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Approximately 75% of the worldwide production of hard natural fibers originates from

sisal, an industrial crop from arid and semiarid tropical regions. Brazil is the world’s largest

producer of sisal fiber, accounting for more than 40% of the worldwide production, and

sisal bole rot disease has been the main phytosanitary problem of this crop. All previous

studies reporting Aspergillus niger as the causal agent of the disease were based on

the morphological features of fungal isolates from infected plant tissues in pure cultures.

Black aspergilli are one of the most complex and difficult groups to classify and identify.

Therefore, we performed an integrative analysis of this disease based on the isolation of

black aspergilli from the endospheres and soils in the root zones of symptomatic adult

plants, in vivo pathogenicity tests, histopathology of symptomatic plants, and molecular

phylogeny and worldwide genetic variability of the causal agent. All sisal isolates were

pathogenic and unequivocally produced symptoms of bole rot disease in healthy

plants. In all tree-based phylogenetic methods used, a monophyletic group formed by

A. welwitschiae along with all sisal isolates was retrieved. Ten A. welwitschiae haplotypes

have been identified in the world, and three occur in the largest sisal-producing area.

Most of the isolates are from a unique haplotype, present in only the sisal-producing

region. A. welwitschiae destroyed parenchymatic and vascular cylinder cells and induced

the necrosis of internal stem tissues. Therefore, sisal bole disease is probably the

consequence of a saprotrophic fungus that opportunistically invades sisal plants and

behaves as a typical necrotrophic pathogen.

Keywords: black aspergilli, Agave sisalana, red rot, microbial interaction, Aspergillosis

INTRODUCTION

Sisal (Agave sisalana Perrine), also known as sisal hemp, is a perennial monocotyledonous succulent
plant of the family Asparagaceae that has thick leaves in a basal rosette (aerial stem) (WCSP-World
Checklist of Selected Plant Families in the Catalogue of Life, 2016) and originates in the semiarid
and arid areas of Mexico (García-Mendoza, 2002; Coleman-Derr et al., 2016). Sisal has several
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morphological and physiological characteristics that make it well
adapted to arid and semiarid regions worldwide (Mielenz et al.,
2015; Stewart, 2015). Like other Agave species, sisal utilizes
the Crassulacean acid metabolism (CAM) pathway for CO2

fixation, with stomatal opening during the night due to less
evapotranspiration and better water efficiency at the lower night
temperatures (Abraham et al., 2016). In addition, the leaves have
a thick, waxy cuticle and are arranged in a spiral shape around the
stem, forming a rosette, which favors water retention (Ortiz and
Van der Meer, 2006). These leaf morphological features also give
protection against insects and pathogenic microorganisms (Silva
and Beltrão, 1999; Neto andMartins, 2012). Sisal is a monocarpic
plant that forms an inflorescence after six to nine years and
subsequently dies (Asfaw, 2011). Its reproduction is mainly
asexual via suckers originating from the rhizomes (subterraneous
stems) and bulbils produced in the inflorescence (Moreira et al.,
1999).

The important physiological features ofAgave species as CAM
plants, which have thick, waxy leaf cuticles and stomata and
roots adapted to drought, have been pointed out by several
authors (Corbin et al., 2015; Yang et al., 2015; Davis et al., 2017).
These authors reinforce the importance of these plants for several
uses, such as the production of bioenergy in semiarid and arid
environments, which are considered marginal agricultural lands,
in the USA, Australia, Mexico, Brazil, African countries and
many other tropical parts of the word.

The main economic application of sisal is in the textile
industry, as approximately 75% of all hard natural fibers are
produced from sisal (Parsons and Darling, 2000; Rousso, 2010).
These fibers are used for making agricultural baler twine and
to make carpets, rugs, sacks, yarns, ropes and other cordage
(Müssig, 2010). Sisal has also been studied as a medicinal
plant (Chen et al., 2009; Debnath et al., 2010), as feedstock
for bioenergy (Yang et al., 2015; Davis et al., 2017), as a
source of saponins (Sidana et al., 2016) and for producing
biocomposites in substitution of glass, carbon and polymeric
(plastics) fibers (Scopel et al., 2013). Furthermore, residues from
the decortication of the leaves can be used for animal feed (Faria
et al., 2008) and have been studied for their nematicidal (Jesus
et al., 2014; Damasceno et al., 2015), antimicrobial (Santos et al.,
2009), and insecticidal properties (Sousa et al., 2014).

Sisal plants were first exported from the region of Yucatan
in Mexico to southern Florida (USA) in 1834, and they
were introduced to Tanzania (former Tanganyika, Africa) in
1893 (Kimaro et al., 1994). All sisal plants distributed in
several tropical and subtropical countries are suggested to have
originated from these Yucatan-exported plants (Medina, 1954).
This plant was introduced to Brazil from bulbils that were
brought from Florida (USA) in 1903 by the entrepreneur Horácio
Urpia Júnior, who initiated the first commercial plantation and
production of sisal fibers in this country in the municipality of
Maragogipe in the state of Bahia (Pinto, 1969). At the worldwide
level, Angola, Kenya, Madagascar, Mozambique, South Africa,
and Tanzania (in Africa); China, Indonesia, and Thailand (in
Asia); and Mexico, Cuba, and Haiti (in North and Central
America) produce fibers from sisal or other Agave species,
with a worldwide production of 300,000 tons/year (Food and

Agriculture Organization, 2015). Brazil is the world’s largest
producer of sisal fiber, accounting formore than 40% of the world
production (Food and Agriculture Organization, 2015), and the
state of Bahia claims approximately 95% of the Brazilian sisal
production (IBGE-Instituto Brasileiro de Geografia e Estatística,
2015). This crop has become socially and economically important
in the semiarid region of Brazil because of the number of jobs
generated in its production chain. Furthermore, sisal has become
the main agricultural product for small family-based farming
systems in very poor regions of the state of Bahia (Silva and
Beltrão, 1999; CONAB Companhia Nacional de Abastecimento,
2016).

