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The complexity of the pathogenesis of inflammatory bowel disease (ulcerative colitis
and Crohn’s disease) has led to the quest of empirically drug therapies, combining
immunosuppressant agents, biological therapy and modulators of the microbiota.
Helminth parasites have been proposed as an alternative treatment of these diseases
based on the hygiene hypothesis, but ethical and medical problems arise. Recent
reports have proved the utility of parasite materials, mainly excretory/secretory products
as therapeutic agents. The identification of extracellular vesicles on those secreted
products opens a new field of investigation, since they exert potent immunomodulating
effects. To assess the effect of extracellular vesicles produced by helminth parasites
to treat ulcerative colitis, we have analyzed whether extracellular vesicles produced by
the parasitic helminth Fasciola hepatica can prevent colitis induced by chemical agents
in a mouse model. Adult parasites were cultured in vitro and secreted extracellular
vesicles were purified and used for immunizing both wild type C57BL/6 and RAG1−/−

mice. Control and immunized mice groups were treated with dextran sulfate sodium
7 days after last immunization to promote experimental colitis. The severity of colitis
was assessed by disease activity index and histopathological scores. Mucosal cytokine
expression was evaluated by ELISA. The activation of NF-kB, COX-2, and MAPK were
evaluated by immunoblotting. Administration of extracellular vesicles from F. hepatica
ameliorates the pathological symptoms reducing the amount of pro-inflammatory
cytokines and interfering with both MAPK and NF-kB pathways. Interestingly, the
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observed effects do not seem to be mediated by T-cells. Our results indicate that
extracellular vesicles from parasitic helminths can modulate immune responses in
dextran sulfate sodium (DSS)-induced colitis, exerting a protective effect that should
be mediated by other cells distinct from B- and T-lymphocytes.

Keywords: inflammatory bowel disease, DSS-ulcerative colitis, Fasciola hepatica, extracellular vesicles

INTRODUCTION

Ulcerative colitis and Crohn’s disease are two major clinical
entities included in IBD, which may affect 0.5% of Western world
population (1 million people in the United States, and 2.5–3
million people in Europe), with 37 new cases per 105 inhabitants
in Europe (Molodecky et al., 2012; Kaplan and Ng, 2017). IBD
is also spreading in developing countries, where the prevalence
is lower than in developed ones (Molodecky et al., 2012; Ng
et al., 2013). Most of IBD patients are affected in their productive
age, originating not only important social problems, but also
economic losses (Kaplan, 2015).

The etiology of the disease is not well understood and
because of the complexity of this pathology, the development of
effective treatments will require studies using multidisciplinary
approaches, where animal models have proved to be highly
informative (Lin and Hackam, 2011).

Due to the absence of a curative treatment for IBD, there
have been numerous attempts to incorporate new therapies.
Some of these include new drugs or nutritional supplements to
correct or enhance the effectiveness of the currently authorized
treatments. In fact, the complexity of the pathogenesis of these
diseases has led to empirically evolved current drug therapies,
which primarily treat inflammation. The latest therapies attempt
to restore the intestinal immune balance by efficiently combining
immunosuppressant agents, biological therapy and modulators
of the microbiota (Vanhove et al., 2016).

Interestingly, previous epidemiologic studies and clinic trials
suggested that helminths, either by natural or artificial infections,
might protect people from IBD (Smallwood et al., 2017). This
has been confirmed by Ramanan et al. (2016), which have
demonstrated that alteration of commensal and pathogenic
bacteria produced by gastrointestinal helminths infection in turn
protects the host against IBD (Ramanan et al., 2016). Still, major
concerns of the helminthic therapy are related to ethical issues
and the ability of controlling the course of the infection. In
this sense, the identification of helminth-derived molecules that
ultimately mediate host immune modulation is attracting much
attention.

Extracellular vesicles, including exosomes and microvesicles,
have been described as participating in intercellular
communications with important roles in physiological and
pathological processes, where they can be used as diagnostic and

Abbreviations: COX-2, cyclooxygenase 2; DAI, disease activity index; DSS,
dextran sulfate sodium; EVs, extracellular vesicles; FABPs, fatty acid-binding
proteins; Fh, Fasciola hepatica; IBD, inflammatory bowel disease; IL, interleukin;
MAPK, mitogen activated protein kinase; MPO, myeloperoxidase; NF-kB, nuclear
factor kappa B; TEM, transmission electron microscopy; TNF-α, tumor necrosis
factor alpha.

therapeutic weapons (Yáñez-Mó et al., 2015; Barile and Vassalli,
2017). EVs have been described to participate in inflammation,
like EVs from granulocytes, which have been used for IBD
treatment in a mice model (Wang et al., 2016; Song et al., 2017).

