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Nocellara Etnea is one of the main Sicilian cultivars traditionally used to produce both
olive oil and naturally fermented table olives. In the present study, the effect of different
salt concentrations on physico-chemical, microbiological, sensorial, and volatile organic
compounds (VOCs) formation was evaluated in order to obtain functional Nocellara Etnea
table olives. The experimental design consisted of 8 treatments as follow: fermentations
at 4, 5, 6, and 8% of salt with (E1-E4 samples) and without (C1-C4 samples) the
addition of starters. All the trials were carried out at room temperature (18 + 2°C) and
monitored for an overall period of 120 d. In addition, the persistence of the potential
probiotic Lactobacillus paracasei N24 at the end of the process was investigated.
Microbiological data revealed the dominance of lactic acid bacteria (LAB), starting from
the 7th d of fermentation, and the reduction of yeasts and enterobacteria in the final
product inoculated with starters. VOCs profile highlighted a high amount of aldehydes at
the beginning of fermentation, which significantly decreased through the process and a
concomitant increase of alcohols, acids, esters, and phenols. In particular, esters showed
an occurrence percentage higher in experimental samples rather than in control ones,
contributing to more pleasant flavors. Moreover, acetic acid, ethanol, and phenols, which
often generate off-flavors, were negatively correlated with mesophilic bacteria and LAB.
It is interesting to note that salt content did not affect the performances of starter cultures
and slightly influenced the metabolome of table olives. Sensory data demonstrated
significant differences among samples registering the highest overall acceptability in the
experimental sample at 5% of NaCl. The persistence of the L. paracasei N24 strain in
experimental samples, at the end of the process, revealed its promising perspectives as
starter culture for the production of functional table olives with reduced salt content.
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INTRODUCTION

The greater consumer’s attention for healthy food is confirmed
by the growing trend in fermented vegetables consumption,
such as table olives (International Olive Council (IOC), 2016).
Table olives are mainly produced in several Mediterranean
countries, such as Spain, Italy, and Greece and in Sicily, two
main cultivars (Nocellara del Belice and Nocellara Etnea) are
growth. In particular, Nocellara Etnea cv is mainly cultivated
in the Central and Eastern area of Sicily, among the provinces
of Enna, Catania, Messina, Syracuse, and Ragusa. The drupes,
elliptical in shape and slightly asymmetric, are characterized
by a uniform and a large size and by late harvesting. The
relationship between core and pulp is very high and this
character makes this cultivar one of the best for the production
of green table olives. The latter are mostly obtained by a
spontaneous process in which the hydrolysis of oleuropein is
relied on enzymatic activities of indigenous microorganisms,
and on the plasmolytic effect of salt. This process is mainly
dominated by lactic acid bacteria (LAB) and yeasts, which form
a natural consortium (Randazzo et al., 2010). However, during
the spontaneous fermentation spoilage microorganisms, such
as Enterobacteriaceae and Propionibacteriaceae may occur. It is
well established that Lactobacillus plantarum and Lactobacillus
pentosus are the main detected species, due to their versatile
adaptation to the brine environment (Ruiz-Barba et al., 1994; G-
Alegria et al., 2004; Bautista-Gallego et al., 2010; Randazzo et al.,
2011, 2012; Hurtado et al., 2012; Cocolin et al., 2013; Tofalo et al.,
2014), and different strains are widely used as starter cultures
in several table olive fermentations (Arroyo-Lopez et al., 2012;
Hurtado et al., 2012; Randazzo et al., 2014).

During olive fermentation, coarse salt is added in order to
reduce the water activity, preventing the growth of spoilage
microorganisms, and to improve taste and textures of the final
product (Bautista-Gallego et al., 2013a). The EU Member States
try to implement national nutritional policies with the aim to
decrease salt intake according to the European Commission
suggestion (European Council, 2010). The strategy to set up
table olives with a reduced daily Na intake, which has been
established at 5 g salt, by WHO/FAO [World Health Organisation
(WHO)/Food 2003] is one of the main goals of food industry.
Different chloride salts, such as KCl, CaCl,, and ZnCl,, have
been evaluated as replacers for NaCl (Bautista-Gallego et al.,
2013b), especially in Spanish style green olives (Bautista-Gallego
etal.,, 2010, 2011). The reduction in Na and the increase in other
salts may lead to a more equilibrated mineral composition in
table olives, ameliorating the consumers’ diet, and enhancing the
perception of the nutritional value of the olives. Nevertheless,
the effects of NaCl replacement with other salts could affect
the microbiota evolving in the fermentation process of table
olives (Bautista-Gallego et al., 2015; Mateus et al., 2016),
as well as impact the sensorial quality of the final product
(Zinno et al., 2017). Potential NaCl reduction depends on
characteristics linked with the cultivar, its composition, other
ingredients, processing, and technological parameters (Bautista-
Gallego et al., 2013a), which should be well addressed before
their implementation at the industrial scale. Furthermore, the

final product must be safe from the microbiological point of
view. It is already established that a reduction in NaCl might
be responsible for an increase of pathogens such as Clostridium
botulinum (Simpson et al., 1995).

Nowadays, based on the increasing consumers demand,
the production of healthier table olives is of great industry
importance, taking into account the potential market of table
olives as a functional food. In fact, functional table olives can
provide a concrete opportunity to convey the benefits that are
already appreciated by consumers in dairy sectors. It has already
been demonstrated that table olives represent a good vehicle to
transport probiotics to humans for both their microarchitecture
and the presence of nutrients (Lavermicocca et al., 2005; Valerio
et al., 2006; Randazzo et al., 2017).

