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Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery
in Zika forest in Uganda, this virus has been isolated from several mosquito species,
including Aedes aegypti and Aedes albopictus. The geographical distribution of these
mosquito species across tropical and subtropical regions has led to several outbreaks,
including the recent pandemic in Brazil, followed by the Pacific islands and other areas
of North and South America. This has gained attention of the scientific community to
elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on
clinical aspects for healthcare professionals, the relationships between ZIKV and its
principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in
the scientific research community. As such, this review aims to summarize the current
knowledge on ZIKV tropism and some important mechanisms which may be employed
by the virus for effective strategies on viral survival in mosquitoes. In addition, this review
identifies the areas of research that should be placed attention to, for which to be
exploited for novel mosquito control strategies.
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ZIKA VIRUS

Zika virus (ZIKV) was first isolated from a rhesus macaque monkey in the Zika Forest of Uganda
in 1947 (Dick et al., 1952), followed by the first virus isolation from Aedes africanus mosquito in
the year after (Lanciotti et al., 2008). The first human infection was reported in Nigeria in 1954
(MacNamara, 1954), until the recent outbreak in Brazil in May 2015 (Rodriguez-Morales, 2015;
Zanluca et al., 2015), followed by 29 other countries reported ZIKV transmission before 2016
(Hennessey, 2016; Figure 1). Soon after, the potential association of microcephaly to the neonates
of ZIKV-infected mothers was reported (de Araújo et al., 2016; Mlakar et al., 2016). This was
further supported by subsequent studies where infants with microcephaly were associated with
ZIKV infection during pregnancy (de Paula Freitas et al., 2016; Ventura et al., 2016). However, to
date, the specific associations between ZIKV and microcephaly remain plausible and no consensus
was made.

ZIKV is an icosahedral, enveloped, single-stranded RNA virus (Heinz and Stiasny, 2017;
Shi and Gao, 2017). It belongs to the Flavivirus genus, and the envelope consists of
lipid bilayer and envelope glycoproteins (Heinz and Stiasny, 2017; Shi and Gao, 2017).
Phylogenetic analyses clearly indicated that ZIKV can be grouped into two distinct lineages –
Asian lineage and African lineage, based on their complete genome sequences obtained
from National Center for Biotechnology Information (NCBI) and analyses using Molecular
Evolutionary Genetic Analysis (MEGA) software (Figure 2). In addition, the evolutionary
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FIGURE 1 | Zika virus epidemiology. The yellow area depicts the geographical distribution or landmarks of Zika virus. The virus was first isolated in Uganda from
rhesus macaque monkey and Aedes africanus mosquito, followed by first isolation in human in 1954 in Nigeria. The subsequent circulations were restricted to Africa
and Southeast Asia. In 2015, emergence of Zika virus in South America issued an alert to Pan American Health Organization (PAHO).

lineages changing over time as shown in Figure 2 support the
geographical distribution of ZIKV from 1947 (Uganda) to its
first reported isolation as non-African lineage in 1969 (Malaysia;
Marchette et al., 1969), until the recent widespread epidemic of
Zika fever in 2015 (from Brazil to North and South America;
Figure 2). Despite its low prevalence before 2015, the geographic
distribution of ZIKV has been intensively studied through
seroprevalence surveys. In Uganda, although ZIKV was found
in A. africanus, a local mosquito strain, antibody prevalence
in the residents of the same area was low (Dick, 1952; Dick
et al., 1952). In the next 20 years, a large number of serological
studies were recorded on the dynamic distribution of ZIKV from
Africa (Smithburn, 1952; MacNamara, 1954; Smithburn et al.,
1954; Robin and Mouchet, 1975; Jan et al., 1978; Saluzzo et al.,
1982; Adekolu-John and Fagbami, 1983; Monlun et al., 1993) to
Asia (Smithburn et al., 1954; Hammon et al., 1958; Pond, 1963;
Darwish et al., 1983; Heang et al., 2012).

Similar to other important human-pathogenic arboviruses,
such as yellow fever virus (YFV), dengue virus (DENV), and
Japanese encephalitis virus (JEV), ZIKV maintains human-
to-human transmission cycles through Aedes mosquitoes as
the vector (Weaver and Reisen, 2010). In addition to vector
transmission, the potential for sexual ZIKV transmission was first
reported in 2015 whereby the virus was isolated from a male
patient (Musso et al., 2015). Soon after, a health report released
in Texas confirmed such transmission mode of ZIKV (McCarthy,
2016), which currently appears to be the only known arbovirus
linked to this transmission mode in humans. This report was

supported by Govero et al. (2016), whereby in vivo ZIKV
infection was observed in the spermatogonia, spermatocytes, and
Sertoli cells of the testis. In addition, the same study reported
the destruction of the seminiferous tubules of mice after ZIKV
infection (Govero et al., 2016).

ZIKV DETERMINANTS IN MOSQUITOES
AND HUMAN

The evolution of virus–host interaction for survival is an arms
race. While hosts have developed multiple mechanisms to protect
themselves from infection, viruses generated diverse strategies to
evade hosts’ defenses. Studies have shown that hosts can undergo
genetic changes to develop defensive network through innate and
adaptive immune responses to adapt and resist to viral infections
(Barber, 2001; Martins et al., 2014). For instance, Drosophila
melanogaster have shown to possess higher survival rate against
Drosophila C virus infection after reaching at approximately 20th
generation of progenies (Martins et al., 2014). Likewise, viruses
possess the capability to undergo genetic changes to enhance
viral replication in hosts (Agudelo-Romero et al., 2008; Tsetsarkin
et al., 2014; Plauzolles et al., 2015).

The reason for the sudden emergence and wide spread of
ZIKV remains elusive. In 2016, Weaver et al. (2016) hypothesized
that an evolution in ZIKV adaptation to its mosquito vector has
led to efficient transmission of the virus by Aedes mosquitoes.
A similar situation had been observed in Chikungunya virus
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FIGURE 2 | Phylogenetic tree of Zika virus (ZIKV). The complete genome sequences of ZIKV isolates were obtained from GenBank. The phylogenetic tree was
constructed by maximum likelihood model with 1000 bootstrap replicates. The identification of the strains is in the format of accession number/host/country of
isolation/year of isolation. ZIKV strains were grouped into two lineage, namely, Asian lineage and African lineage based on their geographical distribution.

(CHIKV; Tsetsarkin et al., 2014). CHIKV, an arbovirus, was
shown to undergo a series of mutations leading to the
substitution of envelope glycoprotein. This in turn enhanced viral
transmission as CHIKV could infect Aedes albopictus mosquitoes
efficiently, leading to the dramatic spread of CHIKV in the Indian
Ocean Basin, Asia, and Europe since 2005 (Tsetsarkin et al., 2014).
Therefore, the sudden onset of the Zika outbreaks has raised
questions on the genetic evolution of ZIKV.

To understand the evolutionary pattern of ZIKV, a whole
genome comparative analysis of ZIKV was performed by
comparing the pre-endemic (isolated prior to year 2007) and
recent endemic ZIKV strains (Zhu et al., 2016). Interestingly,
several changes were shared among the recent endemic ZIKV
strains but not the pre-endemic ZIKV. According to Zhu et al.
(2016) nine nucleotides that used to be located at the 3’ UTR
stem loop II region of the pre-epidemic ZIKV strain was shown
to be more closely resembling the stem loop I of epidemic
strain. This structural change might be one of the reasons
related to the increase transmissibility and virulence of the recent
ZIKV (Zhu et al., 2016). Additionally, a total of 15 amino acid
substitutions were detected in the endemic strains and most of

these substitutions were located at the viral structural proteins
(capsid, pre-membrane, and envelope proteins; Zhu et al., 2016).
Molecular structure of envelope proteins, the largest proteins
covering the virus surface area, was shown to be essential in
viral attachment, fusion, replication, survival, and determining
the host and cell tropism (Modis et al., 2004; Chávez et al., 2010;
Wen et al., 2018). A number of mutations, particularly V603I
and D679E, located in the domain III of the envelope proteins
might be the key-leading factor to the viral virulence as these
mutations were not found in pre-epidemic strains. Likewise, a
V153M substitution located in the prM region was observed
in all ZIKV epidemic strains but not the pre-epidemic strains,
indicating the importance of the mutation (Modis et al., 2004;
Chávez et al., 2010). In 2016, Jia et al. (2016) have shown that
a single point mutation (T45G) in capsid gene had resulted in
the reduced virulence of JEV. Thus, it is possible that the five
amino acids’ changes in the capsid region of Asian ZIKV strains
(ancestor for endemic ZIKV strains) had increased the virulence
of ZIKV.

Non-structural proteins of Flavivirus may contribute to the
recent ZIKV outbreaks. Liu et al. (2016) demonstrated the
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enhanced viral acquisition of mosquitoes due to the presence
of NS1 protein of Flavivirus. This is followed by another study
reporting a spontaneous mutation in ZIKV NS1 protein, which
led to increased antigenemia in human, and led to recent ZIKV
outbreaks (Liu et al., 2017). In addition, a new fragment of
genetic recombination was found at the NS2B coding region of
the Asian lineage of ZIKV which is similar to Spondweni virus
(Zhu et al., 2016). Although the function of the new genetic
recombinant remains elusive, these molecular changes could lead
to the increased of virulence, replication efficiency, and host
tropism of ZIKV.

On the other hand, Butt et al. (2016) reported that ZIKV had
evolved its codon usage patterns according to its host and vector.
These changes would ensure the successful transmission between
multiple hosts and vectors. It is hypothesized that during the
chain of transmissions, the high selection pressure induced by
A. albopictus (compared to human and Aedes aegypti) might have
led to the induction of new mutations in ZIKV genome, which
could have triggered the new onset of neurological disorder in
human (Butt et al., 2016). At the moment, the limited number
of known ZIKV genome isolated from mosquitos is the limiting
factor halting the understanding of ZIKV determinant in its
vector and host. This constitutes an important knowledge gap
which warrants further investigations.