Fasciola hepatica is a flatworm that excretes/secretes a large
number of molecules to the host-parasite interplay, including
immune modulators (Dalton et al., 2013). Our group has
identified some of these molecules in EVs released by parasite
adults in culture (Marcilla et al., 2012; Cwiklinski et al., 2015;
Fromm et al., 2015). To assess the functional role of these
EVs in the host and exploring their usefulness as therapeutic
agents against IBD, we have studied their potential in preventing
ulcerative colitis in a DSS induced colitis model in C57BL/6 mice.
Our data support that F. hepatica EVs (FhEVs) can protect from
IBD in this model, since their inoculation prevents intestinal
damage in acute colitis by altering the local immune response.
Thus, FhEVs might be employed for preventing relapses in IBD
patients and could be explored as a potential new therapy for
treating IBD.

MATERIALS AND METHODS

Materials
Unless otherwise specified, all reagents were purchased from
Sigma-Aldrich (Madrid, Spain) and Bio-Rad Laboratories
(Madrid, Spain). DSS, colitis grade (36–50 kDa) was purchased
from MP Biomedical (United States). Specific antibodies for
COX-2, p38 and p65 subunit nuclear factor-κβ (NF-κB)
were purchased from Millipore (Billerica, MA, United States);
antibodies against p38 MAPK and P-p38 MAPK were obtained
from were obtained from Cell Signaling Technology (Danvers,
MA, United States) and Santa Cruz Biotechnology (Santa
Cruz, CA, United States), respectively. Anti-GAPDH polyclonal
sera was kindly provided by Dr. Daniel Gozalbo, Universitat
de València. ELISA kits for cytokines were purchased from
Affymetrix eBioscience (San Diego, CA, United States).

Isolation and Characterization of
Fasciola hepatica Extracellular Vesicles
Extracellular vesicles from F. hepatica adults (FhEVs) were
purified and monitored by TEM as previously described (Marcilla
et al., 2012). Briefly, adult parasites, collected from cow livers
from local abattoirs, were thoroughly washed with PBS and
cultured in 0.2 µm filtered RPMI -1640 culture medium
containing 100 U penicillin and 100 µg/mL streptomycin (all
from Sigma), at concentrations of 2 worms/mL at 37◦C for
5 h. After the incubation period, the parasite culture media was
collected and centrifuged at low speed (first at 300 g/10 min,
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and then at 700 g/30 min) to remove larger debris, and the
resulting supernatant was centrifuged at 15,000 g for 45 min
at 4◦C. Supernatants were then filtered using an ultrafiltration
membrane (0.2 µm; Schleicher and Schuell) and centrifuged at
120000 g/1 h at 4◦C in an Optima TL100 tabletop ultracentrifuge
(Beckman) using a TLA-55 rotor.

Extracellular vesicles were aliquoted, frozen-drying in PBS
containing 20% sucrose, and kept at 4◦C until use. Before
inoculating animals, protein content was determined following
Bradford’s method (Bio-Rad).

Animals
Female C57BL/6 mice (Harlan Interfauna Iberica, Barcelona,
Spain), 6–8 weeks of age, weighing 18–20 g were previously
acclimatized in 12 h light/dark cycles at 22◦C and 60% humidity,
for 7 days before performing the experiments, and fed with
a standard laboratory rodent diet and water ad libitum. All
animal care and experimental protocols were approved by the
Institutional Ethics Committee of the Universitat de València and
Generalitat Valènciana, Spain (No. 2015/VSC/PEA/00045 type 2,
12-03-2015).

Rag1−/− mice were housed in pathogen-free conditions
at the CNIC animal facility. Experimental procedures were
approved by the local research ethics committee and conformed
to EU Directive 2010/63EU and Recommendation 2007/526/EC,
enforced in Spanish law under Real Decreto 53/2013.