The aim of the present study was (i) to set up a fermentation,
at laboratory scale, of Nocellara Etnea table olives with reduced
level of NaCl; (ii) to evaluate the effect of the NaCl reduction on
the physico-chemical, microbiological, and sensorial parameters
compared to fermentation carried out without starter cultures.

MATERIALS AND METHODS

Bacterial Strains and Olive Processing

In the present study two lyophilized LAB strains, L. plantarum
UT2.1 and the potential probiotic Lactobacillus paracasei N24,
belonging to the Di3A microbial collection, previously screened
for their technological and functional features, and already
applied as starter cultures at industrial scale (Randazzo et al.,
2017) were used. Each strain was directly inoculated into fresh
brine (1:1 ratio) to reach a final cell density of 7 log colony
forming units per ml (cfu/ml). Olives of Nocellara Etnea cultivar,
kindly provided by a local company (Consoli srl, Adrano, Sicily)
were processed, at laboratory scale, following the Sicilian style
method. After harvesting, about 3 kg of olives were subjected
to quality control, to remove damaged fruits, washed with tap
water, directly placed in sterile glass vessels, and covered with
~31 of sterile brine. The experimental design consisted of 8
treatments as follows: fermentations at 4, 5, 6, and 8% of salt
with the addition of starters (E1-E4 samples); fermentations at
4, 5, 6, and 8% of salt without the addition of starters (Cl1-
C4 samples). All fermentation trials were carried out at room
temperature (18 + 2°C), and monitored for an overall period
of 120 d. The brine salt concentration was maintained at each
initial level by adding marine salt. Fresh brine was periodically
supplied to maintain olives totally dipped in order to inhibit
growth of molds on the brine surfaces. The experimental trials
were carried out in triplicate. The progression of the fermentation
was followed by monitoring pH, titratable acidity and the shift in
microbial populations in brine throughout the process.

Physico-Chemical and Total Polyphenol

Determination of Brine Samples

Fifty ml of each brine sample were taken at 60 and 120 days of
fermentation. The pH values of brines were monitored by a pH
meter (H19017, Microprocessor, Hanna Instruments). Total free
acidity was measured by titration and expressed as the percentage
of lactic acid (g/100 ml brine). Total polyphenol content was
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colorimetrically determined in brine samples at 60 and 120 d,
using Folin-Ciocalteu reagents, according to Singleton (1974).
Polyphenols were measured in triplicate and expressed as mg/l
of gallic acid.

Microbiological Analyses of Brine Samples
For the microbiological characterization, brine samples were
analyzed at 1, 7, 15, 30, 60, 90, and 120 days of fermentation.
At each sampling time, brines were serially diluted, using
sterile quarter-strength Ringer’s solution (QRS), and plated
in triplicate on the following agar media (all provided from
Oxoid Italy), and conditions: Plate Count Agar, incubated
at 32 + 2°C for 48h, for total mesophilic bacteria; de
Man-Rogosa-Sharp agar, supplemented with cycloheximide
(5 ml/l), anaerobically incubated at 32°C for 24-48h, for
LAB count; Sabouraud Dextrose Agar, supplemented with
chloramphenicol (0.05 g/1), incubated at 25°C for 4 days,
for yeast count; Violet Red Bile Glucose Agar, aerobically
incubated at 37°C for 24h, for Enterobacteriaceae count;
Mannitol Salt Agar, incubated at 32°C for 48 h, for staphylococci
enumeration; Mac Conkey incubated at 32°C for 24-48h for
Escherichia coli determination. Results were expressed as logio
cfu/ml.

Volatile Organic Compound (VOC) Analysis
by Gas
Chromatography-Mass-Spectrometry
(GC-MS)

VOCs, detected in brine samples at 1, 60, and 120
d of fermentation, were sampled using a solid-phase
microextraction (SPME). The SUPELCO SPME (Bellefonte,
PA) fiber holder and fiber used were coated with
divinylbenzene/polydimethylsiloxane ~ (DV/PDMS), 65 mm.
Before the first extraction, the fiber was conditioned in the GC
injector port at 300°C for 1h, according to the manufacturer’s
recommendation. Ten ml of brine sample were added to a 35 ml
vial. Extraction temperature of head-space and time were 40°C
and 20 min, respectively. One g of NaCl was added to increase
extraction rate of VOCs. The samples were gently vortexed
during extraction using a magnetic stirrer. Fiber exposition
was prolonged for 20 min at 40°C. Thermal desorption was
performed in the injector at 230°C for 1 min (Sabatini et al.,
2008; Malheiro et al., 2011). The identification of the extracted
VOCs was carried out using a GC instrument (HP GC6890,
Hewlett Packard, Palo Alto, CA), coupled to a MS detector (HP
MS5973) (Panagou and Tassou, 2006). The gas chromatograph
was equipped with a 30m 0.25mm i.d. 0.25 mm film thickness
fused-silica capillary column (DB-WAX J&W Scientific) and
the injector temperature was 230°C. The conditions applied
were as those previously reported (Randazzo et al, 2017).
The quantification of VOCs was determined with the internal
standard method spiking propionic acid, ethanol, ethyl acetate,
benzaldehyde and guaiacol to all analyzed samples. All analyses
were performed in duplicate and the results were expressed in
ng/l of brine.