Several reasons can be responsible for the sudden increase
of ZIKV outbreaks. Besides the potential adaptive evolution
undergone by ZIKV to enhance viral replication in mosquitoes,
ZIKV may have adapted to human, resulting in higher viremia
in human. While the recent outbreaks were closely related to the
Asian lineage (Faye et al., 2014; Butt et al., 2016), phylogenetic
relationship analyses had shown that ZIKV nucleotide sequences
isolated from human samples shared a greater homology to
the P6-740 strain (Malaysia/1966) which was the sole mosquito
(A. aegypti) strain available in the Asian lineage (Wang et al.,
2016). This finding suggested that P6-740 strain was the ancestor
responsible for the emergence of recent epidemics. However,
data revealed that 34 amino acid changes were shared among
the recent outbreaks (FSM, H/PF/2013, and Brazilian strains),
but surprisingly these changes were not found in ZIKV derived
from mosquito (Wang et al., 2016). The possible reasons include
the transmission of ZIKV through other routes of transmission
such as sexual transmission, which may have contributed to the
wide spread of the disease. Study also showed that the codon
usage of NS1 gene of ZIKV has evolved toward the preferences
of Homo sapiens instead of its A. aegypti host (Freire et al., 2018).
The enhanced viral adaptation in human cells could serve as an
important factor in leading to the recent sudden onset of ZIKV.

MOSQUITO DETERMINANTS OF ZIKA
EPIDEMIC BEHAVIOR

According to the American Mosquito Control Association
(AMCA), there are about 2700 species of mosquito worldwide.
However, only a few mosquito species are significant pests of
humans, whereas many others are quite obscure, with findings
suggested their unique habitats compared to viral disease vectors.

Aedes mosquitoes lay eggs on moist surface, soil, or in containers
that catch rain water, such as treeholes, flowerpots, and tires. The
eggs of Aedes mosquitoes survive drying and hatch once exposed
to water. The adults feed principally in day time, especially in the
morning and evening.

The geographical distribution of ZIKV is closely related to
the distribution of Aedes mosquitoes, the principal vector of
ZIKV transmission (Wikan and Smith, 2016). After its first
isolation from A. africanus in 1948 (Dick et al., 1952), ZIKV
was also isolated from Aedes apicoergenteus in 1969 (McCrae
and Kirya, 1982). Between 1971 and 1980, ZIKV antibody was
detected in human serum in Nigeria (Fagbami, 1979; Adekolu-
John and Fagbami, 1983) and Gabon (Jan et al., 1978). In
2007, A. albopictus was first recognized as the vector of ZIKV
transmission after the invasion of A. albopictus to Gabon (Grard
et al., 2014). As reviewed by Vorou (2016), the spread of ZIKV
within and outside Africa is mainly driven by various species
of Aedes mosquitoes. A study on genetic relationships among
viral strains from Africa reported that the genome of ZIKV has
exhibited many recombination events in various Aedes mosquito
species, including Aedes dalzieli, A. aegypti, Aedes furcifer, and
A. africanus (Faye et al., 2014). The same group of researchers
also discovered that a minor post translational modification of
ZIKV surface protein has contributed to its competency to the
A. dalzieli vector (Faye et al., 2014). Since 1968, the distribution
of ZIKV has been expanding to Europe (Tappe et al., 2014) and
equatorial Asia, including India, Malaysia, Singapore, Thailand,
Vietnam, Japan (Marchette et al., 1969; Olson et al., 1981; Kwong
et al., 2013; Kutsuna et al., 2014), and Australia (Pyke et al.,
2014; Leung et al., 2015). The transmission of ZIKV Asian
lineage in these regions has been attributed to A. aegypti and
A. albopictus (Roth et al., 2014; Calvez et al., 2016), another
important vector during the most recent ZIKV outbreak in
Brazil (Marcondes and Ximenes, 2016; Petersen et al., 2016).
Although ZIKV transmission also occurs in other Aedes species,
the first large outbreak in humans on Yap Island in 2007 may
not be attributed to Aedes henselli, despite being the most
prevalent mosquito species identified on Yap Island (Duffy et al.,
2009). Similarly, ZIKV was not detected in A. henselli during
the epidemic occurred in French Polynesia in 2013 (Musso,
2015). Ioos et al. (2014) also reported the possibility of Aedes
polynesiensis as the mosquito vector for Zika outbreak in French
Polynesia.

As an efficient epidemic vector of ZIKV, A. aegypti has close
associations with human populations, especially in urban areas.
In addition, the unique blood-feeding behavior of A. aegypti
involves multiple human hosts in a single gonotrophic cycle
and further enhances the vector competency of this mosquito
species (Gubler, 1998). In the mid 1990s, yellow fever and dengue
fever were effectively managed by controlling the populations of
A. aegypti. However, in the past 30 years, the resurgence of yellow
fever in Africa and of Dengue and Zika fever worldwide have
highlighted the drop in efficiency in mosquito population control
(Gubler, 2004; Bouri et al., 2012; Ebi and Nealon, 2016).

Transovarial transmission of Flavivirus was reported in 1979
for YFV (Aitken et al., 1979). A recent publication reported
two Aedes strains with high level of midgut infections by ZIKV,
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with highly disseminated infection of ovaries, also provided
transovarial transmission of ZIKV in mosquitoes (Thangamani
et al., 2016; Ciota et al., 2017; Li et al., 2017). This provides new
insights into biological mechanisms of mosquito vectors, as an
intermediate host, in conferring optimum conditions for ZIKV
dissemination and transmission.

Extrinsic incubation period (EIP) is determined by the interval
between the acquisition of pathogen by a mosquito and the ability
of the mosquito to transmit the pathogen to the next host. EIP in
mosquito was found to shorten with viremic blood meals with
a higher viral titer (Gould et al., 1962). However, the EIP for
ZIKV in A. aegypti remains elusive despite the recent outbreaks
and extensive research activities. In addition, the mechanisms of
infection and dissemination of other Flavivirus members, such as
YFV and DENV, have been well studied with a number of reports
explaining their viral tropism in mosquito cells (Doi et al., 1967;
Takahashi and Suzuki, 1979; Leake and Johnson, 1987; Linthicum
et al., 1996; Salazar et al., 2007). The presence of Flavivirus in
various parts of mosquitoes, including midguts, hindguts, legs,
salivary glands, ovaries, compound eye, and central nervous
system (Leake and Johnson, 1987; Mourya and Mishra, 2000),
constitutes important research gaps which warrants further
investigations for ZIKV transmission in mosquitoes.

VECTOR COMPETENCE OF ZIKA VIRUS
TRANSMISSION

Aedes genus, most notably A. aegypti and A. albopictus, has
been demonstrated to be the primary mosquito vectors for ZIKV
(Weinbren and Williams, 1958; Wang et al., 2016; Gendernalik
et al., 2017). However, little is known about the transmission of
ZIKV via other mosquito genera. From the 1700 mosquito pools
(a total of 11,247 mosquitoes) collected by Diallo et al. (2014) at
the southeastern Senegal region, 31 samples were found positive
for ZIKV. Interestingly, data showed that ZIKV was able to infect
nine other Aedes species other than A. aegypti. This included
the A. furcifer, Aedes luteocephalus, A. africanus, Aedes vittatus,
Aedes taylori, A. dalzieli, Aedes hirsutus, Aedes metallicus, and
Aedes unilinaetus. In addition, ZIKV was also found positive
in Mansonia uniformis, Culex perfuscus, and Anopheles coustani
mosquitoes. Furthermore, the vertical transmission of ZIKV by
A. furcifer indicated the competency of this mosquito species
as an important vector to maintain the circulation of ZIKV
in mosquitoes (Diallo et al., 2014). Ledermann et al. (2014)
have shown that ZIKV is able to infect Aedes hensili, indicating
the potential role of the species in contributing to the viral
transmission during outbreaks. In a recent review, Braack
et al. (2018) have summarized a vast number of Aedes species
(including Aedes jamoti, Aedes opok, Aedes flavicollis, Aedes
graham, Aedes taeniorostris, Aedes tarsalis, A. vittatus, Aedes
dalziella, Aedes fowleri, Aedes minimus, and Aedes neoafricanus)
and some less common vectors including Anopheles gambiae,
Eretmapodites inornatus, and Eretmapodites quinquevittatus,
to be ZIKV competent. On the other hand, A. gambiae,
Anopheles stephensi, and Culex pipiens mosquitoes were shown
to be refractory to ZIKV infection (Dodson and Rasgon, 2017;

Kenney et al., 2017). Dodson et al. (2018) also demonstrated
that the ZIKV strain isolated from Puerto Rico outbreak
in 2015 was unable to infect Anopheles freeborni, Anopheles
quadrimaculatus, and Culex tarsalis mosquitoes which are
predominantly circulate in North America. Interestingly, the
wild-caught female C. tarsalis in Mexico has shown otherwise
(Elizondo-Quiroga et al., 2018).

Controversial results were obtained in Culex quinquefasciatus
species as a competent vector. Guo et al. (2016) have
demonstrated the ability of ZIKV to infect the C. quinquefasciatus
captured in urban areas of China. The study was supported by
a later study where Guedes et al. (2017) reported the ability
of ZIKV to infect the laboratory-reared C. quinquefasciatus
and viruses were successfully isolated from the field-caught
C. quinquefasciatus. A recent study by Elizondo-Quiroga
et al. (2018) has also successfully isolated ZIKV from
C. quinquefasciatus along with other species including
Aedes vexans, Culex coronator, and C. tarsalis. However,
surprisingly, many studies failed to demonstrate the competency
of C. quinquefasciatus as a ZIKV transmission vector (Dodson
and Rasgon, 2017; Duchemin et al., 2017; Kenney et al., 2017;
Roundy et al., 2017), including a recent review by van den
Hurk et al. (2017) which stated that most populations of
C. quinquefasciatus were refractory to ZIKV infection. When
challenged with ZIKV strain of Cambodia 2010 origin, Culex
annulirostris and C. quinquefasciatus mosquitoes were shown
to be refractory to ZIKV infection whereby no ZIKV was
detected in saliva, midgut, and carcass via qRT-PCR and TCID50
(Duchemin et al., 2017). Meanwhile, Lourenço-de-Oliveira
and Failloux (2017) had summarized the competency studies
done on the eight Culex pipens and 10 C. quinquefasciatus
populations across five continents, and both species were
shown to be incompetent in transmitting ZIKV in all studies.
Therefore, careful interpretations and further studies are
required to examine the competency of C. quinquefasciatus
as a transmission vector as many experimental studies have
suggested otherwise. Systematic review study has indicated that
A. aegypti and A. albopictus were the predominant vectors for
ZIKV, while Culex, Anopheles, and most Aedes species were
generally observed to be refractory to ZIKV infection (Epelboin
et al., 2017).