Induction of Dextran Sulfate Sodium
(DSS) Colitis and Inoculation With FhEVs
Acute colitis was induced in mice by administering drinking
water with 3% (w/v) DSS for 7 days, as previously described
(Giner et al., 2016). Animals were randomly assigned to four
groups: Control group (mice received only regular drinking
water); DSS group (mice received 3% DSS in drinking water);
FhEV + DSS group (mice were subcutaneously inoculated three
times with F. hepatica EVs resuspended in PBS, and received 3%
DSS in drinking water); and FhEV group (mice subcutaneously
inoculated three times with F. hepatica EVs, and received regular
drinking water) (see Figure 1B). At day 49 mice were sacrificed,
their colons were removed and samples analyzed. Every effort was
made to minimize animal suffering and reduce the number of
animals used.

Disease Activity Index
Disease Activity Index was used to assess the severity of colitis
as indicated by Giner et al. (2013). Mice were checked daily
for development of colitis by monitoring body weight, fecal
occult blood (Hemoccult R© II Sensa; Beckman Coulter), or gross
rectal bleeding, and stool consistency. Overall disease severity
was assessed by a clinical scoring system defined as follows:
weight loss: 0 (no loss), 1 (1–5%), 2 (5–10%), 3 (10–15%), and
4 (>15%); stool consistency: 0 (normal), 2 (loose stool), and 4
(diarrhea); and bleeding: 0 (no blood), 1 (Hemoccult R© positive),
2 (Hemoccult R© positive and visual pellet bleeding), and 4 (gross
bleeding, blood around anus).

Histological Analysis
Distal colon parts were cut and fixed as previously reported
(Giner et al., 2016). Five-micrometer tissue sections were stained
with hematoxylin and eosin and evaluated using an Optiphot
Nikkon, microscope by an expert pathologist (CM). A well-
accepted histology score in an scale of 0 to 6 was used (Melgar
et al., 2008) (0 = no signs of damage; 1 = few inflammatory
cells, no signs of epithelial degeneration; 2 = mild inflammation,
few signs of epithelial degeneration; 3 = moderate inflammation,
few epithelial ulcerations; 4 = moderate to severe inflammation,
ulcerations in more than 25% of the tissue section; 5 = moderate
to severe inflammation, large ulcerations of more than 50% of
the tissue section; and 6 = severe inflammation and ulcerations
of more than 75% of the tissue section). In addition, the precise
percentage of ulcerated mucosa in every transversal section of the
colon was recorded. Median histopathology score and median
percentage of ulcerated mucosa were used for comparison
between groups.

Cytokine Production in Tissue
TNF-α, IL-6, IL-17A, and IL-10 concentrations were measured as
previously described (Giner et al., 2016), by using specific enzyme
immunoassay kits, following manufacturer’s instructions. Reads
were done in an iMarkTM microplate absorbance reader (Bio-
Rad, CA, United States). Values of cytokines were expressed as
pg per mg of total protein.

Determination of Neutrophil Infiltration in
Colon Tissue
Neutrophil infiltration was determined by assaying MPO activity,
as previously described (Giner et al., 2011, 2013). Absorbance was
measured spectrophotometrically at 630 nm, and MPO activity
was expressed as the amount of enzyme necessary to produce a
change in absorbance of 1.0 Unit g−1 of tissue (Recio et al., 2000).

Cytosolic and Nuclear Protein Extraction
The differential extraction of proteins from intestines and their
concentration were determined as previously reported (Giner
et al., 2011).

Western Blot Analysis
Equal amounts of protein (25 µg) were separated by SDS-
PAGE in 10% polyacrylamide gels, transferred onto nitrocellulose
membranes, blocked, and incubated overnight at 4◦C with
anti-COX-2 (1:8000), anti-p65 NF-κB (1:500) subunit, or anti-
GAPDH, anti-p38 MAPK, anti-Pp38 MAPK (all at 1:1000). Blots
were washed with TBS (10 mM Tris-HCl pH 7.4, NaCl 150 mM),
incubated with secondary antibodies (1:10000), and immune
reactive bands were visualized with the aid of AmershamTM ECL
Select western blotting system (GE Healthcare, Madrid, Spain)
(Marcilla et al., 1995; Giner et al., 2013).

To unify Western blot densitometry to result in the processed
images, data from the DSS group were taken as reference and
assigned the value of 100. Relative percentages of the other groups
were then calculated.
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Statistical Analysis
The results are expressed as the mean ± SE values. Statistical
significance was determined with a one-way analysis of variance
(ANOVA), and Dunnett’s t-test for multiple comparisons using
GraphPad Prism, version 6 (GraphPad Software Inc., La Jolla,
CA, United States). Values of p < 0.05 were considered to be
statistically significant, and the symbols ∗, # and + were used to
indicate the statistical significance.