Isolation and Genetic Identification of

Lactic Acid Bacteria
From each MRS agar plate, at the highest dilution, of both
E (E1-E4) and C (C1-C4) brine samples at 1, 60, and 120
d of fermentation, the 20% of total number of colonies was
randomly selected, purified, checked for catalase activity and
Gram reaction, and microscopically examined before storing in
liquid culture using 20% glycerol at —80°C. The random colony
selection from the highest dilution plates allowed us to collect
400 LAB isolates. Total genomic DNA of isolates was extracted
from overnight cultures according to the method described by
Pino et al. (2018). DNA concentration and DNA quality were
assessed by measuring optical density using Fluorometer Qubit
(Invitrogen, Carlsbad, 278 CA, USA).

All LAB isolates were subjected to RecA and Tuf gene species-
specific PCR following the protocol previously described by
(Torriani et al., 2001; Ventura et al., 2003).

REP-PCR Analysis

In order to evaluate the viability of the potential probiotic
L. paracasei N24 throughout the fermentation, lactobacilli
isolated from E samples at 60 and 120 d (60 isolates), ascribed
to L. paracasei species through the aforementioned species-
specific multiplex PCR, were subjected to REP-PCR analysis,
using the (GTG)s-primer, as described by Gevers et al. (2001).
PCR amplicons were separated on a 1.5% agarose gel (w/v) in
1X TAE buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA)
under highly standardized conditions (55 V, 400 mA, 16 h at 4°C).
At regular intervals a reference marker (6 .l each composed of
1.10 pl Molecular Ruler 500 bp (Bio-Rad), 1.40 1 Molecular
Ruler 100 bp (Bio-Rad), 2 pl TE buffer (1 mM EDTA, 10 mM
Tris-HCI, pH 8.0) and 1.50 pl loading dye), was loaded for
normalization. Profiles were visualized under ultraviolet light,
after staining with ethidium bromide. Digitized images of gels
were normalized and analyzed by the BioNumerics 7.6.2 software
(Applied Maths, Belgium). Similarity matrices of densitometric
curves of the gel tracks were calculated with Pearson’s product-
moment correlation coefficient. Subsequent cluster analyses of
similarity matrices were performed by unweighted pair group
method with arithmetic averages (UPGMA).

Table Olives Sensory Evaluation

The sensory assessment of table olives was performed by a
trained sensory panel consisting of 10 panelists (6 females and
4 males, aged from 22 to 40 years), according to the method
reported by the International Olive Council (International
Olive Council (IOC), 2011). Olives were tasted for negative
sensations (abnormal fermentation such as musty, rancid,
cooking effect, soapy, metallic, earthy, and winey-vinegary),
based on the classification reported by International Olive
Council (IOC) (2011, 2016), while a descriptive analysis was
carried out for descriptors corresponding to gustatory sensations
(acidity, saltiness, and bitterness) and kinaesthetic sensations
(hardness, fibrousness, and crunchiness). In addition, an
overall acceptability descriptor was considered as an indication
of the overall quality. Sensory data were acquired by a
direct computerized registration system (FIZZ Biosystemes.
Couternon, France).
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Statistical Analysis

Statistical analysis of chemical data was performed using a
one-way analysis of variance with repeated measures of the
GLM procedure by SAS (2001), considering the different
treatments as variable. Means were separated by a Least
Significant Difference (LSD) test when a significant treatment
(P < 0.05) was observed. Microbiological data and VOCs
were analyzed by ANOVA (One-way Analysis of Variance)
using Tukeys post-hoc test, in order to assess the overall

differences among samples. Statistical analysis was performed
using XLSTAT PRO 5.7 (Addinsoft, New York, USA) and the
reference level of significance was 0.05 in all the assays. Sensory
data were submitted to one-way ANOVA using the software
package Statgraphics® Centurion XV (Statpoint Technologies,
INC.) using samples as treatments. The significance was
tested by means of the F-test. To differentiate the samples,
the mean values were submitted to the multiple comparison
test using the LSD procedure. In order to correlate the
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experimental and control brine samples to volatile compounds,
data obtained at 1, 60, and 120 d of fermentation were subjected
to principal component analysis (PCA) using MATLAB,
achieving high data compression efficiency of the original
data.

Similarities between the microbiota and metabolome profiles
of experimental and control brine samples were carried out by
PermutMatrix software. Data correlations between microbiota
(mesophilic bacteria, LAB, staphylococci, yeasts, enterobacteria)
and VOCs were computed using Statistica v. 7.0 and elaborated
through PermutMatrix software.

RESULTS

Physico-Chemical Data

The pH values, showed in Figurel, dropped faster in
experimental samples rather than in control ones reaching a
value between 4.5 and 4.8 at 7 days of fermentation. The
lowest pH value (4.2) was revealed by E2 sample at 60 days.
At the end of the process, pH values ranged from 4.6 to 4.2.
The titratable acidity, expressed as the percentage of lactic acid
(g/100 ml brine), was determined at 60 and 120 d of fermentation.
Overall, no differences were detected among experimental and
control samples and results showed an increase during the
fermentation process, reaching an average value of 0.37 g/100 ml
brine in the final products (data not shown). Results of total
phenols (TP) content are presented in Figure 2. TP detected in
brines showed quite differences among E and C samples while
within each group similarities on TP content was achieved. In
addition, statistically significant differences were noticed between
samples at 60 and 120 d of fermentation with a range of
911.2-985.2 mg/l for C samples and of 839.2-967.8 mg/1 for E
samples.