Sisal bole rot, also known as sisal red rot disease, has been
the main phytosanitary problem in sisal plantations in Brazil,
with 100% prevalence and an average incidence of 35% in sisal-
producing areas (Abreu, 2010). This disease, which can lead
to plant death, was initially detected in sisal plantations in
Tanzania in the 1930’s (Wallace, 1937), but it was only described
approximately 20 years later by Wallace and Dieckmahns (1952).
In their seminal paper, these authors pointed out that the disease
was caused by Aspergillus niger, a common and widespread soil
saprotrophic fungi, and some mechanical injury to the plant
(caused by human management and/or insects) is required for
the infection to occur. In an extensive review of sisal, Medina
(1954) reported a description by Machado (1951) of a sisal light-
brown stem base rot in the state of Paraiba, Brazil, which is
the first citation of this disease in Brazil. Medina (1954) also
suggested that the sisal red rot described in Venezuela by Ciferri
(1951) and the sisal stem rot in Anjouan Island (Comores,
Africa) reported by Crétenet and De Raucourt (1959) were all
descriptions of the same disease.

In Brazil, sisal bole rot was first attributed to Botryodiplodia
theobromae (Lima et al., 1998) and later to A. niger, with
disease incidences varying from 5 to 40% (Coutinho et al.,
2006). Pathogenicity tests and the satisfaction of Koch’s postulates
were reported, and symptoms were observed in only wounded
inoculated plants under greenhouse conditions. These symptoms
were described as yellowish leaves (external symptoms) and
brown internal tissue surrounded by reddish tissue inside sisal
aerial stem (internal symptoms) (Coutinho et al., 2006). Santos
et al. (2014) reported that A. niger, Aspergillus brasiliensis,
and Aspergillus tubingensis, isolated from the soils of sisal-
producing areas, were able to cause this disease in sisal plants
inoculated under greenhouse conditions. Nevertheless, these
authors pointed out that only A. niger was isolated from field
symptomatic plants, and the epidemiological significance of the
other two Aspergillus species remains unknown.

Since the first description of the disease (Wallace, 1937),
assignment of the etiological agent has been controversial,
and distinct microorganisms (even from distinct kingdoms),
such as Pythium aphanidermatum (Chromista, Oomycota)
(Bock, 1965), Lasiodiplodia theobromae (Fungi, Ascomycota:
Dothidiomycetes) (Lima et al., 1998) and A. niger (Fungi,
Ascomycota: Eurotiomycetes), with the latter being the most
common (Wallace and Dieckmahns, 1952; Coutinho et al., 2006),
have been associated with this disease. However, all these studies
that identified the causal agent of the disease as A. niger were
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based on solely macro- and micromorphological features of the
fungal isolates from plant infected tissues in pure culture.

Black aspergilli (Aspergillus section Nigri) are one of the most
complex, confusing, and difficult groups to classify and identify
(Varga et al., 2011). This taxonomic group includes six different
clades (Samson et al., 2014) and 26 distinctly recognized species
(Ismail, 2017). Thus, species of Aspergillus section Nigri are
morphologically very similar and, in many cases, phenotypically
indistinguishable and can only be reliably identified by the
calmodulin (CaM) gene and not by the primary (nrITS) fungal
DNA barcode (Susca et al., 2016). Moreover, none of the
aforementioned works performed a detailed histopathological
analysis of the disease.

Therefore, along with a thorough reappraisal of the sisal
bole rot, we aimed to perform an integrative study of this
fungal disease comprising the following phytopathological,
microbiological and molecular analyses: (i) the isolation of
black aspergilli in the endosphere (roots/stems/leaves) and
corresponding soils in the root zones of symptomatic adult sisal
plants in commercial plantations; (ii) in vivo pathogenicity tests,
including the time-course of the infection with black aspergilli
isolated from plant endospheres and the corresponding soils in
the root zones; (iii) the histopathology of the symptomatic plants;
and (iv) a comprehensive molecular phylogeny and world-level
genetic variability of the etiological agent of the sisal bole rot
using the CaM gene.

MATERIALS AND METHODS

Field Sampling of Endosphere Tissues and
Corresponding Soils in the Root Zones of
Adult Sisal Plants From Commercial
Plantations
The fieldwork was performed in commercial plantations in the
rural zone of three municipalities of the main sisal-producing
area of the world, the Brazilian semiarid region of the state
of Bahia with the typical BSh climate in the Köppen system:
(i) Conceição do Coité (11◦40′0′′S, 39◦20′0′′W), with a mean
annual temperature of 22.3◦C, a mean annual rainfall of 585mm,
and a mean elevation of 428m; (ii) São Domingos (11◦27′56′′S,
39◦31′34′′W), with a mean annual temperature of 23.4◦C, a
mean annual rainfall of 521mm, and a mean elevation of 290m;
and (iii) Retirolândia (11◦28′46′′S, 39◦24′58′′W), with a mean
annual temperature of 23.1◦C, a mean annual rainfall of 525mm,
and a mean elevation of 315m (INPE – Instituto Nacional de
Pesquisas Espaciais., 2017). The soil characteristics of each site
are presented in Supplementary Table 1.