Software
Images for all Western blot experiments were acquired with a
ChemiDoc MP imager (Bio Rad, CA, United States). Digital
images were processed and band density measurements were
made with the aid of NIH Image J software (Schneider et al.,
2012).

RESULTS

Preventive Treatment With F. hepatica
EVs Ameliorates Clinical Symptoms and
Attenuates Histological Alterations in
DSS-Induced Acute Colitis
Previous evidence suggests that EVs from parasitic helminths
could be potential new therapeutic alternatives against
autoimmune diseases (Buck et al., 2014; Montaner et al.,
2014). We therefore assessed their putative preventive effect in
IBD. EVs were purified from F. hepatica parasites cultured as
described previously (Marcilla et al., 2012), showing to be a clean
and homogeneous preparation, with most vesicles ranging in the
size of 50–100 nm (Figure 1A).

To test whether FhEVs could prevent colitis, C57BL/6
mice were injected subcutaneously with 10 µg of
FhEVs/mouse/injection on days 0, 15, and 30 before colitis
induction by DSS at day 42 (Figure 1B). We used these amounts
of EVs based on previous studies (Trelis et al., 2016). FhEVs-
treated mice were considerably less susceptible to DSS-induced
colitis and lost around 10% of their initial body weight, whereas
non-treated mice lost around 20% after 7 days of DSS treatment
(data not shown). Accordingly, DAI of FhEVs-treated colitic
mice was lower than in colitic mice on day 5 after the initiation
of DSS treatment. Moreover, this difference gradually increased
over time (Figure 1C). On autopsy, a significant colonic
shortening was detected in the DSS-administered groups as
compared to the water-administered ones injected or not with
FhEVs. However, between DSS-treated mice, FhEVs injected
mice had significant larger colons than their non-injected
counterparts (Figures 1D,E).

FhEVs Attenuate Histological Alterations
and Suppress Neutrophil Infiltration
Upon DSS Challenge
Histologic analyses of colonic sections revealed complete
disruption of the colonic architecture in colitic mice, whereas
FhEVs-treated colitic mice display a better preservation of tissue

architecture and reduced epithelial denudation, crypts distortion,
and leukocyte infiltration of the lamina propria (Figure 2A),
thus resulting in a lower histopathological mean score in this
group (Figure 2B). Consistent with the histological findings, the
ulceration score of FhEVs-treated colitic mice was significantly
lower than in DSS-induced colitic mice (Figure 2C).

Furthermore, the reduction in neutrophil infiltration observed
by histological inspection in FhEVs-treated colitic mice was
confirmed by the reduced MPO activity detection in colon tissues
from these mice (Figure 2D). Altogether, these results strongly
support the view that injection of FhEVs could ameliorate DSS-
induced murine experimental colitis.

FhEVs Decrease Pro-inflammatory
Cytokines in Colon Tissues
To address the effect of FhEVs in colitis we next analyzed the
immune response involved by determining the tissue levels of
cytokines known to participate in IBD (Giner et al., 2016).
Amounts of TNF-α, IL-6, IL-17A, and IL-10 were determined in
intestine by ELISA. As shown in Figures 3A,B, treatment with
FhEVs markedly prevented the increase in the levels of the pro-
inflammatory cytokines TNF-α and IL-6 observed in the intestine
of DSS-treated mice.

Recent studies have identified that the expression of genes
involved in Th17 immune response can distinguish patients with
ulcerative colitis from patients with Crohn disease (Rosen et al.,
2017). To address whether Th17 response was also modified in
the mice model of ulcerative colitis, IL-17A levels in intestine
were determined by ELISA. As shown in Figure 3C, IL-17A
levels were lower in FhEVs-treated colitic mice in comparison
to DSS-induced colitic mice, indicating the anti-inflammatory
effect of FhEVs. As a parameter of the anti-inflammatory activity
of regulatory T lymphocytes (Treg), IL10 was also monitored.
Interestingly, the amount of this cytokine did not change
significantly in the groups of mice analyzed (Figure 3D). Taken
together these results indicated that F. hepatica EVs exerted their
preventive effect by altering the pro-inflammatory effect of DSS,
not depending of a role of Treg cells.