Microbial Counts of Brine Samples

Through the Fermentation

Microbial counts, expressed as log;o cfu/ml, of both experimental
(E) and control (C) brine samples, at different salt concentrations
(4, 5, 6, and 8%), are reported in Table 1. Viable mesophilic
bacteria exhibited different behavior among samples. In detail,
a steady trend in samples inoculated with starter cultures (E1-
E4), was recorded, with the exception of E4 sample (at 8%
of NaCl), in which, from a lower initial value (6.65 log unit),
a slight decrease throughout the fermentation was observed.
Control samples (C1-C4) exhibited a mean initial value of 4.6
£ 0.07 log unit, which significantly increased from the 15th
day of fermentation, reaching a final mean value of 543 =+
0.09 log unit (Table 1). Similar behavior was observed for LAB
population, which reached the highest concentration value in
all inoculated samples (E1-E4). The highest value (8.58 log
unit) was detected after 60 days of fermentation in sample E2,
obtained adding 5% of salt. Among the control samples (C1-
C4), a similar initial LAB count was found (average value of
4.4 £ 0.20 log cfu/ml) with the exception of C4 sample, which
presented the lowest LAB cell density (Table 1). At the end of
the fermentation (120 days) no statistically significant differences
(P > 0.05) were achieved among samples, that exhibited an

average value of 5.88 £ 0.15 log cfu/ml. Yeasts were present at
an initial average level of 3.93 4 0.08 log cfu/ml and 4.18 £+
0.17 log cfu/ml, in E and C samples, respectively. These densities
slightly increased through the fermentation process, achieving,
at 120 days, an average value of 5.51 £ 0.13 log unit, with
the exception of samples E1, E2, and E3, which exhibited the
lowest yeast count (Table 1). At the beginning of fermentation,
the staphylococci level was quite similar among inoculate and
un-inoculated samples, with a slight increase at 30 and 60 days,
and followed by a decrease to a final average value of 3.53 +
0.19 cfu/ml. Enterobacteria counts significantly decreased from
the 30th day of fermentation, reaching a final value below 2
log. In addition, E. coli was never detected in any brine samples
analyzed.

Volatile Organic Compound (VOC)
Detection by Gas
Chromatography-Mass-Spectrometry
(GC-MS)

Volatile organic compounds (VOCs) of E and C brine samples
at 1, 60, and 120 d of fermentation, are reported in Table 2. The
assessment allowed the identification of 47 compounds as acids,
alcohols, esters, aldehydes, and phenols. Overall, total VOCs
exhibited a growing trend during the fermentation reaching an
average value of 2349.70 g/l after 120 days. In particular, the
highest values were registered in all control samples, with a mean
value of 3215.23 pg/l. In detail, in all samples, at beginning of
fermentation, aldehydes represented the main VOCs, and after
60 days, they significantly decreased, whereas alcohols, acids,
esters and phenols increased. At the end of fermentation (120
d), differences were observed among brine samples. Zooming
on each chemical class, it is possible to assert that overall, the
detected amounts of each compounds were sample-dependent.
Among acids, the acetic acid was the most abundant compound,
with the highest values in control samples, whereas hexanoic and
propionic acids were more abundant in experimental samples
(Table 2). Among alcohols, ethanol dominated the fermentation
process, especially in control samples, followed by isoamyl-
and phenyl-ethyl alcohol. Among esters, the highest amount
was achieved by ethyl-acetate, followed by ethyl lactate. A
different trend was revealed for butanoic-acid-2-methylester,
which showed the highest value in the E2 sample, followed
by control samples. The most abundant aldehyde and phenols
were nonanal and cresol, respectively. Evaluating the VOCs
occurrence percentage on E and C samples at 120 days of
fermentation (Figure S1), it is interesting to note that esters and
acids were mainly present in all E samples with the highest
occurrence percentage in E2 (31.7 and 11.3%, respectively).
Alcohols, phenols, and aldehydes were also detected at high
occurrence percentage in E2 sample (Figure S1). Figures 3A,B
showed the PCA plot of distribution of C (C1-C4) and E (E1-
E4) samples, at different days of fermentation, in the PC1-PC2
plane. Based on the loadings (data not shown), component 1, that
represent the 80.88% of the variability, can be viewed as an esters
factor, while the second principal component (variance 11.64%),
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TABLE 1 | Microbial counts expressed as logyg CFU/mI of 3 replicates =+ standard deviation of the main microbial groups detected in Nocellara Etnea table olives at
different salt concentrations (4, 5, 6, 8%) trough experimental (E) and spontaneous (C) fermentation (1 to 120 days).