Samples of leaf, stem and root tissues from adult plant
specimens of sisal (Agave sisalana Perrine) and the corresponding
soil in the root zone were collected in the dry and rainy
seasons. For each study site, four plant specimens exhibiting
the typical symptoms of sisal bole rot (chlorotic and wilted
leaves associated with a reddish color in stem tissue and at
the base of the leaves) were selected randomly. Two samples
of each tissue, leaf, stem (red rotten margin), and root as well
as the soil from all plant specimens were collected. The soil

samples were collected around the sisal plant root zone along
a 0–20 cm deep and were sieved through a 2mm mesh. Tissue
and soil samples of all plant specimens were stored at 4◦C until
processing.

Isolation, Maintenance, and Preservation
of Sisal Endospheres and Root Zone
Soil-Associated Black Aspergilli
The intact samples of plant tissues (roots, stems and leaves) were
washed with sterilized distilled water, and the fragments were
aseptically removed from them using sterilized scalpels. Six 25
mm2 fragments (two from each region of the samples: apical,
median and basal) were removed from all the tissue samples.
The fragments were surface-sterilized via successive dipping in
70% ethanol (1min), 2% sodium hypochlorite (1min), and 70%
ethanol (30 s), followed by washing with sterile distilled water
(1min) three times in a laminar flow-hood (Pereira et al., 1993).
To test the effectiveness of the surface sterilization, 100ml of the
water used during the final rinse was plated onto potato dextrose
agar (PDA) to test for epiphytic microbial contaminants. All the
tissue fragments were plated onto PDA with chloramphenicol
(50 mgL−1), incubated at 25◦C and daily examined for up to
15 days. The isolation of root zone soil-associated fungi was
performed from a serial dilution of 10 g of soil in the root
zone in 90mL of sterilized saline solution (NaCl at 0.85%).
Decimal aliquots (1:10) of the original solution were plated
onto PDA with NaCl at 6% (Dhingra and Sinclair, 1994),
incubated at 25◦C and examined at every 3 days for up to
15 days.

Colony-forming units (CFUs), with the typical morphological
features of black aspergilli, were subcultured by transferring a
colony fragment to new sterilized PDA medium. The isolated
black aspergilli CFUs were then characterized by macro-
and micromorphology and further grown in pure culture.
Five replicates of all the fungal isolates were preserved in
sterile distilled water (Castellani, 1967), cryopreserved in 20%
glycerol, and further deposited in the Culture Collection of
Microorganisms of Bahia (CCMB) (Table 1).

Koch’s Postulates and Pathogenicity Tests
on Plant Endosphere- and Root Zone
Soil-Associated Black Aspergilli Isolated
From Symptomatic Plants Under
Greenhouse Conditions in Sisal Bulbils
Pathogenicity tests on black aspergillus isolates from the plant
endosphere (roots, stems, leaves) and corresponding soil in the
root zone were carried out in sisal bulbils (approximately 4
months old, 30-cm in height, 8–10 leaves) in plastic pots with
1 kg of soil under greenhouse conditions. Fungal isolates were
cultured in 9-cm Petri dishes with PDA and incubated for 5 days
with a 12-h photoperiod at 25 ± 1◦C. Inocula were prepared
by pouring a solution of 0.03% Tween 20 in sterilized distilled
water into the plates with the fungal cultures and scraping the
colonies with a sterile inoculating loop. The colony suspensions
were filtered through sterile cheesecloth, and spore suspensions
were counted with a Neubauer chamber under a light microscope
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TABLE 1 | Plant endosphere- and rhizosphere-associated black aspergilli isolated from symptomatic plants in the study areas.

Number Isolate code Host Plant/environment compartment Access n◦. in CCMB Access n◦. in NCBI

1 RSDI Agave sisalana Root CCMB709 MG322287

2 RSDII Agave sisalana Root CMB703 MG322289

3 RRI Agave sisalana Root CCMB668 MG322286

4 RRII Agave sisalana Root CCMB670 MG322290

5 RCI Agave sisalana Root CCMB706 MG322272

6 RCII Agave sisalana Root CMB662 MG322277

7 CSDI Agave sisalana Stem CMB663 MG322270

8 CSDII Agave sisalana Stem CCMB710 MG322283

9 CRI Agave sisalana Stem CCMB678 MG322280

10 CRII Agave sisalana Stem CCMB707 MG322291

11 CCI Agave sisalana Stem CCMB674 MG322278

12 CCII Agave sisalana Stem CCMB672 MG322275

13 FSDI Agave sisalana Leaf CCMB665 MG322292

14 FSDII Agave sisalana Leaf CCMB669 MG322285

15 FRI Agave sisalana Leaf CCMB666 MG322281

16 FRII Agave sisalana Leaf CCMB676 MG322276

17 FCI Agave sisalana Leaf CCMB704 MG322279

18 FCII Agave sisalana Leaf CCMB667 MG322284

19 SSDI Agave sisalana Root zone soil-associated CCMB675 MG322282

20 SSDII Agave sisalana Root zone soil-associated CCMB677 MG322288

21 SRI Agave sisalana Root zone soil-associated CCMB708 MG322273

22 SRII Agave sisalana Root zone soil-associated CCMB673 MG322271

23 SCI Agave sisalana Root zone soil-associated CCMB671 MG322274

24 SCII Agave sisalana Root zone soil-associated CCMB705 MG322269

and adjusted with sterile water to the final concentration of 1
× 106 spores ml−1. The same solution without fungal inoculum
was used to set the control plants. Healthy (asymptomatic) sisal
bulbils (30 cm height) were inoculated with an inoculum (50 µl
of spore suspension) deposition into three micro-wounds (3-mm
depth, performed with a hypodermic needle) in the stem tissue.
Control plants were treated in the micro-wounded stem with
the 0.03% Tween 20 solution without inoculum. The inoculated
and control plants weremaintained under greenhouse conditions
with irrigation every 3 days. This experiment was carried out in
a completely randomized design (CRD) with 10 replicates. All
plants were observed daily for symptoms of bole rot disease for
30 days. After observation of external symptoms (leaf wilting
and/or red rot symptoms at the leaf base region close to the
stem), the plants were cut vertically through the stem tissue for
the observation of internal symptoms.

