of the host genome
(Hansen et al., 2014) and human herpesvirus 6B induces
hypomethylation on chromosome 17p13.3 (Engdahl et al.,
2017), showing a complex epigenetic modification effects upon
viral infection. Although global methylation levels were not
significantly different between EP155 and EP155/CHV1-EP713,
clear alterations in methylation pattern were identified in
the genome of C. parasitica after viral infection (Figure 1).
Furthermore, DNA methylation levels in the promoters and
gene-body regions were generally higher in EP155/CHV1-EP713
than in EP155, suggesting that hypovirus infection may affect a
basal enzymatic activity for methylation.

Among the 600 DMRs identified in C. parasitica, more than
three quarters were located in the intergenic regions, consistent
with that observed in C. militaris (Wang et al., 2015) and soybean
(Song et al., 2013), but in sharp contrast with Arabidopsis and
tomato, in which the DMR enrichment was found to localize in
genic regions (Becker et al., 2011; Zhong et al., 2013).

DNA methylation is generally considered as a silencing
epigenetic modification (Robertson, 2005). However, recent
studies suggest that the relationship between DNA methylation
and gene transcription is far more complicated than previously
reported (Jones, 2012). In this study, RNA-Seq revealed that

methylation in promoter negatively correlated with transcript
abundance of a gene in general, while methylation in gene
body did not have a clear correlation (Figures 4, 5), similar
to the phenomena previously observed in rice, Arabidopsis and
C. militaris (Vaughn et al., 2007; Li et al., 2012; Wang et al.,
2015). It is speculated that gene expression was regulated by
DNA methylation, chromatin modification and genetic changes
in cis- or trans-regulators.(Li et al., 2012).

By loss-of-function analysis, we demonstrated that some
of the DMR-associated genes were functionally important to
the fungal sporulation, orange pigmentation, and/or virulence
(Figures 6, 7). These genes are predicted to encode protein
kinases, alpha/beta hydrolase, and methyltransferase and they
were all down-regulated at transcriptional level after methylation
(Table 3). Relevant to our findings, previous studies have
suggested that signal transduction components may be perturbed
by hypovirus infection to induce hypovirulence (Turina and
Rostagno, 2007). Several of these genes constitute the G-
protein signaling cascades while others function in mitogen-
activated protein kinase (MAPK) pathways (Rostagno et al.,
2010). MAPKs of Ser/Thr kinases have been shown to be
required for fungal growth, development, and pathogenicity
(Park et al., 2012). In the present study, we demonstrated
that hypovirus infection resulted in hypermethylation and
down-regulation of a Ser/Thr protein kinase gene (Stk),
and found that the methylated gene Stk was essential for
sporulation and orange pigmentation. This is in consistent
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FIGURE 6 | Phenotypes of four DMR-associated gene deletion mutants. (A) Colonies on PDA plates at day 14 post-inoculation. All mutants were indistinguishable in

the colony growth rate from EP155 and KU80. While mutants 1Tpk, 1Abh and 1Met were all with orange pigment, 1Stk strains was almost white in colony.

(B) Sporulation characteritics of the indicated strains. Asterisk indicates statistical significance relative to EP155 (P < 0.01; t-test). All mutants were impaired in

sporulation, and 1Stk failed to produce any spores although the culturing time was extended to 20 days.

FIGURE 7 | Pathogenicity assay of the indicated strains on Chinese chestnut stems. (A) Dormant Chinese chestnut (Castanea mollissima) stems were inoculated and

maintained at 25◦C. The cankers were measured and photographed at day 25 post-inoculation. (B) Canker size measurements of the tested strains. The assays were

performed in triplicate for each strain, with an asterisk indicating a statistical significance relative to EP155 (P < 0.01; t-test).

with the observation that disruption of cpmk1 and cpmk2,
which encode MAPKs of C. parasitica, result in reduced
pigmentation and conidiation (Park et al., 2004; Choi et al.,
2005). Our results indicate that hypovirus may change fungal

phenotypic traits by selectively regulating DNA methylation and
transcription of genes. Further analysis of DNA methylation
of more protein kinase genes and testing the interaction
of methylation and gene expression will help to reveal the
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precise mechanism by which hypovirus regulates host signal
transduction pathways.

Tyrosine protein kinases (TPKs) play a crucial role in
signal transduction and also in cell growth, differentiation,
death and a series of cellular processes in animals. Mutations
of TPKs can cause various human diseases, such as cancer
and immune diseases (Jiao et al., 2018). It is reported
that fungi lack orthologs of animal TPK, but they have a
specific lineage of protein kinases closely related to TPKs.
(Zhao et al., 2014). To date, their potential roles in fungi
are still largely unknown. Our results showed that Tpk of
C. parasitica functions in the regulation of virulence and
spore production. These findings provide new insights into the
functional role of TPKs in plant pathogenic fungi, although the
true tyrosine kinase activity of Tpk gene product remains to be
determined.

It has been reported that DNA methyltransferase MoDIM-2
functions in conidial production and appressorium formation
by regulation of DNA methylation at transcriptional level in
the rice blast fungus. However, MoDIM-2 is dispensable for
pathogenicity (Jeon et al., 2015). As shown in this work,
an SAM-dependent methyltransferase (Met) is required for
sporulation and virulence in C. parasitica, and its DNA
methylation and gene expression level changed significantly in
response to hypovirus infection. Therefore, it is speculated that
hypovirus infection enhances DNA methylation and suppresses
gene expression of the methyltransferase, leading to reduced
fungal pathogenicity. Whether and how this SAM-dependent
methyltransferase functions in fungal methylation, however,
needs to be investigated further.

Taken together, the high-resolution DNA methylation maps
for C. parasitica and the integrated analysis of epigenomic and
transcriptomic data in this study shed light to the relationship
between DNA methylation and viral perturbation of fungal
epigenetics, laying a new ground for future studies.
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