DAYS OF FERMENTATION
1
MESOPHILIC BACTERIA
7.36 + 0.059
E1
E2 7.31 £ 0.069
E3 7.23 £ 0.099
E4 6.56 + 0.11°
ci 4.21 £+ 0.062
c2 4.38 £ 0.102
C3 4.89 + 0.09°
c4 4.82 + 0.03°
LACTIC ACID BACTERIA
7.09 + 0.109
E1
E2 7.12 £ 0.10%
E3 7.02 £ 0.219%
E4 7.03 +£0.11¢
ci 4,51 + 0.2020C
c2 4.48 + 0.23¢
c3 4.21 +£0.16°
C4 3.93 £ 0.212
YEASTS
4,00 + 0.014
E1
E2 3.97 £ 0.10¢
E3 3.84 £ 0.012
E4 3.93 + 0.21°
ci 421 +£0.129
c2 4.28 + 0.23bcd
c3 4,09 + 0.09¢
c4 4.14 £ 0.23f
STAPHYLOCOCCI
4.76 + 0.08P
E1
E2 418 +0.322
E3 410 £ 0.162
E4 4.03 £ 0.212
C1 4.81 +0.14b
c2 4.76 + 0.18%0
c3 427 £0.112
c4 434 +0.122
ENTEROBACTERIA
2.99 + 0.24b
E1
E2 2.24 + 0.062
E3 2.00 £ 0.132
E4 2.19 £ 0.072
ci 3.91 4+ 0.09¢
c2 3.82 +0.13¢
c3 3.89 4+ 0.18°
c4 3.98 4+ 0.12¢

7.75 £ 0.069

7.25 + 0.30
6.95 + 0.43°
6.75 + 0.184
4.40 £ 0.212
4.53 + 0.15%
4.81 £ 0.05%¢
468 +0.182

7.52 + 0.12¢9

7.59 + 0.139
714 +0.05f
7.37 £0.27¢
4,69 + 0.13°
4.79 4 0.180¢
4.57 £ 0.09bd
3.85 + 0.092

4.63 £ 0.13°

4.18 £ 0.06°
5.05 + 0.149
3.46 +0.112
5.34 + 0.309
6.12 + 0.32¢
5.03 £ 0.11d
4.96 + 0.16%

4.23 £ 0.142

4.42 +0.332
433 4+0.182
4.45 + 0232
518 £ 0.110
5.05 + 0.19°
5.04 + 0.09°
5.08 + 0.30°

2.33 + 0.28°

2.13 + 0.14bC
2.26 + 0.09°°
1.74 £ 0.218¢
411 +0.159
4.02 +0.2199
3.97 + 0.124f
3.31 + 0.239¢

15

7.53 + 0.20°

7.51 + 0.06°
7.49 + 0.06°
6.53 & 0.244
4.83 +0.332
5.02 + 0.21°
5.51 4+ 0.18¢
521 + 0.210

8.08 + 0.259

7.38 + 0.309
7.15 + 0.359%€
7.34 + 0.099f
5.81 & 0.05°
5.96 + 0.07¢
5.53 £ 0.13°
512 +£0.212

5.27 +0.282

5.35 + 0.312
5.62 + 0.3120
5.81 +0.18°
6.73 +0.18°
6.61 +0.21¢
5.61 & 0.1180
5.78 £ 0.2320

4.72 +0.21b¢

4.97 + 0.35%
454 + 0,152
4.26 £+ 0.322

5.44 + 0.11¢f
573 + 0.21f

5.53 & 0.09¢f
5.11 & 0.120€

2.40 + 0.18%d

1.09 + 0.102
1.84 + 0.16°
1.45 +0.23P
3.53 4+ 0.15°
3.13 + 0.09%
3.23 4+ 0.18°
3.64 & 0.14°

30

7.74 £ 0.05°

7.01 + 0.129
6.99 + 0.02d
5.94 + 0.41¢
5.20 %+ 0.092
5.92 + 0.09¢
5.97 4 0.11¢
5.68 + 0.28°

8.72 £ 0.15

8.27 £ 0.07®
7.03 +0.10°
7.02 + 0.21abc
7.36 + 0.11°d
7.21 + 0.072d
7.10 £ 0.132d
6.95 + 0.352

5.13 + 0.062

5.61 4+ 0.092
5.28 + 0.072
5.23 £ 0.212
6.25 & 0.12°0
6.85 + 0.11¢
6.16 & 0.08°
5.63 + 0.312

4.83 + 0.26°

412 +0.152
421 +£0.312
4.83 £ 0.21°¢
5.18 & 0.08°°
5.24 + 0.18°
4.72 £ 0.06°
4.77 £+ 0.26°

1.08 +£0.112

<1
1.32 £0.132
1.19 £ 0.212
2.37 + 0.240
2.50 + 0.18°
2.15 + 0.09°
2.06 + 0.09°

60

7.44 +0.184

7.40 £+ 0.109
6.65 + 0.09°
512 £ 0.372
511 £0.112
5.36 + 0.07%
5.45 + 0.09%°
5.63 & 0.120

8.13 £ 0.12°

8.49 + 0.059
7.64 £ 0.07¢
7.30 + 0.40°
7.83 4+ 0.05°
7.32 £ 0.06°
6.74 £ 0.122
6.58 & 0.142

5.47 +£0.182

5.56 &£ 0.112
5.51 & 0.102
5.68 + 0.302
6.28 & 0.10°
6.48 + 0.110°
5.47 + 0.052P
591 + 0.26%°

4.79 + 0.15%

4.65 + 0.072
4.64 + 0.092
4,62 + 0.26%°
5.18 & 0.122
511+ 0.152
4.98 + 0.102
4.73 +£0.342

<1

<1

1.05 £ 0.212
1.02 £ 0.072
2.32 +0.11P
2.67 + 0.15°°
2.31 +0.13°
2.09 + 0.210d

90

7.15 + 0.12d

711 £ 0.149
6.93 £ 0.109
5.82 £ 0.24b
5.36 4 0.082
5.60 =+ 0.06°°
5.40 £ 0.12%¢
5.58 + 0.233¢