To confirm the pathogenicity of the black aspergillus isolates,
re-isolations from lesions in sisal stems were carried out
immediately after symptom observation. Small fragments excised
from the stems were surface-sterilized via successive dipping
in 70% ethanol (1min) and 1% sodium hypochlorite (1min),
followed by washing with sterile distilled water 3 times. Excess
water was removed using sterilized filter paper (Whatman no. 1).
The fragments were inoculated in 9-cm Petri dishes with PDA
and incubated for 5 days with a 12-h photoperiod at 25 ± 1◦C.
The morphologies of the fungal colonies were compared with the
initial isolates, and the re-isolated strains were further sequenced

to verify their molecular identity and re-inoculated in healthy
sisal bulbils to confirm Koch’s postulates.

Anatomical and Histological Analyses of
the Infected Stems of Adult Sisal Plants
From Commercial Plantations
Stem samples of five adult specimens with visible symptoms of
bole rot disease were collected from the sisal-producing areas
of Conceição do Coité, Bahia, Brazil. These samples were also
used for isolating black aspergilli for molecular identification
and pathogenicity tests. The stem tissue samples were vacuum-
fixed in FNT (buffered neutral formalin: phosphate buffer and
formalin, 9:1 v/v) for 48 h in a desiccator (Lillie, 1965) and
further conserved in 70% ethanol. The fixed samples were
then dehydrated in a graded ethanol series and embedded in
2-hydroxymetyl methacrylate (Historesin, Leica) according to
Meira and Martins (2003). Serial transversal and longitudinal
thin sections (5–12µm) were obtained using a semi-motorized
rotary microtome (Leica RM2245). The thin sections were
stained with toluidine blue (pH 4.4) (Steer, 1982) and double-
stained with toluidine blue and basic fuchsin (Junqueira,
1990) to observe and distinguish the fungal structures in
plant tissues. The slides were mounted with synthetic resin
(Permount/Fisher) and photographed using an Olympus BX51
photomicroscope equipped with a digital photographic camera
(Olympus A330). Figure scales were obtained via the projection
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of a photographed/digitizedmicrometric slide in the same optical
conditions of the photos.

Morphological Characterization of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli
Morphology was analyzed according to the criteria of Samson
et al. (2014). Czapek yeast extract agar (CYA), malt extract
agar (MEA), Czapek agar (CZA), and oatmeal agar (OA)
were used for macromorphological characterization. The isolates
were inoculated at three points on each plate of each
medium and incubated at 25, 30, or 37◦C in the dark
for 7 days, and the plates were unwrapped to allow for
sufficient aeration. The macromorphological features used
for characterizing the species included the colony growth
rate, texture, degree of sporulation, production of sclerotia,
mycelium color, sporulation, soluble pigments, exudates, and
colony reversals. The micromorphological features used for
characterizing the species were the shapes of conidial heads;
the presence or absence of metulae between vesicles and
phialides (i.e., uniseriate or biseriate); the color of stipes; and the
dimensions, shapes and textures of stipes, vesicles, metulae (when
present), phialides, and conidia. To performmicromorphological
observations, microscopic mounts were made in lactic acid from
MEA colonies after 7 days, and a drop of 70% ethanol was added
to remove air bubbles and excess conidia.

Molecular Characterization of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli
Genomic DNA was extracted using the UltraClean R© Microbial
DNA Isolation kit (Mo Bio, CA, USA). The integrity and
quantification of genomic DNA were evaluated by fluorimetry
using the Qubit 2.0 Fluorimeter R© (Invitrogen). The partial
sequence of the CaM gene was amplified with the primers
CMD5 (CCGAGTACAAGGARGCCTTC) and CMD6
(CCGATRGAGGTCATRACGTGG) according to Hong et al.
(2005). The reactions were prepared in a final volume of 50 µl
with the following reagents and concentrations: 60 ng of DNA
of each sample, 1 × dAmpliTaq Gold R© 360 Master Mix (Life
Technologies) and 0.5 pmol/µl of each primer (forward and
reverse).

Successfully amplified PCR products were purified using
the Illustra R© GFX PCR DNA and Gel Band Purification kit
(GE Healthcare Life Sciences) and sequenced on an ABI3130
automated sequencer (Applied Biosystems, Life Technologies
Q7, CA, USA). The sequences were manually edited using
Geneious software (version 9.1.6) (Kearse et al., 2012) and
deposited into the NCBI GenBank (Table 1).

Phylogenetic Analyses of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli
The sequences generated in this work were combined with
partial CaM sequences of the type specimens of Aspergillus
section Nigri (Samson et al., 2014). The sequence of the type

specimen of Aspergillus carbonarius was used as the outgroup
since the A. carbonarius clade is the sister group of the A. niger
“aggregate” clade. The newly generated sequences of our study
(GenBank accession no. MG322269-MG322292) and additional
sequences downloaded from GenBank are listed in Table 1 and
Supplementary Table 2, respectively. The datasets were aligned
using MAFFT v.7 (Katoh and Standley, 2013) under the G-INS–
i criteria. Then, they were manually inspected using MEGA v.7
(Tamura et al., 2013). The best-fit model of nucleotide evolution
to the datasets was selected by both the Bayesian information
criterion (BIC) and the corrected Akaike’s information criterion
(AICc) using jModelTest2 v.1.7 (Guindon and Gascuel, 2003;
Darriba et al., 2012).