MOSQUITO IMMUNE SYSTEM AGAINST
ZIKA VIRUS INFECTION

Despite the major concern of global health and significant
economic losses, some of the mosquito-borne viral diseases are
still being neglected. Mosquitoes are very permissive to some
important arboviruses which render them an important vector
in transmitting these viruses. However, these viruses neither
result in dramatic pathological conditions nor impair the lifespan
of mosquitoes. Once a mosquito is infected with an arbovirus,
it remains infectious throughout the whole lifespan. As the
transmitting vector, mosquitoes provide optimal conditions that
allow rapid replication of arboviruses, from the midgut to the
hemolymph, subsequently into the fat body, muscles, neural
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tissue, and salivary glands (Girard et al., 2004; Romoser et al.,
2004; Salazar et al., 2007; McElroy et al., 2008).

Among several conserved innate immune responses in
systemic antiviral strategies in mosquitoes, RNA interference
(RNAi) mechanism remains the most heavily relied intracellular
antiviral mechanisms, which have been comprehensively studied
to limit viral propagation in insect vectors (Keene et al., 2004;
Wang et al., 2006; Sánchez-Vargas et al., 2009; Khoo et al., 2010;
Arjona et al., 2011; Cheng et al., 2016). This section focuses on the
possibility of ZIKV regulation in mosquitoes using RNAi system.

Despite the same viral family – Flaviviridae, DENV and ZIKV
may not share similar infection routes in Aedes mosquitoes
(Oliveira et al., 2017). In addition, the persistent mutations
discovered in ZIKV were reported to inhibit cellular antiviral
activities by altering the secondary structure of ZIKV RNA
genome (Yokoyama and Starmer, 2017). However, although
limited study on the role of mosquito RNAi mechanism is
available, scientists believe that RNAi and micro-RNA play
crucial roles in ZIKV regulation (Saldaña et al., 2017). This is
also supported by a recent publication of mosquito symbiont-
mediated RNAi delivery system using Rhodnius prolixus and
Frankliniella occidentalis. These bacteria can be manipulated to
deliver dsRNA and, when ingested, able to compete with wild-
type microflora in mosquito midgut, while mediating systemic
knockdown phenotypes that were transmissible (Whitten et al.,
2016). These RNAi delivery systems using R. prolixus and
F. occidentalis could be adapted in mosquito vectors of ZIKV
to further investigate the roles of miRNA in managing the
replication of ZIKV in Aedes mosquitoes.

In addition to RNAi, the evolutionarily conserved pathways
such as Toll and Imd pathways are also crucial in regulating
arbovirus infection in insects, especially in Drosophila (Tsai et al.,
2008; Costa et al., 2009). It is notably that genomic analyses
revealed some highly conserved regions of Toll and Imd genes
between Drosophila and mosquitoes (Waterhouse et al., 2007;
Bartholomay et al., 2010). In addition, some reported the antiviral
properties of Aedes Toll or Imd pathways on other arboviruses
(Xi et al., 2008; Sim and Dimopoulos, 2010; Luplertlop et al., 2011;
Carissimo et al., 2015). However, the antiviral function of these
mosquito immune mechanisms against ZIKV remains elusive.

The 5’ and 3’ untranslated regions of ZIKV were reported to
play essential roles in viral RNA replication, viral transmissibility,
and host immune modulations (Ng et al., 2017). A recent
study described the possible role of ZIKV non-coding RNAs in
confounding a cellular exonuclease (Akiyama et al., 2016), which
was in line with some previous studies reporting the role of
Flavivirus UTRs in suppressing RNAi machinery in the vectors
(Eulalio et al., 2007; Pijlman et al., 2008; Funk et al., 2010).
These findings were supported by another group of researchers
describing the role of non-coding Flavivirus RNA in displaying
RNAi suppressor activity in their vector and host cells (Schnettler
et al., 2012). In addition, a later publication described the role of
YFV capsid protein in suppressing mosquito RNAi mechanism
(Samuel et al., 2016). These evidences support the hypothesis that
ZIKV, as a newly emerged Flavivirus, can circumvent the RNAi
mechanism in mosquito cells, although some hypothesized that
arboviruses may not need an RNAi suppressing system in order

to establish a persistent infection of the insect host (Umbach and
Cullen, 2009).

To date, there is no report on the elucidation of mosquito
defense mechanism against ZIKV infection. The knowledge gaps
between mosquito innate immune response to ZIKV infection
remained elusive.

RESEARCH GAPS

A strong research attention on ZIKV can be reflected by a recent
PubMed search, with a total of 216 articles published between
1952 and 2015, to an annual publication of 1718 and 1881
articles in the year 2016 and 2017, respectively. Majority of these
articles focus on surveillance studies, which limited to certain
regions where data may not be applicable to others. In addition,
many researchers focus on the mode of transmission between
mosquitoes and vertebrates, including humans, and the natural
history, diagnostics, epidemiology, or clinical manifestations of
ZIKV infections. This section suggests several research areas that
need more focus in the field of ZIKV research.

ZIKV causes severe neurologic complications – Guillain-Barré
syndrome and microcephaly in unborn babies (Oehler et al.,
2014; Gonzalez-Escobar et al., 2018). These important clinical
features gained awareness in the Geneva meeting to highlight the
urgent needs in obtaining a better understanding of the associated
illness and clinical manifestations, strategies in vaccine/drug
design, and development of effective diagnostic tools and vector
control. In addition, since the ZIKV outbreak in 2015, several
WHO meetings have emphasized the lacking of evidence on the
effectiveness of the current vector-control intervention strategies,
such as mass spraying of insecticides, in controlling the spread
of arbovirus transmission. Although the anti-ZIKV effect of
suramin was recently reported (Albulescu et al., 2017), the
existing knowledge on viral tropisms in mosquitoes and the
role of various mosquito organs in the transmission of ZIKV
remained elusive.

Mosquito vectors ingest infectious viral particles into the
midgut during a viremic blood meal. Following infection of
midgut cells, mature arboviral particles are disseminated from
the midgut and ultimately to the salivary glands for an effective
infection, followed by salivary secretion to the subsequent
hosts. These processes were well studied in other members of
Flaviviruses or mosquito-borne viruses (Zhang et al., 2010; Tham
et al., 2014, 2015; Cime-Castillo et al., 2015; Kantor et al., 2017;
Valderrama et al., 2017), but relatively less efforts are found on
ZIKV. In addition, multiple infection of arboviruses (Rückert
et al., 2017) and transovarial dissemination of ZIKV should gain
more attentions, which can be exploited for novel biologic and
genetic control strategies.

Manipulation of mosquito cellular machineries, such as
influencing the normal RNAi systems, has been shown effective
in reducing vector compatibility to arboviruses (Qsim et al.,
2017; Terradas et al., 2017). Several recent techniques such as
sterile insect technique (Franz et al., 2014; Qsim et al., 2017) or
obligatory intracellular Wolbachia (Ye et al., 2015; Terradas et al.,
2017) have also been shown successful in reducing the vector
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competence of A. aegypti. However, concerns were raised on the
effectiveness, stability, and loss of virus resistance phenotype in
mosquito vectors over time (Franz et al., 2009; Wilke et al., 2018),
and the efficiency of these novel approaches in managing the
transmission of ZIKV requires more investigations.

In contrast to severe disease manifestations observed in
vertebrates, mosquitoes evolved to control viral tropisms and
replication to a non-pathogenic level without compromising
their fitness throughout the lifespan, while allowing efficient viral
transmission from one host to another (Hegde et al., 2015; Cheng
et al., 2016). A recent publication on transcription profiling of
defensins of A. aegypti has suggested differences in antiviral
defense response when mosquito was exposed to CHIKV and
ZIKV (Zhao et al., 2018) Therefore, subsequent studies should
also specifically focus on vector immunity-ZIKV interplay to
deepen the understanding of ZIKV tropism, dissemination, and
replication in mosquito vectors.

CONCLUSION

Among all the economically important arboviruses, research
focus on ZIKV tropism and transmission in mosquito cells is still
lacking. As supported by the recent “Zika Virus Research Agenda”
by WHO, continuous research attentions with sustainable
resources are needed to support the discovery of novel molecular

interactions, such as protein–protein interactions or protein–
nucleic acid interactions, between ZIKV and Aedes mosquitoes.
In addition, rapid and efficient feedbacks of such research
activities are needed to nurture and support the development of
novel strategies/tools in vector control.

AUTHOR CONTRIBUTIONS

The collaborations between all four authors helped in developing
the idea about the review paper. H-WT structured the
manuscript, did the majority of the writing, and continuously
received comments and amendments from VB, MO, and M-FC
throughout the writing process, including several meetings with
all four authors present. The manuscript has been finalized and
checked by all four authors prior to submitting.

FUNDING

M-FC contributed to this review with the support of Centre for
Virus and Vaccine Research, School of Science and Technology,
Sunway University. MO and VB were supported by Virus–Host
Interaction Research Group, Monash University Malaysia. H-WT
was supported by the Faculty of Pharmacy and Research and
Innovation Management Center (RIMC), SEGi University.