7.85 + 0.134

8.58 = 0.08°
7.86 +0.119
7.05 + 0.53°
6.88 & 0.13°
6.04 £ 0.092
6.78 + 0.10°
5.96 + 0.422

5.20 + 0.122P

5.60 + 0.15°
514 £ 0.112
5.12 £ 0.242
5.32 + 0.092P
5.28 + 0.142P
5.00 £ 0.092
5.32 + 0.273

419 4+ 0.182

4.44 + 0,232
4.93 £ 0.210d
4.30 £ 0.21%¢
4.62 + 0.052¢d
4.74 + 0.10°cd
4.63 + 0.06°cd
4.23 £ 0.31%

<1

<1
<1
<1
1.63 £ 0.13P
1.84 £ 0.21P
1.54 +0.18P
1.14 +£0.132

120

7.35 + 0.08f

7.01 + 0.08°f
7.05 £ 0.148
5.73 £ 0.13°
5.07 4 0.052
5.39 =+ 0.06°
5.563 + 0.13°C
5.74 + 0.12¢d

7.83 £ 0.07%

8.23 +0.11d
7.79 + 0.15%
7.04 + 0.30°
6.00 + 0.082
5.96 + 0.112
5.67 =+ 0.062
5.94 + 0.362

4.61 + 0.05°

4.11 + 0.062
4,30 & 0.05%°
5.50 % 0.23°
5.58 + 0.09°
5.72 4+ 0.08°
5.36 4 0.14¢
5.40 £ 0.11¢

3.30 + 0.23%¢

3.72 + 0.320cd
3.14 £ 0.202
3.04 £ 0.182
3.58 £ 0.11¢
3.74 + 0.14°d
3.96 + 0.07
3.82 + 0.31¢d

<1

<1

<1

<1
1.14 £ 0.052
1.45 + 0.1280
1.55 + 0.08P
1.39 + 0.0320

a—g for each medium data in the same column with different superscript letters are significantly different (P < 0.05).
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FIGURE 3 | PCA plot (A) and score plot (B) showing the distribution of experimental (E) and control (C) samples through the fermentation process.
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was mainly represented by aldehydes. Score plots are effective
in showing the difference among samples and in separating
them in the graphs. In detail, all E and C samples at 1 day of
fermentation highlighted a positive contribution by component
2 planes. After 120 d, C samples were characterized by a positive
contribution of alcohols whereas E samples principally by esters.

Permutation Analysis and Correlations
Between Microbiota and Metabolome of

Nocellara Etnea Table Olives

Similarities in the observed microbial counts and metabolomics
profiles between samples at 60 and 120 days of fermentation
were estimated using the PermutMatrixEN software (Figure 4).
In detail, two clusters were revealed, showing that overall the
samples grouped based on the addition of starters and on
time of the fermentation. It is interesting to note that salt
content did not discriminate samples, with the exception of the
experimental samples E1 and E2 at 60 and 120 d, respectively,
which exhibited unique profiles. In fact, these samples showed the
most divergent microbial and metabolic profiles, with a strong
presence of ethyl-3-hydroxybutyrate, LAB, mesophilic bacteria,
isobutyric acid, 2-ethyleptanoic acid, 1-dodecanol, decanoic
acid methyl ester, methyl idrocynnamate, 1-octanol, 1-nonanol,
ethyl octanoate, benzyl alcohol, staphylococci, octanal, decanal,
benzaldehyde, nonanal in the El sample at 60 days, and of
butanoic acid 2 methylester, propionic acid, ethyl propanoate,
butanoic acid 3 methylester, hexanoic acid, phenylethyl alcohol,
ethyl butanoate in the E2 sample at 120 days. Compared
to 60 days of fermentation, control samples at 120 days
showed different microbial and metabolomics profiles with
a strong increase in acetic acid, phenol, ethanol, isoamyl
alcohol, ethyl acetate, 1-hexanol, isoamylacetate, butanoic acid
2-hydroxy-3-methylester, creosol (homoguaiacol), 3-octenol, cis
hexen 1 ol, ethyl decanoate, ethyl dodecanoate, and nonanal.
Evaluating E samples, both, time of fermentation and NaCl
content, affected the microbial and metabolomics profiles.
High similarity was found between samples treated with

6 and 8% of NaCl after 60 and 120 d of fermentation,
characterized by a lower amount of guaiacol, 4-ethyl phenol and
enterobacteria.

Correlations between microbial and metabolomics data are
shown in Figure 5. Among organic acids, propionic, isobutyric
acid, butanoic, and exanoic compounds were negatively
correlated with vyeasts and staphylococci, and positively
correlated (r > 0.30, p < 0.05) with mesophilic bacteria. One
exception was the acetic acid, which, was positively correlated
(r = 0.238, p = 0.045) with enterobacteria and negatively with
LAB (r = —0.735; p = 0.048). Zooming on the metabolomics,
the acetic acid was positively correlated (r > 0.70, p < 0.05) with
alcohols (ethanol, isoamylalcohol,1-hexanol, cis hexen 1 ol and
3-octenol) and esters (ethyl acetate, butanoic acid 2 methylester,
isoamylacetate, butanoic acid, and 2-hydroxy-3-methylester).
Alcohols, with the exception of 3-octenol, phenylethyl alcohol
and 1-dodecanol, were positively correlated with enterobacteria
and yeasts. In addition, ethanol, isoamylalcohol, 1-hexanol,
cis hexen 1 ol, and 3-octenol were negatively correlated with
mesophilic bacteria and LAB.