All four main methods of phylogenetic analysis, distance (D),
maximum parsimony (MP), maximum likelihood (ML), and
Bayesian (B), were used to evaluate the dataset. Phylogenetic
analyses were performed in PAUP 4.0b10 (Swofford, 2002) and
MrBayes 3.2 (Ronquist and Huelsenbeck, 2003).

Bayesian inference (BI) phylogenetic analysis was also applied
to the datasets. BI was performed using MrBayes 3.1.2 with
two independent runs, each one beginning from random trees
with four simultaneous independent chains, performing 1 × 107

replications, sampling one tree every 1 × 103 generations. The
first 2.5 × 106 sampled trees were discarded as burn-ins and
checked by the convergence criterion (frequencies of the average
standard deviation of split <0.01), while the remaining trees
were used to reconstruct a 50% majority rule consensus tree and
calculate the Bayesian posterior probabilities (BPP) of the clades.
A node was considered strongly supported if it showed a BPP ≥

95% and/or BS ≥ 70%.

Sequence Diversity Analyses of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli and
Comparison With Public Databases
Worldwide
Searches for sequence nucleotide variations (SNVs) to
identify putative single nucleotide polymorphisms (SNPs)
and characterize the haplotypes at the species level of both
the sequences from our study (Table 1) and all publicly
available CaM sequences from the same identified fungal
species around the world (Supplementary Table 3) were
performed using Geneious v. 9.1.6 (Kearse et al., 2012). To
identify and characterize the SNPs, we used a minimum variant
frequency = 0.05 and calculated the p-values based on the
approximate p-value method.

RESULTS

Koch’s Postulates and Pathogenicity Tests
in Healthy Sisal Bulbils Under Greenhouse
Conditions and Time-Course Analysis of
the Infection
All the isolated fungal strains of black aspergilli from the
endosphere (Figure 1) and corresponding soil in the root zone
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FIGURE 1 | Black aspergilli isolated from the endosphere of symptomatic sisal

plants. Black aspergillus mycelia emerging from four explants of the aerial stem

(bole) of infected sisal plants inoculated onto culture media in a Petri dish.

of adult infected sisal plants were pathogenic and unequivocally
produced the symptoms of bole rot disease in healthy sisal
bulbils under greenhouse conditions (Figure 2). The infection
began in the bole base, which is the region of the foliar
sheaths that is closer to the soil surface and the micro-wounded
tissue (Figures 2A,B), and progressed in the direction of the
bole apex (Figures 2C,D). The bulbil phenotype comprised
initially reddish lesions that became brownish in the center
with black fungal conidiophores with progression of the
disease (Figures 2A–D). Except for the presence of black fungal
sporulation, which did not occur in all plants, the symptoms
were the same as those observed under field conditions in
adult plants of commercial plantations (Figures 2E–H). The
spores from the conidiophores of fungal sporulation were re-
inoculated in healthy sisal bulbils and, again, produced the
symptoms of bole rot disease. Thus, Koch’s postulates were
confirmed.

Usually, the first symptoms were observed within 8–10 days
after the inoculation. The base of the leaves showed the external
symptoms of chlorosis and wilt, and some leaves began to
show a humid rot symptom. In 12–15 days, these symptoms
progressed to form bole necrosis but without plant death. After
15 days, some bulbils were dead, and the boles were totally
necrotic, with the leaves easily detaching from the bole. In
these bulbils, the rot symptoms were humid and yellowish,
and the boles became completely necrotic, with black fungal
conidiophores on the infected tissues (Figures 3A–D). A typical
reddish color in the bole and leaf base along with leaf chlorosis
and wilting, bole necrosis with easily detached leaves, and
black conidiophores in the infected tissue was also observed in
the bulbils 12–15 days after inoculation (Figures 3E,F). These
signals of the pathogenic fungus and the symptoms described
in Figures 3A–D were more frequent in younger bulbils with
thinner boles and softer tissues. In 30 days, most of the bulbils
were dead with necrotic boles and yellowish or reddish leaf base

symptoms. Only a few of the bulbils survived for more than
30 days.

Anatomy and Histology of the Infected
Boles of Sisal Adult Specimens in the Field
All the adult plants analyzed in this sisal-producing area
exhibited the same symptoms. The plants with bole rot disease
showed typical external symptoms: wilted and chlorotic leaves
and, in some plants, reddish and bended leaves (Figure 2I,
right arrow), and the healthy plants did not show these
symptoms (Figure 2I, left arrow). The internal symptoms were
observed as necrosis in the bole leaf base (Figures 2E–H)
and rhizomes (Figures 2K,L), all of which exhibited reddish
rot tissue. The progression of the disease caused plant death
(Figures 2J). Longitudinal and transversal sections of the
bole indicated that the disease was disseminated along the
ground parenchyma from the cortex to the vascular bundle
(Figures 2F–H). The typical reddish color produced by the
disease was observed in all the tissues infected by the fungal
pathogen (Figures 2F,L).