REFERENCES
Adekolu-John, E. O., and Fagbami, A. H. (1983). Arthropod-borne virus antibodies

in sera of residents of Kainji Lake Basin, Nigeria 1980. Trans. R. Soc. Trop. Med.
Hyg. 77, 149–151.

Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., and Elena, S. F. (2008).
Virus adaptation by manipulation of host’s gene expression. PLoS One 3:e2397.
doi: 10.1371/journal.pone.0002397

Aitken, T. H., Tesh, R. B., Beaty, B. J., and Rosen, L. (1979). Transovarial
transmission of yellow fever virus by mosquitoes (Aedes aegypti). Am. J. Trop.
Med. Hyg. 28, 119–121. doi: 10.4269/ajtmh.1979.28.119

Akiyama, B. M., Laurence, H. M., Massey, A. R., Costantino, D. A., Xie, X., Yang, Y.,
et al. (2016). Zika virus produces noncoding RNAs using a multi-pseudoknot
structure that confounds a cellular exonuclease. Science 354, 1148–1152.
doi: 10.1126/science.aah3963

Albulescu, I. C., Kovacikova, K., Tas, A., Snijder, E. J., and van Hemert, M. J. (2017).
Suramin inhibits Zika virus replication by interfering with virus attachment
and release of infectious particles. Antiviral Res. 143, 230–236. doi: 10.1016/j.
antiviral.2017.04.016

Arjona, A., Wang, P., Montgomery, R. R., and Fikrig, E. (2011). Innate
immune control of West Nile virus infection. Cell. Microbiol. 13, 1648–1658.
doi: 10.1111/j.1462-5822.2011.01649.x

Barber, G. (2001). Host defense, viruses and apoptosis. Cell Death Differ. 8,
113–126. doi: 10.1038/sj.cdd.4400823

Bartholomay, L. C., Waterhouse, R. M., Mayhew, G. F., Campbell, C. L., Michel, K.,
Zou, Z., et al. (2010). Pathogenomics of Culex quinquefasciatus and meta-
analysis of infection responses to diverse pathogens. Science 330, 88–90.
doi: 10.1126/science.1193162

Bouri, N., Sell, T. K., Franco, C., Adalja, A. A., Henderson, D. A., and Hynes,
N. A. (2012). Return of epidemic dengue in the United States: implications for
the public health practitioner. Public Health Rep. 127, 259–266. doi: 10.1177/
003335491212700305

Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R., and de Jager, C.
(2018). Mosquito-borne arboviruses of African origin: review of key viruses and
vectors. Parasit. Vectors 11:29. doi: 10.1186/s13071-017-2559-9

Butt, A. M., Nasrullah, I., Qamar, R., and Tong, Y. (2016). Evolution of codon usage
in Zika virus genomes is host and vector specific. Emerg. Microbes Infect. 5:e107.
doi: 10.1038/emi.2016.106

Calvez, E., Guillaumot, L., Millet, L., Marie, J., Bossin, H., Rama, V., et al. (2016).
Genetic diversity and phylogeny of Aedes aegypti, the main arbovirus vector
in the Pacific. PLoS Negl. Trop. Dis. 10:e0004374. doi: 10.1371/journal.pntd.
0004374

Carissimo, G., Pondeville, E., McFarlane, M., Dietrich, I., Mitri, C.,
Bischoff, E., et al. (2015). Antiviral immunity of Anopheles gambiae
is highly compartmentalized, with distinct roles for RNA interference
and gut microbiota. Proc. Natl. Acad. Sci. U.S.A. 112, E176–E185.
doi: 10.1073/pnas.1412984112

Chávez, J. H., Silva, J. R., Amarilla, A. A., and Moraes Figueiredo, L. T. (2010).
Domain III peptides from Flavivirus envelope protein are useful antigens for
serologic diagnosis and targets for immunization. Biologicals 38, 613–618.
doi: 10.1016/j.biologicals.2010.07.004

Cheng, G., Liu, Y., Wang, P., and Xiao, X. (2016). Mosquito defense strategies
against viral infection. Trends Parasitol. 32, 177–186. doi: 10.1016/j.pt.2015.09.
009

Cime-Castillo, J., Delannoy, P., Mendoza-Hernández, G., Monroy-Martínez, V.,
Harduin-Lepers, A., Lanz-Mendoza, H., et al. (2015). Sialic acid expression
in the mosquito Aedes aegypti and its possible role in dengue virus-vector
interactions. Biomed Res. Int. 2015:504187. doi: 10.1155/2015/504187

Ciota, A. T., Bialosuknia, S. M., Ehrbar, D. J., and Kramer, L. D. (2017). Vertical
transmission of Zika virus by Aedes aegypti and Ae. albopictus mosquitoes.
Emerg. Infect. Dis. 23, 880–882. doi: 10.3201/eid2305.162041

Costa, A., Jan, E., Sarnow, P., and Schneider, D. (2009). The Imd pathway is
involved in antiviral immune responses in Drosophila. PLoS One 4:e0007436.
doi: 10.1371/journal.pone.0007436

Darwish, M. A., Hoogstraal, H., Roberts, T. J., Ahmed, I. P., and Omar, F.
(1983). A sero-epidemiological survey for certain arboviruses (Togaviridae)
in Pakistan. Trans. R. Soc. Trop. Med. Hyg. 77, 442–445. doi: 10.1016/0035-
9203(83)90106-2

de Araújo, T. V. B., de Alencar Ximenes, R. A., de Barros Miranda-Filho, D.,
Souza, W. V., Montarroyos, U. R., de Melo, A. P. L., et al. (2016). Association

Frontiers in Microbiology | www.frontiersin.org 7 May 2018 | Volume 9 | Article 1040

https://doi.org/10.1371/journal.pone.0002397
https://doi.org/10.4269/ajtmh.1979.28.119
https://doi.org/10.1126/science.aah3963
https://doi.org/10.1016/j.antiviral.2017.04.016
https://doi.org/10.1016/j.antiviral.2017.04.016
https://doi.org/10.1111/j.1462-5822.2011.01649.x
https://doi.org/10.1038/sj.cdd.4400823
https://doi.org/10.1126/science.1193162
https://doi.org/10.1177/003335491212700305
https://doi.org/10.1177/003335491212700305
https://doi.org/10.1186/s13071-017-2559-9
https://doi.org/10.1038/emi.2016.106
https://doi.org/10.1371/journal.pntd.0004374
https://doi.org/10.1371/journal.pntd.0004374
https://doi.org/10.1073/pnas.1412984112
https://doi.org/10.1016/j.biologicals.2010.07.004
https://doi.org/10.1016/j.pt.2015.09.009
https://doi.org/10.1016/j.pt.2015.09.009
https://doi.org/10.1155/2015/504187
https://doi.org/10.3201/eid2305.162041
https://doi.org/10.1371/journal.pone.0007436
https://doi.org/10.1016/0035-9203(83)90106-2
https://doi.org/10.1016/0035-9203(83)90106-2
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01040 May 18, 2018 Time: 16:54 # 8

Tham et al. Zika Virus–Vector Relationship and Its Research Gaps

between Zika virus infection and microcephaly in Brazil, January to May, 2016:
preliminary report of a case-control study. Lancet Infect. Dis. 16, 1356–1363.
doi: 10.1016/S1473-3099(16)30318-8

de Paula Freitas, B., de Oliveira Dias, J. R., Prazeres, J., Sacramento, G. A., Ko,
A. I., Maia, M., et al. (2016). Ocular findings in infants with microcephaly
associated with presumed Zika virus congenital infection in Salvador, Brazil.
JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2016.0267 [Epub ahead of
print].

Diallo, D., Sall, A. A., Diagne, C. T., Faye, O., Faye, O., Ba, Y., et al. (2014). Zika virus
emergence in mosquitoes in southeastern Senegal, 2011. PLoS One 9:e0109442.
doi: 10.1371/journal.pone.0109442

Dick, G. W. (1952). Zika virus. II. Pathogenicity and physical properties.
Trans. R. Soc. Trop. Med. Hyg. 46, 521–534. doi: 10.1016/0035-9203(52)
90043-6

Dick, G. W., Kitchen, S. F., and Haddow, A. J. (1952). Zika virus (I). Isolations
and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520.
doi: 10.1016/0035-9203(52)90042-4

Dodson, B. L., Pujhari, S., and Rasgon, J. L. (2018). Vector competence of selected
North American Anopheles and Culex mosquitoes for Zika virus. PeerJ 6:e4324.
doi: 10.7717/peerj.4324

Dodson, B. L., and Rasgon, J. L. (2017). Vector competence of Anopheles and Culex
mosquitoes for Zika virus. PeerJ 5:e3096. doi: 10.7717/peerj.3096

Doi, R., Shirasaki, A., and Sasa, M. (1967). The mode of development of Japanese
encephalitis virus in the mosquito Culex tritaeniorhynchus summorosus as
observed by the fluorescent antibody technique. Jpn. J. Exp. Med. 37,
227–238.