Molecular Identification of Lactobacillus

spp. Isolates

Four hundred isolates from MRS plates were considered
lactobacilli based on their positive Gram reaction, non-motility,
absence of catalase activity, and spore formation, and rod or
coccal shape. Presumptive lactobacilli were identified by using
multiplex PCR and were ascribed to L. plantarum, L. pentosus,
L. paracasei, and Lactobacillus casei species, and their occurrence
percentage in E and C samples, at 1, 60, and 120 days of
fermentation is illustrated in Figure 6. In detail, C samples, as
expected, exhibited at both day 1 and after 60 days, a high
occurrence (70%) of L. plantarum accompanied by L. pentosus
(30%). After 120 d, a slight occurrence (20%) of L. casei was
detected. In E samples, 40% of isolates were ascribed to both
L. paracasei and L. plantarum. The remaining 20% was identified
as L. pentosus. Similar occurrence was revealed after 60 d of
fermentation. Different species occurrence was highlighted at
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120 days, since the majority of the isolates were identified
as L. paracasei (60%), followed by L. pentosus (30%) and
L. plantarum (10%) (Figure 6). It is interesting to note that
among the 60 isolates identified as L. paracasei, the majority of
the occurrence was revealed in E sample at 5% of salt (E2).

Viability of L. paracasei N24 Strain Through

Table Olives Fermentation

In order to evaluate the viability of L. paracasei strain N24
in the experimental table olives at 60 and 120 d, DNA of
60 strains was submitted to REP-PCR. Results are reported in
Figures 7A,B. All strains clustered together with the L. paracasei

N24 strain (with a percentage of similarity higher than 85%),
with the exception of 17 strains, which exhibited different
profiles.

Sensory Data

Results of sensory analysis are reported in Table 3. No oft-
odors were detected in any samples as inferred by the low
scores of the taste panel for this organoleptic perception.
Opverall, regarding the gustatory sensations (acidity, saltiness, and
bitterness), differences among E and C samples at different salt
content were detected, with the exception of bitterness descriptor.
In detail, E samples received similar and moderate values in

Frontiers in Microbiology | www.frontiersin.org

11

June 2018 | Volume 9 | Article 1125


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Pino et al.

Low Salt Probiotic Table Olives

100%

80%

60%

40%

20%

0%

FIGURE 6 | Molecular identification of Lactobacillus spp. isolates from experimental (E) and control (C) samples at 1, 60, and 120 days of fermentation.

M Others
" L. casei
W L. paracasei
M L. pentosus

M L. plantarum

120

acidity, while C ones exhibited a higher score, with the highest
value for the sample with 8% of salt (C4). A similar trend was
observed for the saltiness score, with lower value in E samples.
Only samples made adding 8% of salt (E4 and C4) showed
significant differences, registering a saltiness score of about
8.1. Regarding kinaesthetic sensations (hardness, fibrousness,
and crunchiness) no statistical differences were achieved among
samples, registering a mean score of 7.2. Finally, E olives
received higher scores for the overall acceptability descriptor,
with the exception of E1 sample, which showed an average
score similar to those obtained by C samples. Experimental E2
sample exhibited the highest overall acceptability score (8.8 £+
0.82).

DISCUSSION

Consumer’s acceptance and attitude toward functional foods
determine the market success, which is growing steadily,
mainly toward vegetables, fruits, and cereal products due to
vegetarianism emergence, lactose intolerance, cholesterolemia,
and food allergies (Granato et al., 2010; Ranadheera et al,
2010; Peres et al, 2012; Martins et al, 2013). Among the
non-dairy functional foods, table olives represent a good food
matrix to carry active viable bacteria into the gastrointestinal
tract (Lavermicocca et al., 2005; Valerio et al., 2006; Abriouel
et al., 2012; Randazzo et al., 2017). Table olives are considered
functional food because of their nutritional value related to
the presence of phenolic compounds and monounsaturated
fatty acids (Buckland and Gonzalez, 2015). Nevertheless, their
preparation relies on the use of NaCl as the main ingredient of the
brine especially for reducing undesirable spoilage and pathogenic
microorganisms ensuring, thus, the microbiological safety and
quality of the final product (Taormina, 2010; Albarracin et al.,
2011). In recent years, public health and regulatory authorities