In the histological sections, the parenchymatic cells of bole
tissues infected by the fungal pathogen showed green-stained cell
walls stained with toluidine blue, while the cells of healthy tissues
were stained blue (Figures 2M–P). In the region affected by the
disease, the parenchymatic cells showed degraded walls without
a defined shape (Figures 2M,N,P) compared to healthy tissue,
whose cells were isodiametric with thin walls. In the bole tissues
with red rot, the vascular bundles were completely destroyed,
exhibiting degradation of vessel elements of the xylem, and
obliteration of their lumina (Figures 2M,N). The longitudinal
sections of infected sisal boles displayed the presence of the
fungal pathogen inside parenchymatic cells (Figure 2O).
Fungal hyphae were also found in intercellular spaces
(Figure 2O).

Morphological Characterization and
Molecular Phylogenetic Analyses of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli
All the isolates of sisal endosphere- and root zone soil-associated
black aspergilli had overlapping macro- andmicromorphological
qualitative (shape, ornamentation, etc.) and quantitative (size)
characteristics in the mycelia, conidiophores and conidia
(Figures 4A–H; Table 2). Similarly, the isolates had similar
ranges of growth rates on the media CYA, MEA, and OA, and
most had optimum growth temperatures of 25, 28, or 30◦C
(Table 2).

The matrix of the aligned sequences generated in this work
(Table 1) combined with partial CaM sequences of the type
specimens of Aspergillus section Nigri (Supplementary Table 2)
for phylogenetic analysis was 271 characters long.

Maximum Parsimony (MP)
A total of 13.3% of the characteristics were variable, and 91.7%
of the variable characteristics were parsimony-informative.
The final result of the parsimony analysis comprised the
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FIGURE 2 | Symptoms of bole rot disease in healthy sisal bulbils grown under greenhouse conditions and adult plants in the field (I–L) and histopathology of the

infected boles of adult plants (M–P). (A–D) Gross longitudinal sections of an artificially infected sisal bulbil showing the internal lesion of the aerial stem. (E) External

view of an infected aerial stem showing the typical reddish color due to the fungal infection (white arrow). (F) Detailed view of the internal infected tissues of the aerial

stem (white arrow). (G,H) Gross transversal sections in distinct magnifications showing the necrotic lesions of the aerial stem. (I) Healthy adult plant (left white arrow)

beside a symptomatic adult plant (right white arrow) in the field. (J) Dead adult plant due to fungal infection (white arrow). (K) An external view of a symptomatic

rhizome (subterraneous stem) of an adult plant in the field. (L) Gross longitudinal section of a rhizome of an adult plant in the field. (M,N) Histological transverse

sections of an infected aerial stem of an adult plant, showing a degraded vascular bundle, parenchymatic cells and idioblast. VB, vascular bundle; (P) parenchyma; I,

idioblast; (O,P) histological longitudinal sections of an infected aerial stem of an adult plant at different magnifications, showing fungal hyphae in intercellular spaces

and inside parenchymatic cells (white arrow).
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FIGURE 3 | Time-course of the infection in sisal bulbils grown under greenhouse conditions. (A,B) External symptoms 8–10 days after the inoculation. The black

arrows show chlorosis and wilt. (C–F) Aerial stem necrosis and plant death (after 12–15 days).

six most parsimonious unrooted trees with 98 evolutionary
steps, with a consistency index (CI) = 0.85 and a homoplasy
index (HI) = 0.15. After rooting, the majority consensus tree
had the following phylogenetic relationships in common: (a)
the monophyly of the A. niger/welwitschiae clade supported
by the maximum bootstrap value (BS = 100%), (b) the
monophyly of the A. niger clade was strongly supported

(BS = 92%), and (c) the monophyly of the A. welwitschiae
clade was moderately supported (BS = 65%). The later
clade comprised all the sisal endosphere and root zone
soil-associated black aspergilli of our study in addition
to the type species and additional A. welwitschiae species
publicly deposited (Figure 5A). There were also two strongly
supported (BS = 85%), less inclusive clades inside the
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FIGURE 4 | Macro- and micromorphological aspects of black aspergilli isolated from the symptomatic sisal plants. (A–D) Aspect of the mycelial growth of colonies in

distinct culture media (CYA, MEA, CZA, OA). (E–G) Conidiophores. (H) Conidia.

A. welwitschiae clade, one of which encompassed most of
the sisal isolates (79.2%) and the other comprised the remaining
sisal isolates, including the A. welwitschiae type species
(Figure 5A).

Distance (D)
The distance analysis final results comprised only one
unrooted tree. After rooting, like the maximum parsimony
analysis, the rooted tree showed the same main phylogenetic
relationships among the studied taxa. The A. niger/welwitschiae
clade was again maximally supported (BS = 100%), the
A. niger clade was strongly supported (BS = 85%), and
the A. welwitschiae clade, containing all sisal isolates, was
moderately supported (BS = 65%). The less inclusive clades

inside the A. welwitschiae clade retrieved in MP analysis were
also present; most of the sisal isolates were in one group,
and the same other sisal isolates mentioned above, including
the A. welwitschiae type species, were in another group
(Figure 5B).

Maximum Likelihood (ML)
The maximum likelihood phylogenetic analysis encompassed
only one unrooted tree, which exhibited the exact same topology
of the MP majority consensus tree after rooting. The support
values were very similar, with a stronger value for the A. niger
clade (BS = 97%) but the same bootstrap proportions for
A. welwitschiae clade (BS = 65%) and the less inclusive clades
inside it (BS= 85%) (Figure 5C).
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FIGURE 5 | (A) Maximum parsimony majority rule consensus tree of Aspergillus niger “aggregate” clade type species and black aspergilli isolated from symptomatic

sisal plants (bootstrap values above 50% are exhibited). (B) Distance tree of Aspergillus niger “aggregate” clade type species and black aspergilli isolated from

symptomatic sisal plants (bootstrap values above 50% are exhibited). (C) Maximum likelihood tree of Aspergillus niger “aggregate” clade type species and black

aspergilli isolated from symptomatic sisal plants (bootstrap values above 50% are exhibited). (D) Bayesian majority rule consensus tree of Aspergillus niger
“aggregate” clade type species and black aspergilli isolated from symptomatic sisal plants (posterior probability values above 50% are exhibited).