Duchemin, J.-B., Mee, P. T., Lynch, S. E., Vedururu, R., Trinidad, L., and
Paradkar, P. (2017). Zika vector transmission risk in temperate Australia:
a vector competence study. Virol. J. 14:108. doi: 10.1186/s12985-017-
0772-y

Duffy, M. R., Chen, T.-H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti,
R. S., et al. (2009). Zika virus outbreak on yap island, Federated States
of Micronesia. N. Engl. J. Med. 360, 2536–2543. doi: 10.1056/NEJMoa080
5715

Ebi, K. L., and Nealon, J. (2016). Dengue in a changing climate. Environ. Res. 151,
115–123. doi: 10.1016/j.envres.2016.07.026

Elizondo-Quiroga, D., Medina-Sánchez, A., Sánchez-González, J. M., Eckert, K. A.,
Villalobos-Sánchez, E., Navarro-Zúñiga, A. R., et al. (2018). Zika virus in
salivary glands of five different species of wild-caught mosquitoes from Mexico.
Sci. Rep. 8:809. doi: 10.1038/s41598-017-18682-3

Epelboin, Y., Talaga, S., Epelboin, L., and Dusfour, I. (2017). Zika virus: an updated
review of competent or naturally infected mosquitoes. PLoS Negl. Trop. Dis.
11:e0005933. doi: 10.1371/journal.pntd.0005933

Eulalio, A., Behm-Ansmant, I., Schweizer, D., and Izaurralde, E. (2007). P-Body
formation is a consequence, not the cause, of RNA-mediated gene silencing.
Mol. Cell. Biol. 27, 3970–3981. doi: 10.1128/MCB.00128-07

Fagbami, A. H. (1979). Zika virus infections in Nigeria: virological and
seroepidemiological investigations in Oyo State. J. Hyg. 83, 213–219.
doi: 10.1017/S0022172400025997

Faye, O., Freire, C. C. M., Iamarino, A., Faye, O., Oliveira, J. V. C., de Diallo, M.,
et al. (2014). Molecular evolution of Zika virus during its emergence in the
20th century. PLoS Negl. Trop. Dis. 8:e0002636. doi: 10.1371/journal.pntd.000
2636

Franz, A. W. E., Clem, R. J., and Passarelli, A. L. (2014). Novel genetic and
molecular tools for the investigation and control of dengue virus transmission
by mosquitoes. Curr. Trop. Med. Rep. 1, 21–31. doi: 10.1007/s40475-013-
0007-2

Franz, A. W. E., Sanchez-Vargas, I., Piper, J., Smith, M. R., Khoo, C. C. H., James,
A. A., et al. (2009). Stability and loss of a virus resistance phenotype over time
in transgenic mosquitoes harbouring an antiviral effector gene. Insect Mol. Biol.
18, 661–672. doi: 10.1111/j.1365-2583.2009.00908.x

Freire, C. C. M., Palmisano, G., Braconi, C. T., Cugola, F. R., Russo, F. B., Beltrao-
Braga, P. C., et al. (2018). NS1 codon usage adaptation to humans in pandemic
Zika virus. Mem. Inst. Oswaldo Cruz. 113, 1–8. doi: 10.1590/0074-027601
70385

Funk, A., Truong, K., Nagasaki, T., Torres, S., Floden, N., Melian, E. B., et al. (2010).
RNA structures required for production of subgenomic flavivirus RNA. J. Virol.
84, 11407–11417. doi: 10.1128/JVI.01159-10

Gendernalik, A., Weger-Lucarelli, J., Garcia Luna, S. M., Fauver, J. R., Rückert, C.,
Murrieta, R. A., et al. (2017). American Aedes vexans mosquitoes are competent
vectors of Zika virus. Am. J. Trop. Med. Hyg. 96, 1338–1340. doi: 10.4269/ajtmh.
16-0963

Girard, Y. A., Klingler, K. A., and Higgs, S. (2004). West Nile virus dissemination
and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector
Borne Zoonotic Dis. 4, 109–122. doi: 10.1089/1530366041210729

Gonzalez-Escobar, G., Valadere, A. M., Adams, R., Polson-Edwards, K., Hinds,
A. Q. J., Misir, A., et al. (2018). Prolonged Zika virus viremia in a patient with
Guillain-Barré syndrome in Trinidad and Tobago. Rev. Panam. Salud Publica
41:e136.

Gould, D. J., Barnett, H. C., and Suyemoto, W. (1962). Transmission of Japanese
encephalitis virus by Culex gelidus Theobald. Trans. R. Soc. Trop. Med. Hyg. 56,
429–435. doi: 10.1016/0035-9203(62)90018-4

Govero, J., Esakky, P., Scheaffer, S. M., Fernandez, E., Drury, A., Platt, D. J., et al.
(2016). Zika virus infection damages the testes in mice. Nature 540, 438–442.
doi: 10.1038/nature20556

Grard, G., Caron, M., Mombo, I. M., Nkoghe, D., Ondo, S. M., Jiolle, D., et al.
(2014). Zika virus in Gabon (Central Africa) – 2007: a new threat from
Aedes albopictus?? PLoS Negl. Trop. Dis. 8:e0002681. doi: 10.1371/journal.pntd.
0002681

Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev.
11, 480–496.

Gubler, D. J. (2004). The changing epidemiology of yellow fever and dengue,
1900 to 2003: full circle? Comp. Immunol. Microbiol. Infect. Dis. 27, 319–330.
doi: 10.1016/j.cimid.2004.03.013

Guedes, D. R., Paiva, M. H., Donato, M. M., Barbosa, P. P., Krokovsky, L.,
Rocha, S. W. D. S., et al. (2017). Zika virus replication in the mosquito Culex
quinquefasciatus in Brazil. Emerg. Microbes Infect. 6:e69. doi: 10.1038/emi.
2017.59

Guo, X.-X., Li, C.-X., Deng, Y.-Q., Xing, D., Liu, Q.-M., Wu, Q., et al. (2016).
Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg.
Microbes Infect. 5:e102. doi: 10.1038/emi.2016.102

Hammon, W. M., Schrack, W. D., and Sather, G. E. (1958). Serological survey for
a arthropod-borne virus infections in the Philippines. Am. J. Trop. Med. Hyg. 7,
323–328. doi: 10.4269/ajtmh.1958.7.323

Heang, V., Yasuda, C. Y., Sovann, L., Haddow, A. D., Travassos da Rosa, A. P., Tesh,
R. B., et al. (2012). Zika virus infection, Cambodia, 2010. Emerg. Infect. Dis. 18,
349–351. doi: 10.3201/eid1802.111224

Hegde, S., Rasgon, J. L., and Hughes, G. L. (2015). The microbiome modulates
arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102.
doi: 10.1016/j.coviro.2015.08.011

Heinz, F. X., and Stiasny, K. (2017). The antigenic structure of Zika virus
and its relation to other Flaviviruses: implications for infection and
immunoprophylaxis. Microbiol. Mol. Biol. Rev. 81:e00055-16. doi: 10.1128/
MMBR.00055-16

Hennessey, M. (2016). Zika virus spreads to new areas — region of the Americas,
May 2015–January 2016. Morb. Mortal. Wkly. Rep. 65, 55–58. doi: 10.15585/
mmwr.mm6503e1er

Ioos, S., Mallet, H.-P., Leparc Goffart, I., Gauthier, V., Cardoso, T., and Herida, M.
(2014). Current Zika virus epidemiology and recent epidemics. Méd. Mal.
Infect. 44, 302–307. doi: 10.1016/j.medmal.2014.04.008

Jan, C., Languillat, G., Renaudet, J., and Robin, Y. (1978). [A serological survey of
arboviruses in Gabon]. Bull. Soc. Pathol. Exot. Filiales 71, 140–146.

Jia, F., Zhu, X., and Xu, F. (2016). A single adaptive point mutation in Japanese
encephalitis virus capsid is sufficient to render the virus as a stable vector for
gene delivery. Virology 490, 109–118. doi: 10.1016/j.virol.2016.01.001

Kantor, A. M., Dong, S., Held, N. L., Ishimwe, E., Passarelli, A. L., Clem, R. J., et al.
(2017). Identification and initial characterization of matrix metalloproteinases
in the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 26, 113–126.
doi: 10.1111/imb.12275

Keene, K. M., Foy, B. D., Sanchez-Vargas, I., Beaty, B. J., Blair, C. D., and Olson,
K. E. (2004). RNA interference acts as a natural antiviral response to O’nyong-
nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae.
Proc. Natl. Acad. Sci. U.S.A. 101, 17240–17245. doi: 10.1073/pnas.040698
3101

Kenney, J. L., Romo, H., Duggal, N. K., Tzeng, W.-P., Burkhalter, K. L., Brault, A. C.,
et al. (2017). Transmission incompetence of Culex quinquefasciatus and Culex

Frontiers in Microbiology | www.frontiersin.org 8 May 2018 | Volume 9 | Article 1040

https://doi.org/10.1016/S1473-3099(16)30318-8
https://doi.org/10.1001/jamaophthalmol.2016.0267
https://doi.org/10.1371/journal.pone.0109442
https://doi.org/10.1016/0035-9203(52)90043-6
https://doi.org/10.1016/0035-9203(52)90043-6
https://doi.org/10.1016/0035-9203(52)90042-4
https://doi.org/10.7717/peerj.4324
https://doi.org/10.7717/peerj.3096
https://doi.org/10.1186/s12985-017-0772-y
https://doi.org/10.1186/s12985-017-0772-y
https://doi.org/10.1056/NEJMoa0805715
https://doi.org/10.1056/NEJMoa0805715
https://doi.org/10.1016/j.envres.2016.07.026
https://doi.org/10.1038/s41598-017-18682-3
https://doi.org/10.1371/journal.pntd.0005933
https://doi.org/10.1128/MCB.00128-07
https://doi.org/10.1017/S0022172400025997
https://doi.org/10.1371/journal.pntd.0002636
https://doi.org/10.1371/journal.pntd.0002636
https://doi.org/10.1007/s40475-013-0007-2
https://doi.org/10.1007/s40475-013-0007-2
https://doi.org/10.1111/j.1365-2583.2009.00908.x
https://doi.org/10.1590/0074-02760170385
https://doi.org/10.1590/0074-02760170385
https://doi.org/10.1128/JVI.01159-10
https://doi.org/10.4269/ajtmh.16-0963
https://doi.org/10.4269/ajtmh.16-0963
https://doi.org/10.1089/1530366041210729
https://doi.org/10.1016/0035-9203(62)90018-4
https://doi.org/10.1038/nature20556
https://doi.org/10.1371/journal.pntd.0002681
https://doi.org/10.1371/journal.pntd.0002681
https://doi.org/10.1016/j.cimid.2004.03.013
https://doi.org/10.1038/emi.2017.59
https://doi.org/10.1038/emi.2017.59
https://doi.org/10.1038/emi.2016.102
https://doi.org/10.4269/ajtmh.1958.7.323
https://doi.org/10.3201/eid1802.111224
https://doi.org/10.1016/j.coviro.2015.08.011
https://doi.org/10.1128/MMBR.00055-16
https://doi.org/10.1128/MMBR.00055-16
https://doi.org/10.15585/mmwr.mm6503e1er
https://doi.org/10.15585/mmwr.mm6503e1er
https://doi.org/10.1016/j.medmal.2014.04.008
https://doi.org/10.1016/j.virol.2016.01.001
https://doi.org/10.1111/imb.12275
https://doi.org/10.1073/pnas.0406983101
https://doi.org/10.1073/pnas.0406983101
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01040 May 18, 2018 Time: 16:54 # 9