have recommended the reduction of dietary intake of sodium
because of its association to hypertension [World Health
Organisation (WHO), 2003, 2007], and to cardiovascular diseases
(Ortega et al., 2011). In Mediterranean regions, populations eat
considerably high amounts of table olives and, subsequently,
ingest greater amounts of salt; hence, NaCl reduction in table
olives is strongly recommended. Recently, several studies have
been focused on the replacement of NaCl with other salts,
such as KCI and CaCl, (Bautista-Gallego et al., 2010, 2013a,b;
Mateus et al., 2016; Zinno et al., 2017), and results are not fully
in areement. In particular, while Bautista-Gallego et al. (2010)
showed that Enterobacteriaceae growth was slightly stimulated
by high CaCl, contents, Mateus et al. (2016) revealed that the
presence of potassium and calcium chlorides in the brines caused
an increase of the enterobacteria death rate. Up to now only De
Bellis et al. (2010) have proposed to study table olive processing
at reduced NaCl concentration, without any salt replacement.
Based on our previous reported data (Randazzo et al., 2017), with
the aim to set up functional table olives from Nocellara Etnea
cultivar, in the present study the fermentation was carried out at
different salt contents (4, 5, 6, and 8%), by using starter cultures
constituting of the promising probiotic strain L. paracasei
N24 and by the strain L. plantarum UT2.1. The fermentation
without the use of starter cultures was used as control. It is
well established that both salt content and pH value are the
main parameters controlling the pathogens growth in fermented
products, such as C. botulinum. Taormina (2010) has already
reported that the probability of growth and toxin production
of C. botulinum at 5% NaCl decreased as the pH and storage
temperature was decreased. In this context, our data reveled that
all experimental brines have had a pH value below 4.5, with
the exception of control sample C4, and a constant temperature
of ca 18°C, which guarantee the pathogens growth inhibition.
Overall, in contrast to De Bellis et al. (2010), who observed
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alterative processes in spontaneous fermentation at 4% of NaCl,  sensory attribute. Slight sensory differences were detected only
in the present study, samples treated with different salt content  for bitterness and acidity descriptors among experimental and
obtained similar scores in terms of “abnormal fermentation”  control samples, with a higher score in control ones. These
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0.8+ 0412 4.5+0213 7340418 26+ 0.122 53 £ 0.162
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1.3 £0.262
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a-c for each descriptor, in the same column, with different superscript letters are significantly different (P < 0.05).

differences could be therefore attributed to the added starter
cultures. In particular, the higher contents of acetic acid, ethanol,
and phenols, associated to vinegary, fatty smell, and bitter aroma,
respectively, in control samples, could justify the highest acidity
and bitterness scores registered by panelists. On the contrary,
it is interesting to note that the experimental sample at 5% of
NaCl (E2) showed the highest overall acceptability score and,
based on the similarity tree, this sample exhibited a unique
profile. Even in the experimental samples a high amount of
propionic acid was detected, panelists did not reveal any off-
flavors, indicating that the defect generated by propionic acid
was probably hidden by other compounds such as esters, as
indicated by Blana et al. (2014). In fact, among total VOCs,
esters showed an occurrence percentage higher in experimental
samples rather than in control samples, contributing to more
pleasant flavors (Sabatini et al., 2008). Evaluating both PCA
data on VOCs and similarity tree, brine samples were mainly
grouped based on fermentation time, in discordance to Blana
et al. (2014), that demonstrated the importance of salt content
on the fermentation profiles. The present study revealed that
salt contents slightly influences the metabolome of table olives;
however, the overall characteristics of the final products were
strongly time-dependent. In addition, the salt content did not
affect the performances of L. paracasei N24 and L. plantarum
UT2.1 starter cultures used. They were effective in accelerating
the fermentation process, quickly reducing the pH from the
7th day of fermentation, inhibiting spoilage bacteria in all
experimental samples. In fact, at the end of the fermentation,
Enterobacteriaceae were countable only in control samples. This
microbial group, as suggested by Medina-Pradas et al. (2017),
can negatively influence the quality and safety of table olives,
causing gas pockets spoilage, or producing metabolites that affect
the final aroma. Moreover, the present work allowed to asses that
starters, rather than NaCl replacement with CaCl, and/or KCl, as
discussed by Mateus et al. (2016), has an effect on the reduction of
the yeast population. In fact, in the present study yeast decreasing
could be attributed to the intense competition between LAB
and yeasts for nutrients. It is noteworthy that yeasts are
involved in the VOCs formation; nevertheless, a high occurrence
of this microbial group could be responsible of undesirable
fermentation. In the present study, yeasts were positively
correlated with the main alcohols and phenols detected, which
could generate off-flavors. Hence, the use of starter cultures
is strongly recommended in table olives fermentation also in
order to inhibit spoilage bacteria and control the autochthonous
yeast growth. Evaluating the lactobacilli behavior, L. plantarum
and L. pentosus were the main species detected at the end of
the fermentation in all samples, confirming their key role in
table olive fermentation. In addition, a high survival rate of the
promising probiotic N24 strain was depicted in all experimental
samples. This evidence confirms its technological suitability to
be used as starter in olive fermentations as well as its ability to
survive during the process regardless of brine salt concentration.
In addition, the promising probiotic L. paracasei N24 strain
exhibited the highest occurrence in experimental sample at 5%
of salt (E2). The latter was clearly separated from the remaining
treatments, exhibiting a unique metabolomics profile, which
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generate sensorial traits appreciate by panelists. Hence, data
of the present investigation revealed promising perspectives
for the application of L. paracasei N24 strain as starter
cultures for the production of table olives with increased added
value.

CONCLUSION

Results of the present study demonstrated that both brine
microbial population and VOCs were slightly affected by salt
content while a strong influence was determined by time of
fermentation. The reduction of NaCl content, without any
replacement with other salts resulted in a successful fermentation
of Nocellara Etnea table olives. The final products fulfilled
microbiological criteria and exhibited more appreciate sensorial
characteristics. In addition, the formulation of probiotic table
olives with low salt content is healthier and more suitable for
consumers at risk of hypertension, opening new perspectives for
their production at industrial scale.
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