FhEVs Decrease the Activation of the
Pro-inflammatory Effector Molecules
COX-2, NFkB, and Phosphorylated p38
MAPK in DSS-Induced Acute Colitis
It is well known that several key factors participate in the
inflammatory cascade leading to colitis (Talero et al., 2008; Giner
et al., 2011). In this context, different studies have documented
the role of COX-2 in mediating the prolonged epithelial secretion,
and the barrier dysfunction observed in colonic inflammation
in mice (Zamuner et al., 2003; Sanchez-Fidalgo et al., 2013).
To address whether F. hepatica EVs administration could also
affect the expression of COX-2, as pro-inflammatory mediator in
DSS-induced colitis, we next analyzed its levels in colon tissue
by western blot. As shown in Figure 4, the DSS-induced colitic
mice showed higher levels of COX-2 in colon tissues than their
FhEVs-pretreated counterparts (only 33% of COX-2 was detected
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FIGURE 1 | Treatment with Fasciola hepatica EVs ameliorates clinical symptoms and partially avoids colon shortening in DSS-induced acute colitis. (A) Extracellular
vesicles were obtained by differential ultracentrifugation and ultrastructure was confirmed by TEM. (B) Schematic time schedule of immunization with F. hepatica EVs
(FhEVs) and DSS-induction of colitis in C57B/L6 mice. (C) Disease activity index (DAI) was evaluated daily using the parameters of weight loss, diarrhea, and
bleeding as described in methods. Statistical significance between two experimental groups was assessed using the Independent-Sample t-test (∗∗∗p < 0.001,
significantly different between the control and DSS group; ∗p < 0.05 significantly different between the immunized group and the DSS group; using one-way ANOVA
followed by Dunnett’s t-test). (D,E) Colon length was measured as an indirect marker of inflammation.

as compared to the levels observed in DSS-induced colitic mice,
Figure 4B).

Furthermore, colonic cells showed variations in different
signaling pathways as in the mitogen-activated protein

kinase (p38 MAPK), and NF-kB pathways. As shown in
Figure 4, DSS increased the phosphorylation of p38 MAPK,
but pre-treatment of colitic mice with FhEVs produced
lower levels of phosphorylation of p38 MAPK (around 39%),
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FIGURE 2 | Histopathological changes in the colons of acute colitis mice. (A) Distal colon tissue samples were examined using haematoxylin-eosin staining (5× and
10×). (B) Histopathological score of colon tissue samples as a mean histopathology score in DSS and FhEVs+DSS mice. (C) Percentage of ulcerated colonic
mucosa in DSS and FhEVs+DSS mice. (D) Myeloperoxidase (MPO) activity was determined by a spectrophotometric method and expressed as the amount of
enzyme necessary to produce a change in absorbance of 1.0 unit/mg of tissue. Each bar chart represents the mean ± SEM for at least three independent
experiments (n = 3 animals) (###p < 0.001, significantly different from the DSS group vs. control group; ∗∗∗p < 0.001 significantly different between the DSS group
and the group immunized with FhEVs; using one-way ANOVA followed by Dunnett’s t-test).

although still higher than in colon from control and FhEVs-
injected mice groups (both without DSS administration)
(Figure 4B).

The levels of NF-kB in the nuclear fraction of colon cells were
also quantified, and colon tissues from both DSS-induced colitis
mice contained higher levels of this nuclear factor than controls.
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FIGURE 3 | Effect of FhEVs on the profile of cytokine levels in colon tissue samples. At day 49 cytokine levels in colon homogenates were determined by ELISA. The
amount of cytokines was expressed as pg per mg of protein. (A) TNFα levels, (B) IL-6 levels, (C) IL-17A levels, (D) IL-10 levels. Each bar chart represents the
mean ± SEM for at least three independent experiments (n = 3 animals). ###p < 0.001 significantly different from the DSS and control for TNFα and IL6; ##p < 0.01
significantly different from the DSS and control for IL17A; ∗∗∗p < 0.001 significantly different from the DSS and immunized group for IL6; ∗∗p < 0.01 significantly
different from the DSS and immunized group for TNFα and IL6, using one-way ANOVA followed by Dunnett’s t-test.

Nevertheless, FhEVs treated colitic mice contained around 25%
less amount of NF-kB when comparing to DSS-induced colitic
mice (Figures 4A,B).