Tham et al. Zika Virus–Vector Relationship and Its Research Gaps

pipiens pipiens from North America for Zika virus. Am. J. Trop. Med. Hyg. 96,
1235–1240. doi: 10.4269/ajtmh.16-0865

Khoo, C. C. H., Piper, J., Sanchez-Vargas, I., Olson, K. E., and Franz, A. W. E.
(2010). The RNA interference pathway affects midgut infection- and escape
barriers for Sindbis virus in Aedes aegypti. BMC Microbiol. 10:130. doi: 10.1186/
1471-2180-10-130

Kutsuna, S., Kato, Y., Takasaki, T., Moi, M., Kotaki, A., Uemura, H., et al. (2014).
Two cases of Zika fever imported from French Polynesia to Japan, December
2013 to January 2014 [corrected]. Euro Surveill. 19:20683. doi: 10.2807/1560-
7917.ES2014.19.4.20683

Kwong, J. C., Druce, J. D., and Leder, K. (2013). Zika virus infection acquired
during brief travel to Indonesia. Am. J. Trop. Med. Hyg. 89, 516–517.
doi: 10.4269/ajtmh.13-0029

Lanciotti, R. S., Kosoy, O. L., Laven, J. J., Velez, J. O., Lambert, A. J., Johnson,
A. J., et al. (2008). Genetic and serologic properties of Zika virus associated with
an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239.
doi: 10.3201/eid1408.080287

Leake, C. J., and Johnson, R. T. (1987). The pathogenesis of Japanese encephalitis
virus in Culex tritaeniorhynchus mosquitoes. Trans R. Soc. Trop. Med. Hyg. 81,
681–685. doi: 10.1016/0035-9203(87)90454-8

Ledermann, J. P., Guillaumot, L., Yug, L., Saweyog, S. C., Tided, M., Machieng, P.,
et al. (2014). Aedes hensilli as a potential vector of Chikungunya and
Zika viruses. PLoS Negl. Trop. Dis. 8:e0003188. doi: 10.1371/journal.pntd.000
3188

Leung, G. H. Y., Baird, R. W., Druce, J., and Anstey, N. M. (2015). Zika virus
infection in Australia following a monkey bite in Indonesia. Southeast Asian
J. Trop. Med. Public Health 46, 460–464.

Li, C.-X., Guo, X.-X., Deng, Y.-Q., Xing, D., Sun, A.-J., Liu, Q.-M., et al. (2017).
Vector competence and transovarial transmission of two Aedes aegypti strains
to Zika virus. Emerg. Microbes Infect. 6:e23. doi: 10.1038/emi.2017.8

Linthicum, K. J., Platt, K., Myint, K. S., Lerdthusnee, K., Innis, B. L., and Vaughn,
D. W. (1996). Dengue 3 virus distribution in the mosquito Aedes aegypti: an
immunocytochemical study. Med. Vet. Entomol. 10, 87–92. doi: 10.1111/j.1365-
2915.1996.tb00086.x

Liu, J., Liu, Y., Nie, K., Du, S., Qiu, J., Pang, X., et al. (2016). Flavivirus NS1 protein
in infected host sera enhances viral acquisition by mosquitoes. Nat. Microbiol.
1:16087. doi: 10.1038/nmicrobiol.2016.87

Liu, Y., Liu, J., Du, S., Shan, C., Nie, K., Zhang, R., et al. (2017). Evolutionary
enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545,
482–486. doi: 10.1038/nature22365

Lourenço-de-Oliveira, R., and Failloux, A.-B. (2017). Lessons learned on Zika virus
vectors. PLoS Negl. Trop. Dis. 11:e0005511. doi: 10.1371/journal.pntd.0005511

Luplertlop, N., Surasombatpattana, P., Patramool, S., Dumas, E.,
Wasinpiyamongkol, L., Saune, L., et al. (2011). Induction of a peptide with
activity against a broad spectrum of pathogens in the Aedes aegypti salivary
gland, following Infection with Dengue Virus. PLoS Pathog. 7:e1001252.
doi: 10.1371/journal.ppat.1001252

MacNamara, F. N. (1954). Zika virus?: a report on three cases of human infection
during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 48,
139–145. doi: 10.1016/0035-9203(54)90006-1

Marchette, N. J., Garcia, R., and Rudnick, A. (1969). Isolation of Zika virus from
Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 18, 411–415.
doi: 10.4269/ajtmh.1969.18.411

Marcondes, C. B., and Ximenes, M. D. F. F. (2016). Zika virus in Brazil and the
danger of infestation by Aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med.
Trop. 49, 4–10. doi: 10.1590/0037-8682-0220-2015

Martins, N. E., Faria, V. G., Nolte, V., Schlötterer, C., Teixeira, L., Sucena, É.,
et al. (2014). Host adaptation to viruses relies on few genes with different
cross-resistance properties. Proc. Natl. Acad. Sci. U.S.A. 111, 5938–5943. doi:
10.1073/pnas.1400378111

McCarthy, M. (2016). Zika virus was transmitted by sexual contact in Texas, health
officials report. BMJ 352:i720. doi: 10.1136/bmj.i720

McCrae, A. W., and Kirya, B. G. (1982). Yellow fever and Zika virus epizootics
and enzootics in Uganda. Trans. R. Soc. Trop. Med. Hyg. 76, 552–562.
doi: 10.1016/0035-9203(82)90161-4

McElroy, K. L., Girard, Y. A., McGee, C. E., Tsetsarkin, K. A., Vanlandingham,
D. L., and Higgs, S. (2008). Characterization of the antigen distribution and
tissue tropisms of three phenotypically distinct yellow fever virus variants in

orally infected Aedes aegypti mosquitoes. Vector Borne Zoonotic Dis. 8, 675–687.
doi: 10.1089/vbz.2007.0269

Mlakar, J., Korva, M., Tul, N., Popoviæ, M., Poljšak-Prijatelj, M., Mraz, J., et al.
(2016). Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958.
doi: 10.1056/NEJMoa1600651

Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. (2004). Structure of the
dengue virus envelope protein after membrane fusion. Nature 427, 313–319.
doi: 10.1038/nature02165

Monlun, E., Zeller, H., Le Guenno, B., Traoré-Lamizana, M., Hervy, J. P., Adam, F.,
et al. (1993). [Surveillance of the circulation of arbovirus of medical interest in
the region of eastern Senegal]. Bull. Soc. Pathol. Exot. 1990, 21–28.

Mourya, D. T., and Mishra, A. C. (2000). Antigen distribution pattern of Japanese
encephalitis virus in Culex tritaeniorhynchus, C. vishnui & C. pseudovishnui.
Indian J. Med. Res. 111, 157–161.

Musso, D. (2015). Zika virus transmission from French Polynesia to Brazil. Emerg.
Infect. Dis. 21:1887. doi: 10.3201/eid2110.151125

Musso, D., Roche, C., Robin, E., Nhan, T., Teissier, A., and Cao-Lormeau, V.-
M. (2015). Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21,
359–361. doi: 10.3201/eid2102.141363

Ng, W. C., Soto-Acosta, R., Bradrick, S. S., Garcia-Blanco, M. A., and Ooi, E. E.
(2017). The 5’ and 3’ untranslated regions of the flaviviral genome. Viruses
9:137. doi: 10.3390/v9060137

Oehler, E., Watrin, L., Larre, P., Leparc-Goffart, I., Lastère, S., Valour, F., et al.
(2014). Zika virus infection complicated by Guillain-Barré syndrome – case
report, French Polynesia, December 2013. Euro Surveill. 19:20720. doi: 10.2807/
1560-7917.ES2014.19.9.20720

Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O.,
Sorgine, M. H. F., Alvarenga, P. H., et al. (2017). Catalase protects Aedes aegypti
from oxidative stress and increases midgut infection prevalence of Dengue
but not Zika. PLoS Negl. Trop. Dis. 11:e0005525. doi: 10.1371/journal.pntd.000
5525

Olson, J. G., Ksiazek, T. G., Suhandiman, and Triwibowo. (1981). Zika virus, a
cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg 75,
389–393. doi: 10.1016/0035-9203(81)90100-0

Petersen, E., Wilson, M. E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., et al.
(2016). Rapid spread of Zika virus in the Americas - implications for public
health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int.
J. Infect. Dis. 44, 11–15. doi: 10.1016/j.ijid.2016.02.001

Pijlman, G. P., Funk, A., Kondratieva, N., Leung, J., Torres, S., van der Aa, L.,
et al. (2008). A highly structured, nuclease-resistant, noncoding RNA produced
by flaviviruses is required for pathogenicity. Cell Host Microbe 4, 579–591.
doi: 10.1016/j.chom.2008.10.007

Plauzolles, A., Lucas, M., and Gaudieri, S. (2015). Influence of host resistance on
viral adaptation: hepatitis C virus as a case study. Infect. Drug Resist. 8, 63–74.
doi: 10.2147/IDR.S49891

Pond, W. L. (1963). Arthropod-borne virus antibodies in sera from residents of
South-East Asia. Trans. R. Soc. Trop. Med. Hyg. 57, 364–371. doi: 10.1016/0035-
9203(63)90100-7

Pyke, A. T., Daly, M. T., Cameron, J. N., Moore, P. R., Taylor, C. T.,
Hewitson, G. R., et al. (2014). Imported Zika virus infection from the cook
islands into Australia, 2014. PLoS Curr. 6. doi: 10.1371/currents.outbreaks.
4635a54dbffba2156fb2fd76dc49f65e

Qsim, M., Ashfaq, U. A., Yousaf, M. Z., Masoud, M. S., Rasul, I., Noor, N.,
et al. (2017). Genetically modified Aedes aegypti to control dengue:
a review. Crit. Rev. Eukaryot. Gene Expr. 27, 331–340. doi: 10.1615/
CritRevEukaryotGeneExpr.2017019937

Robin, Y., and Mouchet, J. (1975). [Serological and entomological study
on yellow fever in Sierra Leone]. Bull. Soc. Pathol. Exot. Filiales 68,
249–258.