Bayesian (B)
The rooted majority consensus tree of the Bayesian phylogenetic
analysis exhibited a topology that was identical to those of ML
and MP. Moreover, the branch support values were also very
similar, with minimum differences. The A. niger clade received
the maximum support value (PP = 100%). The A. welwitschiae
clade received a slight minor posterior probability proportion
(PP= 57%), but the less inclusive clades inside it, comprising the
same groups evidenced in the other analyses, exhibitedmaximum
to almost maximum support values (PP = 100% and 99%)
(Figure 5D).

All the sequences of the strains of sisal pathogenic black
aspergilli formed a moderately supported clade with all
A. welwitschiae, including the sequence of the type specimen.
This clade, retrieved in all phylogenies, was clearly distinct from
its sister group, the A. niger clade, which was nearly maximally or
maximally supported in all the analyses.

Sequence Diversity Analyses of Sisal
Endosphere- and Root Zone
Soil-Associated Black Aspergilli Compared
With All the Same Species Identified
Worldwide
The matrix of the aligned sequences generated in this work
(n = 24) (Table 1) combined with partial CaM sequences of all
publicly available sequences of distinct A. welwitschiae isolates
around the world (n= 102) (Supplementary Table 3) comprised
126 sequences.

A total of 10 distinct haplotypes were identified and
characterized (Table 3). The most common haplotype (Hap1)
comprised 38.9% of all sequences, including the sequence of the
type specimen of A. welwitschiae and four sisal isolates. These
strains were isolated from all three studied areas (Conceição do
Coité, São Domingos, and Retirolândia) and from both plant
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endospheres (stem and root) and the corresponding soil in the
root zone. The other strains of this Hap1 haplotype were isolated
in North (Canada and Mexico) and South America (southern
Brazil), Africa (Benin, Namibia), Europe (Czech Republic and
Romania) and Asia (Turkey, Iran, Saudi Arabia, and China),
reflecting wide latitudinal and longitudinal ranges. These strains
were isolated from distinct substrates, such as host-associated
substrates (plant, animal) or directly from natural (soil) or
building environments (indoor dust).

The second most common haplotype (Hap2) included 29.4%
of the sequences and only one sisal isolate (SR1), and it was
identical to the Hap1 except for one SNP, a Ti (transition
C→ T) at the 30th position in the symmetric aligned matrix
(Table 3). Similar to Hap1, the haplotype Hap2 contained
sequences derived from strains isolated on distinct continents,
including America (Brazil, Argentina), Africa (South Africa), and
Eurasia (Romania, Turkey, Saudi Arabia, Pakistan, and China).
Furthermore, the strains were isolated from both host-associated
and environmental substrates.

Most of the sisal isolates in our study (79.2%) and a single
isolate from the same geographical region and host (sisal)
previously deposited in NCBI formed the haplotype Hap6, which
encompassed 16% of all A. welwitschiae sequences of the partial
CaM gene in public databases. Hap6 exhibited five SNPs (four
transitions and one transversion) (Table 4), all of which were in
intron 2 of the CaM gene.

The Hap7, Hap3 and Hap10 haplotypes were restricted to a
few sequences (8.0, 3.2, and 1.6%, respectively), and the others,
Hap4, Hap5, Hap8, and Hap9, were autapomorphies of single
isolates (Table 3).

Therefore, based on the partial CaM gene, at least three
different haplotypes (Hap6, Hap1, and Hap2) of A. welwitschiae
causing sisal bole rot were present in the main sisal-producing
area of the world. Figure 6 graphically depicts the intraspecific
similarity relationships among all 126 strains of A. welwitschiae.

DISCUSSION

Herein, we performed an integrative analysis of sisal bole rot
disease in one of the largest and most important sisal-producing
areas of the world. Our study comprised (a) the isolation of
black aspergilli in the below- and above-ground endospheres
and corresponding soils in the root zones of symptomatic adult
sisal plants, (b) in vivo pathogenicity tests and time-course
analysis of the symptoms of these fungal isolates in bulbils
under greenhouse conditions, (c) histopathological analysis of
the infected adult plants in field conditions, (d) morphological
and molecular characterization and identification and molecular
phylogeny analysis of these isolates; and (e) a comparative global-
level genetic variability of these molecularly identified isolates
with all other known strains.

To determine the relationship of black aspergilli isolated from
symptomatic sisal plants with other black aspergilli, we used
a hierarchical approach to first define the phylogenetic species
and then compare this species with all the publicly deposited
sequences on a global scale. In all the tree-based phylogenetic
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TABLE 4 | Single nucleotide polymorphisms of all Aspergillus welwitschiae isolates worldwide (including the sisal Aspergillus welwitschiae of our study).