Altogether, our results indicate that F. hepatica EVs interfere
with signaling pathways involved in acute ulcerative colitis
promoted by DSS, and suggest their role in preventing pro-
inflammatory cascades in which these key molecules participate.

The Preventive Effect of FhEVs in Colitis
Is Not Mediated by Lymphocytes
To assess whether lymphocytes were the cells accounting for the
protection, similar in vivo experiments of immunization with
FhEVs before DSS administration were carried out in Rag1−/−

mice. These mice lack lymphoid B and T cells (Mombaerts et al.,
1992), and are susceptible to DSS-induced colitis (Kim et al.,
2006; Kiesler et al., 2015). Rag1−/− mice were injected with
FhEVs subcutaneously. Interestingly, FhEVs exhibited protection
against the chemical treatment (Figure 5), similarly to what
happened in C57BL/6 mice (see Figures 1, 2).

Fasciola hepatica EVs-treated mice lost around 9% of their
initial body weight, whereas non-treated mice lost around 18%,
after 7 days of DSS treatment (data not shown). Accordingly,
the DAI of FhEVs-treated colitic mice was lower than in colitic

mice on day 4 after the initiation of DSS treatment, increasing
this difference over time (Figure 5A). DSS-administered mice
treated with FhEVs had significant larger colons than their non-
injected counterparts, although not reaching the length observed
in control animals (Figure 5B).

When histological analyses of colonic sections were
performed, they revealed large disruption areas of the colonic
architecture in colitic mice, whereas FhEVs-treated colitic
mice displayed preservation of tissue architecture and reduced
epithelial denudation and crypts distortion (Figure 5C).
Altogether, these results supported the notion that neither T nor
B cells are involved in the preventive effect observed with the
parasite EVs.

DISCUSSION

Intestinal bowel disease is one of the most important diseases
affecting developing countries, and it is currently spreading in
undeveloped ones (Molodecky et al., 2012; Ng et al., 2013). The
etiology of the disease is not well understood, with a complex
pathology which has no effective treatment available. In fact,
the development of effective treatments require studies using
multidisciplinary approaches, where animal models have proven
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FIGURE 4 | Effects of FhEVs on COX-2 and NF-kB expression, and phosphorylation of p38MAPK (pp38) in DSS-induced acute colitis in mice. At day 49 colon
tissues were powdered in a mortar with liquid nitrogen, and tissue proteins were extracted. (A) Representative western blot analyses are shown (from three different
experiments, n = 3). The amount of COX-2 was determined by densitometry analysis, and normalized to GAPDH content for each sample. The amount of
phosphorylated p38MAPK (pp38MAPK) and p65 NF-kappaB were determined by densitometry analysis, and normalized to p38MAPK content. Quantification
measures were done using NIH ImageJ software (Schneider et al., 2012), considering the amount of protein in DSS group as 100%. (B) The histograms representing
the data derived from representative western blots following densitometry analysis of each group are also shown.

highly useful (Lin and Hackam, 2011). DSS-induced colitis model
has been widely used to explore new therapeutic options (Wirtz
and Neurath, 2007; Kiesler et al., 2015).

Among the new treatments, the use of biologicals is gaining
attention (Rogler, 2015; Maizels, 2016). In this context, and
following the Hygiene hypothesis (Strachan, 1989), clinical trials
with parasitic helminths have been initiated, and some are
underway (Smallwood et al., 2017). Some concerns about using

helminths to treat IBD have arisen, with the possibility of
producing malignancy (Bonovas et al., 2016). In fact, a recent
report has shown that the treatment with the parasitic nematode
Heligmosomoides polygyrus can induce tumor progression in a
DSS-induced colitis in Balb/c mice (Pastille et al., 2017).