Rodriguez-Morales, A. J. (2015). Zika: the new arbovirus threat for Latin America.
J. Infect. Dev. Ctries. 9, 684–685. doi: 10.3855/jidc.7230

Romoser, W. S., Wasieloski, L. P., Pushko, P., Kondig, J. P., Lerdthusnee, K.,
Neira, M., et al. (2004). Evidence for arbovirus dissemination conduits from
the mosquito (Diptera: Culicidae) midgut. J. Med. Entomol. 41, 467–475. doi:
10.1603/0022-2585-41.3.467

Roth, A., Mercier, A., Lepers, C., Hoy, D., Duituturaga, S., Benyon, E., et al.
(2014). Concurrent outbreaks of dengue, chikungunya and Zika virus infections
- an unprecedented epidemic wave of mosquito-borne viruses in the Pacific

Frontiers in Microbiology | www.frontiersin.org 9 May 2018 | Volume 9 | Article 1040

https://doi.org/10.4269/ajtmh.16-0865
https://doi.org/10.1186/1471-2180-10-130
https://doi.org/10.1186/1471-2180-10-130
https://doi.org/10.2807/1560-7917.ES2014.19.4.20683
https://doi.org/10.2807/1560-7917.ES2014.19.4.20683
https://doi.org/10.4269/ajtmh.13-0029
https://doi.org/10.3201/eid1408.080287
https://doi.org/10.1016/0035-9203(87)90454-8
https://doi.org/10.1371/journal.pntd.0003188
https://doi.org/10.1371/journal.pntd.0003188
https://doi.org/10.1038/emi.2017.8
https://doi.org/10.1111/j.1365-2915.1996.tb00086.x
https://doi.org/10.1111/j.1365-2915.1996.tb00086.x
https://doi.org/10.1038/nmicrobiol.2016.87
https://doi.org/10.1038/nature22365
https://doi.org/10.1371/journal.pntd.0005511
https://doi.org/10.1371/journal.ppat.1001252
https://doi.org/10.1016/0035-9203(54)90006-1
https://doi.org/10.4269/ajtmh.1969.18.411
https://doi.org/10.1590/0037-8682-0220-2015
https://doi.org/10.1073/pnas.1400378111
https://doi.org/10.1073/pnas.1400378111
https://doi.org/10.1136/bmj.i720
https://doi.org/10.1016/0035-9203(82)90161-4
https://doi.org/10.1089/vbz.2007.0269
https://doi.org/10.1056/NEJMoa1600651
https://doi.org/10.1038/nature02165
https://doi.org/10.3201/eid2110.151125
https://doi.org/10.3201/eid2102.141363
https://doi.org/10.3390/v9060137
https://doi.org/10.2807/1560-7917.ES2014.19.9.20720
https://doi.org/10.2807/1560-7917.ES2014.19.9.20720
https://doi.org/10.1371/journal.pntd.0005525
https://doi.org/10.1371/journal.pntd.0005525
https://doi.org/10.1016/0035-9203(81)90100-0
https://doi.org/10.1016/j.ijid.2016.02.001
https://doi.org/10.1016/j.chom.2008.10.007
https://doi.org/10.2147/IDR.S49891
https://doi.org/10.1016/0035-9203(63)90100-7
https://doi.org/10.1016/0035-9203(63)90100-7
https://doi.org/10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e
https://doi.org/10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019937
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019937
https://doi.org/10.3855/jidc.7230
https://doi.org/10.1603/0022-2585-41.3.467
https://doi.org/10.1603/0022-2585-41.3.467
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01040 May 18, 2018 Time: 16:54 # 10

Tham et al. Zika Virus–Vector Relationship and Its Research Gaps

2012-2014. Euro Surveill. 19:20929. doi: 10.2807/1560-7917.ES2014.19.41.2
0929

Roundy, C. M., Azar, S. R., Brault, A. C., Ebel, G. D., Failloux, A.-B.,
Fernandez-Salas, I., et al. (2017). Lack of evidence for Zika virus transmission
by Culex mosquitoes. Emerg. Microbes Infect. 6:e90. doi: 10.1038/emi.20
17.85

Rückert, C., Weger-Lucarelli, J., Garcia-Luna, S. M., Young, M. C., Byas, A. D.,
Murrieta, R. A., et al. (2017). Impact of simultaneous exposure to arboviruses
on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun.
8:15412. doi: 10.1038/ncomms15412

Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E., and Beaty,
B. J. (2007). Dengue virus type 2: replication and tropisms in orally
infected Aedes aegypti mosquitoes. BMC Microbiol. 7:9. doi: 10.1186/1471-21
80-7-9

Saldaña, M. A., Etebari, K., Hart, C. E., Widen, S. G., Wood, T. G., Thangamani, S.,
et al. (2017). Zika virus alters the microRNA expression profile and elicits an
RNAi response in Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 11:e0005760.
doi: 10.1371/journal.pntd.0005760

Saluzzo, J. F., Ivanoff, B., Languillat, G., and Georges, A. J. (1982). [Serological
survey for arbovirus antibodies in the human and simian populations of the
South-East of Gabon (author’s transl)]. Bull. Soc. Pathol. Exot. Filiales 75,
262–266.

Samuel, G. H., Wiley, M. R., Badawi, A., Adelman, Z. N., and Myles, K. M. (2016).
Yellow fever virus capsid protein is a potent suppressor of RNA silencing that
binds double-stranded RNA. Proc. Natl. Acad. Sci. U.S.A. 113, 13863–13868.
doi: 10.1073/pnas.1600544113

Sánchez-Vargas, I., Scott, J. C., Poole-Smith, B. K., Franz, A. W. E., Barbosa-
Solomieu, V., Wilusz, J., et al. (2009). Dengue virus type 2 infections of Aedes
aegypti are modulated by the mosquito’s RNA interference pathway. PLoS
Pathog. 5:e1000299. doi: 10.1371/journal.ppat.1000299

Schnettler, E., Sterken, M. G., Leung, J. Y., Metz, S. W., Geertsema, C., Goldbach,
R. W., et al. (2012). Noncoding flavivirus RNA displays RNA interference
suppressor activity in insect and mammalian cells. J. Virol. 86, 13486–13500.
doi: 10.1128/JVI.01104-12

Shi, Y., and Gao, G. F. (2017). Structural biology of the Zika virus. Trends Biochem.
Sci. 42, 443–456. doi: 10.1016/j.tibs.2017.02.009

Sim, S., and Dimopoulos, G. (2010). Dengue virus inhibits immune responses
in Aedes aegypti cells. PLoS One 5:e10678. doi: 10.1371/journal.pone.001
0678

Smithburn, K. C. (1952). Neutralizing antibodies against certain recently isolated
viruses in the sera of human beings residing in East Africa. J. Immunol. 1950,
223–234.

Smithburn, K. C., Taylor, R. M., Rizk, F., and Kader, A. (1954). Immunity to certain
arthropod-borne viruses among indigenous residents of Egypt. Am. J. Trop.
Med. Hyg. 3, 9–18. doi: 10.4269/ajtmh.1954.3.9

Takahashi, M., and Suzuki, K. (1979). Japanese encephalitis virus in mosquito
salivary glands. Am. J. Trop. Med. Hyg. 28, 122–135. doi: 10.4269/ajtmh.1979.
28.122

Tappe, D., Rissland, J., Gabriel, M., Emmerich, P., Gunther, S., Held, G., et al.
(2014). First case of laboratory-confirmed Zika virus infection imported into
Europe, November 2013. Euro Surveill. 19:20685. doi: 10.2807/1560-7917.
ES2014.19.4.20685

Terradas, G., Joubert, D. A., and McGraw, E. A. (2017). The RNAi pathway plays
a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells.
Sci. Rep. 7:43847. doi: 10.1038/srep43847

Tham, H.-W., Balasubramaniam, V. R., Chew, M.-F., Ahmad, H., and Hassan,
S. S. (2015). Protein-protein interactions between A. aegypti midgut and dengue
virus 2: two-hybrid screens using the midgut cDNA library. J. Infect. Dev. Ctries.
9, 1338–1349. doi: 10.3855/jidc.6422

Tham, H.-W., Balasubramaniam, V. R. M. T., Tejo, B. A., Ahmad, H., and Hassan,
S. S. (2014). CPB1 of Aedes aegypti interacts with DENV2 E protein and
regulates intracellular viral accumulation and release from midgut cells. Viruses
6, 5028–5046. doi: 10.3390/v6125028

Thangamani, S., Huang, J., Hart, C. E., Guzman, H., and Tesh, R. B. (2016). Vertical
transmission of Zika Virus in Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg.
95, 1169–1173. doi: 10.4269/ajtmh.16-0448

Tsai, C. W., McGraw, E. A., Ammar, E.-D., Dietzgen, R. G., and Hogenhout, S. A.
(2008). Drosophila melanogaster mounts a unique immune response to the

rhabdovirus sigma virus. Appl. Environ. Microbiol. 74, 3251–3256. doi: 10.1128/
AEM.02248-07

Tsetsarkin, K. A., Chen, R., Yun, R., Rossi, S. L., Plante, K. S., Guerbois, M.,
et al. (2014). Multi-peaked adaptive landscape for chikungunya virus evolution
predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat.
Commun. 5:4084. doi: 10.1038/ncomms5084

Umbach, J. L., and Cullen, B. R. (2009). The role of RNAi and microRNAs in
animal virus replication and antiviral immunity. Genes Dev. 23, 1151–1164.
doi: 10.1101/gad.1793309

Valderrama, A., Díaz, Y., and López-Vergès, S. (2017). Interaction of Flavivirus
with their mosquito vectors and their impact on the human health in the
Americas. Biochem. Biophys. Res. Commun. 492, 541–547. doi: 10.1016/j.bbrc.
2017.05.050

van den Hurk, A. F., Hall-Mendelin, S., Jansen, C. C., and Higgs, S. (2017). Zika
virus and Culex quinquefasciatus mosquitoes: a tenuous link. Lancet Infect. Dis.
17, 1014–1016. doi: 10.1016/S1473-3099(17)30518-2

Ventura, C. V., Maia, M., Ventura, B. V., Linden, V. V. D., Araújo, E. B., Ramos,
R. C., et al. (2016). Ophthalmological findings in infants with microcephaly
and presumable intra-uterus Zika virus infection. Arq. Bras. Oftalmol. 79, 1–3.
doi: 10.5935/0004-2749.20160002

Vorou, R. (2016). Zika virus, vectors, reservoirs, amplifying hosts, and their
potential to spread worldwide: what we know and what we should investigate
urgently. Int. J. Infect. Dis. 48, 85–90. doi: 10.1016/j.ijid.2016.05.014

Wang, L., Valderramos, S. G., Wu, A., Ouyang, S., Li, C., Brasil, P., et al. (2016).
From mosquitos to humans: genetic evolution of Zika virus. Cell Host Microbe
19, 561–565. doi: 10.1016/j.chom.2016.04.006

Wang, X.-H., Aliyari, R., Li, W.-X., Li, H.-W., Kim, K., Carthew, R., et al. (2006).
RNA interference directs innate immunity against viruses in adult Drosophila.
Science 312, 452–454. doi: 10.1126/science.1125694

Waterhouse, R. M., Kriventseva, E. V., Meister, S., Xi, Z., Alvarez, K. S.,
Bartholomay, L. C., et al. (2007). Evolutionary dynamics of immune-related
genes and pathways in disease-vector mosquitoes. Science 316, 1738–1743. doi:
10.1126/science.1139862

Weaver, S. C., Costa, F., Garcia-Blanco, M. A., Ko, A. I., Ribeiro, G. S., Saade, G.,
et al. (2016). Zika virus: history, emergence, biology, and prospects for control.
Antiviral Res. 130, 69–80. doi: 10.1016/j.antiviral.2016.03.010

Weaver, S. C., and Reisen, W. K. (2010). Present and future arboviral threats.
Antiviral Res. 85, 328–345. doi: 10.1016/j.antiviral.2009.10.008

Weinbren, M. P., and Williams, M. C. (1958). Zika virus: further isolations in the
Zika area, and some studies on the strains isolated. Trans. R. Soc. Trop. Med.
Hyg. 52, 263–268. doi: 10.1016/0035-9203(58)90085-3

Wen, D., Li, S., Dong, F., Zhang, Y., Lin, Y., Wang, J., et al. (2018). N-glycosylation
of viral e protein is the determinant for vector midgut invasion by flaviviruses.
mBio 9:e00046-18. doi: 10.1128/mBio.00046-18

Whitten, M. M., Facey, P. D., Sol, R. D., Fernández-Martínez, L. T., Evans, M. C.,
Mitchell, J. J., et al. (2016). Symbiont-mediated RNA interference in insects.
Proc. R. Soc. B 283:20160042. doi: 10.1098/rspb.2016.0042

Wikan, N., and Smith, D. R. (2016). Zika virus: history of a newly emerging
arbovirus. Lancet Infect. Dis. 16, e119–e126. doi: 10.1016/S1473-3099(16)
30010-X

Wilke, A. B. B., Beier, J. C., and Benelli, G. (2018). Transgenic Mosquitoes – Fact or
Fiction? Trends Parasitol. (in press). doi: 10.1016/j.pt.2018.02.003

Xi, Z., Ramirez, J. L., and Dimopoulos, G. (2008). The Aedes aegypti toll pathway
controls dengue virus infection. PLoS Pathog. 4:e1000098. doi: 10.1371/journal.
ppat.1000098

Ye, Y. H., Carrasco, A. M., Frentiu, F. D., Chenoweth, S. F., Beebe, N. W., van
den Hurk, A. F., et al. (2015). Wolbachia reduces the transmission potential of
dengue-infected Aedes aegypti. PLoS Negl. Trop. Dis. 9:e0003894. doi: 10.1371/
journal.pntd.0003894

Yokoyama, S., and Starmer, W. T. (2017). Possible roles of new mutations shared
by Asian and American Zika viruses. Mol. Biol. Evol. 34, 525–534. doi: 10.1093/
molbev/msw270

Zanluca, C., Melo, V. C., Mosimann, A. L., Santos, G. I., Santos, C. N., and
Luz, K. (2015). First report of autochthonous transmission of Zika virus in
Brazil. Mem. Inst. Oswaldo Cruz 110, 569–572. doi: 10.1590/0074-0276015
0192

Zhang, M., Zheng, X., Wu, Y., Gan, M., He, A., Li, Z., et al. (2010). Quantitative
analysis of replication and tropisms of Dengue virus type 2 in Aedes

Frontiers in Microbiology | www.frontiersin.org 10 May 2018 | Volume 9 | Article 1040

https://doi.org/10.2807/1560-7917.ES2014.19.41.20929
https://doi.org/10.2807/1560-7917.ES2014.19.41.20929
https://doi.org/10.1038/emi.2017.85
https://doi.org/10.1038/emi.2017.85
https://doi.org/10.1038/ncomms15412
https://doi.org/10.1186/1471-2180-7-9
https://doi.org/10.1186/1471-2180-7-9
https://doi.org/10.1371/journal.pntd.0005760
https://doi.org/10.1073/pnas.1600544113
https://doi.org/10.1371/journal.ppat.1000299
https://doi.org/10.1128/JVI.01104-12
https://doi.org/10.1016/j.tibs.2017.02.009
https://doi.org/10.1371/journal.pone.0010678
https://doi.org/10.1371/journal.pone.0010678
https://doi.org/10.4269/ajtmh.1954.3.9
https://doi.org/10.4269/ajtmh.1979.28.122
https://doi.org/10.4269/ajtmh.1979.28.122
https://doi.org/10.2807/1560-7917.ES2014.19.4.20685
https://doi.org/10.2807/1560-7917.ES2014.19.4.20685
https://doi.org/10.1038/srep43847
https://doi.org/10.3855/jidc.6422
https://doi.org/10.3390/v6125028
https://doi.org/10.4269/ajtmh.16-0448
https://doi.org/10.1128/AEM.02248-07
https://doi.org/10.1128/AEM.02248-07
https://doi.org/10.1038/ncomms5084
https://doi.org/10.1101/gad.1793309
https://doi.org/10.1016/j.bbrc.2017.05.050
https://doi.org/10.1016/j.bbrc.2017.05.050
https://doi.org/10.1016/S1473-3099(17)30518-2
https://doi.org/10.5935/0004-2749.20160002
https://doi.org/10.1016/j.ijid.2016.05.014
https://doi.org/10.1016/j.chom.2016.04.006
https://doi.org/10.1126/science.1125694
https://doi.org/10.1126/science.1139862
https://doi.org/10.1126/science.1139862
https://doi.org/10.1016/j.antiviral.2016.03.010
https://doi.org/10.1016/j.antiviral.2009.10.008
https://doi.org/10.1016/0035-9203(58)90085-3
https://doi.org/10.1128/mBio.00046-18
https://doi.org/10.1098/rspb.2016.0042
https://doi.org/10.1016/S1473-3099(16)30010-X
https://doi.org/10.1016/S1473-3099(16)30010-X
https://doi.org/10.1016/j.pt.2018.02.003
https://doi.org/10.1371/journal.ppat.1000098
https://doi.org/10.1371/journal.ppat.1000098
https://doi.org/10.1371/journal.pntd.0003894
https://doi.org/10.1371/journal.pntd.0003894
https://doi.org/10.1093/molbev/msw270
https://doi.org/10.1093/molbev/msw270
https://doi.org/10.1590/0074-02760150192
https://doi.org/10.1590/0074-02760150192
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01040 May 18, 2018 Time: 16:54 # 11

Tham et al. Zika Virus–Vector Relationship and Its Research Gaps

albopictus. Am. J. Trop. Med. Hyg. 83, 700–707. doi: 10.4269/ajtmh.2010.10-
0193

Zhao, L., Alto, B. W., Smartt, C. T., and Shin, D. (2018). Transcription profiling
for defensins of Aedes aegypti (Diptera: Culicidae) during development and in
response to infection with chikungunya and Zika viruses. J. Med. Entomol. 55,
78–89. doi: 10.1093/jme/tjx174

Zhu, Z., Chan, J. F.-W., Tee, K.-M., Choi, G. K.-Y., Lau, S. K.-P., Woo,
P. C.-Y., et al. (2016). Comparative genomic analysis of pre-epidemic and
epidemic Zika virus strains for virological factors potentially associated with the
rapidly expanding epidemic. Emerg. Microbes Infect. 5:e22. doi: 10.1038/emi.20
16.48

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Tham, Balasubramaniam, Ooi and Chew. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 11 May 2018 | Volume 9 | Article 1040

https://doi.org/10.4269/ajtmh.2010.10-0193
https://doi.org/10.4269/ajtmh.2010.10-0193
https://doi.org/10.1093/jme/tjx174
https://doi.org/10.1038/emi.2016.48
https://doi.org/10.1038/emi.2016.48
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Viral Determinants and Vector Competence of Zika Virus Transmission
	Zika Virus
	Zikv Determinants in Mosquitoes and Human
	Mosquito Determinants of Zika Epidemic Behavior
	Vector Competence of Zika Virus Transmission
	Mosquito Immune System Against Zika Virus Infection
	Research Gaps
	Conclusion
	Author Contributions
	Funding
	References