Along with those potential clinical problems, the use of
parasites to treat IBD also face ethical problems (McSorley
and Maizels, 2012), so the alternative of using parasite defined
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FIGURE 5 | Lymphocytes do not mediate the preventive effect of FhEVs in DSS-induced colitis. (A) Disease activity index (DAI) evaluated daily combining the
parameters of weight loss, diarrhea, and bleeding in Rag1−/− mice (n = 7 animals) as described in methods. Statistical analyses were performed using a one-way
ANOVA followed by Dunnett’s multiple comparison post hoc test (∗∗∗p < 0.001, FhEVs+DSS versus DSS). (B) Colon length was measured as an indirect marker of
inflammation. Statistical significance between two experimental groups was assessed using the Independent-Sample t-test (###p < 0.001, significantly different
between the control and DSS group; ∗∗p < 0.01 significantly different between the immunized group and the control; ++p < 0.01 significantly different between the
immunized group and the DSS group; using one-way ANOVA followed by Dunnett’s t-test). (C) The histopathological changes of colons in mice were examined
using H&E staining (5× and 10×).

products, like excretory/secretory products (ESP), or isolated
molecules seem to be a good option. In this context, studies
with a crude extract from the laminated layer of Echinococcus

granulosus (a tapeworm parasite) showed not only its preventive
effect but also played a beneficial role in maintaining the integrity
of the intestinal mucosal barrier against DSS-induced injury
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(Soufli et al., 2015). Those results supported the role of EVs as
promoters of the epithelial barrier function (Xu et al., 2016).

Previous studies had shown that EVs administered either
orally or injected could reach the colon of mice and exert
their therapeutic effect on induced colitis (Ju et al., 2013; Yang
et al., 2015). Very recently, Wang et al. (2017) have reported
a protective effect in a similar mice model when using EVs
produced by dendritic cells previously exposed to eggs from the
parasitic trematode Schistosoma japonicum (Wang et al., 2017).
In this regard, our data highlight that the parasite F. hepatica
EVs have a potent modulatory effect on the immune response in
DSS-induced colitis in mice. We provide evidence that F. hepatica
EVs can prevent DSS-induced colitis by down regulating pro-
inflammatory cytokines like TNFα, IL-6, and IL17A, as well
as suppressing MAPK/NF-κB signaling pathways. Accordingly,
FhEVs treatment decreased MPO activity, indicating a reduction
in neutrophil infiltration in damaged colon and which has also
been corroborated in the histological sections. In accordance,
reduce levels of cytokines TNF-α and IL-17A have been detected
in the colon of FhEVs-treated mice, which are inducers of
neutrophil transmigration (Kolls and Lindén, 2004; Griffin et al.,
2012). DSS colitis can be exacerbated by granulocyte recruitment
(Natsui et al., 1997; Williams and Parkos, 2007; Sander et al.,
2008; Chami et al., 2014; Kishida et al., 2015). The activity
of many enzymes and chemicals produced by neutrophils is
not specific to pathogens, so they can damage host tissues
when released extracellularly, contributing to the aggravation of
mucosal inflammation. Likewise, in UC, unrestricted neutrophil
activation may cause significant tissue damage that further leads
to chronic pathology and the extent of neutrophil infiltration
correlates with the severity of the disease (Bressenot et al., 2015).
Therefore, the reduced neutrophil infiltration in FhEVs-treated
mice, would provide for the protection effect detected in this
model of acute colitis induced by DSS, and may be crucial for
the treatment of UC patients. In Rag1−/− mice, a decreased
neutrophil infiltration is also observed in the histology sections
after FhEVs treatment, in accordance with the results obtained in
C57B/L6 mice. It is important to remark that though Rag1−/−

mice have no mature T and B lymphocytes (Mombaerts et al.,
1992), develop totally normal granulocytes, like WT mice, as has
been demonstrated in reports which use these mice in infection
models (Smith et al., 2009; Seymour et al., 2015; Carey et al., 2016;
Papp et al., 2016).

Furthermore, our results suggest that neither lymphocytes
nor IL-10 are involved in the protective effect by FhEVs in
DSS-induced colitis mice model. This seems to be at odds with
previous reports showing that either splenic B cells or EVs from
granulocytic myeloid-derived suppressor cells, attenuate DSS-
induced colitis by promoting Tregs expansion, and inhibit Th1
cells proliferation (Reyes et al., 2015; Wang et al., 2016).

The accurate identification of the molecules responsible for
the anti-inflammatory effect is underway, but suitable candidates
are molecules previously identified in FhEVs, like FABPs
(Cwiklinski et al., 2015), which have been shown to induce anti-
inflammatory response in animal models by diminishing the
levels of TNFα (Ramos-Benitez et al., 2017). Other exosome-
contained molecules like miRNAs represent potential candidates

as they may act as immunomodulators of the intestinal innate
immune response (Buck et al., 2014). Interestingly, a repertoire
of miRNAs with immune-regulatory function have been found in
F. hepatica EVs previously by our group (Fromm et al., 2015).

Resident intestinal macrophages and colonic dendritic cells
have been reported to have a high anti-inflammatory phenotype
and are hypo-responsive to microbial stimuli in rodents and
humans (Bilsborough and Viney, 2004; Kelsall and Leon, 2005;
Smith et al., 2005). In line with this, it has been described that
depletion of both dendritic cells and macrophages from the
intestinal lamina propria in C57BL/6, BALB/c, and SCID mice
(without T and B cells) increased DSS colitis severity. These
mice had increased neutrophilic inflammation, epithelial injury,
and enhanced mucin depletion from globet cells (Qualls et al.,
2006). On the other hand, helminth infections are associated with
the induction of immunosuppressive M2/Alternatively Activated
Macrophages (AAMs) (Loke et al., 2000; Herbert et al., 2004).
It is therefore conceivable that FhEVs are enhancing the anti-
inflammatory functions of these innate cell populations as
they are protective in Rag1−/− mice that lack T and B cells
populations. Other helminth infections have been shown to
prevent colitis development independently of Tregs stimulation,
through the inhibition of prostaglandins by AAMs (Ledesma-
Soto et al., 2015) or recruitment of a novel macrophage
population distinct to AAMs or Gr1+ macrophages (Smith
et al., 2007). Moreover, in addition to their immunosuppressive
role, lamina propria macrophages play an important role in
the regeneration of damaged epithelium by controlling the
epithelial progenitor niche after DSS-induced colitis (Pull et al.,
2005). On the other hand, the reduced neutrophil infiltration
detected in FhEVs-treated mice might be a consequence of the
decreased epithelial barrier damage and diminished production
of pro-inflammatory cytokines from the resident myeloid cell
populations in the gut as observed in the foregoing reports,
because of the preventive role of these exosomes. Moreover,
some reports described that subcutaneously injected exosomes
can be detected in several organs including the gastrointestinal
tract even after 24 h of administration, and cleared from the
bloodstream in a few minutes (Wiklander et al., 2015). However,
in our experimental settings the exosomes are administered
12 days before DSS administration, which makes us to think
that they are exerting their role in the gut resident populations.
A plausible mechanism may be epigenetic reprogramming of
these innate cell populations, a process that has been recently
termed as trained immunity (Netea et al., 2016), or even
of the intestinal epithelial cells. Whether, in addition, FhEVs
could be exerting their function by altering granulopoiesis at
the bone marrow level, or influencing in endothelial cells the
level of expression of adhesion molecules, requires further
experimentation and biodistribution analyses.

Apart from the induction of strong Th2 responses and
IgE production, which can be discarded in our experimental
setting due to the maintenance of the protective effect in
Rag1−/− mice that lack mature T and B lymphocytes, helminths
also promote the expansion of eosinophils, mast cells and
basophils which could not be discarded. Levels of these cell
populations can be measured by flow cytometry to evaluate if
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there were differences among FhEVs-treated versus non-treated
mice. Interestingly, among these cell populations, the only one
which have been described to promote a protective role in
acute DSS colitis are the eosinophils, due to the production of
anti-inflammatory lipid mediators (Masterson et al., 2015). To
further elucidate which innate cell population is mediating the
protection, adoptive transfer experiments could be performed by
injecting specific sorted cell populations derived from FhEVs-
immunized Rag1−/− mice into non-immunize ones. Our most
likely candidates are macrophages, as stated in the foregoing
works. Besides, macrophages are highly phagocytic cells that
could be acquiring a highest number of exosomes. Moreover, the
role of dendritic cells is typically focused on T cell polarization,
which are not involved. Specific deletion of macrophages can be
performed by the use of liposomal clodronate agent. If they turn
to be involved in the conferred protection to DSS-colitis, it would
be very informative to evaluate the role of FhEVs in M1 and
M2 polarization, which could be performed by flow cytometry
or RNA-seq.

Our findings suggest that other immune cells aside
lymphocytes are involved in the protective response (Masterson
et al., 2015; Coakley et al., 2017; Wang et al., 2017; Campbell
et al., 2018). Future studies will address the identification of the
immune cells involved in the FhEVs protective effect and the
mechanisms behind it. The fact that the conferred protection
against intestinal inflammation is mediated by EVs is of great
importance to move this research forward into translational
applications.
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