N◦. SNP Nucleotide Min. Max. Length Coverage Polymorphism type Variant frequency

1 T 30 30 1 126 SNP 60.3%

C 30 30 1 126 SNP 39.7%

2 G 74 74 1 126 SNP 84.1%

A 74 74 1 126 SNP 15.9%

3 G 75 75 1 126 SNP 84.1%

A 75 75 1 126 SNP 15.9%

4 T 92 92 1 126 SNP 73%

C 92 92 1 126 SNP 27%

5 T 99 99 1 126 SNP 73%

G 99 99 1 126 SNP 27%

analyses used (distance, maximum parsimony, maximum
likelihood and Bayesian) (Figures 5A–D), a monophyletic group
comprised by the type species and additional A. welwitschiae
species and all the sisal endosphere- and root zone soil-associated
black aspergilli were retrieved with moderate statistical support
inside a more inclusive maximum-supported group representing
the A. niger/welwitschiae clade. Therefore, all four phylogenetic
methods were congruent and indicated that the phylogenetic
species of the pathogenic sisal isolates is undoubtedly Aspergillus
welwitschiae. The moderate statistical support for the exclusive
A. welwitschiae clade in all the analyses suggests that this species
recently diverged from A. niger. Only a specific study on the
calibration and estimation of the divergence time of these two
species would confirm this hypothesis (Hedges and Kumar,
2009).

Aspergillus welwitschiae was collected for the first time
at the end of the nineteenth century in an arid region of
southwestern Africa by A. F. Moller from the cone scales
of Welwitschia mirabilis Hook. f. The material was identified
by Bresadola, and the original description was published by
Saccardo (1883) as Ustilago welwitschiae ßres., n. sp. (page
68). Although the identification was not correct (Ustilago is
a basidiomycotan genus), the morphological description of
the spores (sporis fuscidulis, globosis, asperulis, 3½ – 4 µ

diameter) is in accordance with what is currently known
(Table 2). Some years later, Hennings (1903) reclassified Ustilago
welwitschiae as Sterigmatomyces welwitschiae. Finally, Wehmer
(1907) reclassified it as Aspergillus welwitschiae (Bres.) Henn.
apud Wehmer, pointing out that this name was previously
proposed by Hennings in a written communication.

Until recently, Aspergillus welwitschiae was considered an
almost unknown and rare black Aspergillus species associated
with a very peculiar plant (Welwitschia mirabilis) with a restricted
geographical distribution (a contiguous region from Angola
to Namibia in southwestern Africa). After a detailed study
on several species of Aspergillus section Nigri associated with
traditional food fermentations in eastern Asia, Hong et al. (2013)
reported that the neotype of A. awamori (Perrone et al., 2011)
not only did not originate from awamori fermentation but
was also identical to Aspergillus welwitschiae. After the highly
clarifying study by Hong et al. (2013), who clearly indicated
that A. welwitschiae was much more common than believed

and explained how to molecularly discriminate A. welwitschiae
from A. niger, several isolates of this species have been
reported on distinct substrates and in distinct geographic regions
(Supplementary Table 3).

A. welwitschiae (designed as A. niger) naturally occurs in
the reproductive structures of W. mirabilis, including cones
and seeds (Cooper-Driver et al., 2000; Whitaker et al., 2004,
2008; Pekarek et al., 2006). Aspergillus welwitschiae is a common
inhabitant of soil (Eicker et al., 1982; Whitaker et al., 2008), and
its spores are present in the air (Whitaker et al., 2008) of the
arid and semiarid regions where W. mirabilis occurs. There is
a very high prevalence of infected seeds in natural populations
(Whitaker et al., 2008), and most of the newly formed seedlings
(at least in ex situ studies) die from A. welwitschiae infection
(Ursem, 2004).

In addition to having been directly associated with its original
substrates and a specific geographic distribution, isolates of
A. welwitschiae have also been reported in fresh or dried
fruits, such as almonds (Susca et al., 2016), Brazil nuts (Massi
et al., 2016), cashew nuts (Lamboni et al., 2016), grapes/raisins,
figures, maize, pistachios, and walnuts (Susca et al., 2016), as
well as in bulbs (modified stems), such as onions (Gherbawy
et al., 2015) and garlics (Oh et al., 2016), and mustard seeds
(Hanif et al., 2016). Furthermore, Aspergillus welwitschiae has
been detected in different environmental substrates, such as
outdoor air (Lee et al., 2016), indoor dust (Visagie et al., 2014),
caves (Nováková et al., 2017), sea salts (Biango-Daniels and
Hodge, 2018), and even in clinical specimens from the ear
canal in humans, causing otomycoses (Szigeti et al., 2012a,b),
and in human nails, causing onychomycoses (Tsang et al.,
2016). These records are from distinct climates all over the
world (Supplementary Table 3). Therefore, A. welwitschiae is
far from being a rare black aspergillus species and is indeed
a morphological cryptic species (Bickford et al., 2007) of the
A. niger species complex, currently comprising the monophyletic
clade A. niger/welwitschiae (Samson et al., 2014).

Aspergillus welwitschiae was isolated in all the soil samples
from root zones of all the investigated sites in the semiarid
sisal-producing region of Brazil (Table 1). Thus, it may be
quite common in the soil of that region and, most likely,
opportunistically infects the internal sisal tissues. It was also
present inside the tissues of the vegetative organs (roots, stem,
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FIGURE 6 | UPGMA tree of worldwide Aspergillus welwitschiae (including those A. welwitschiae isolated from symptomatic sisal plants in our study).

and leaves) in the symptomatic plants sampled in three distinct
areas (Table 1).

Originally thought be a probable specialized necrotrophic
parasite of W. mirabilis, A. welwitschiae now appears to be a
saprotrophic fungal species that facultatively parasitizes plants
using a necrotrophic nutritional mode. To better investigate this
possibility, we studied the histopathology of sisal bole rot disease
in field symptomatic adult plants for the first time. Based on the
histopathological findings and symptomatology, the penetration
of the fungus in the host tissues occurred from the exterior
(epidermis) to the interior (parenchyma and, subsequently, to
the vascular cylinder) as well as from the inferior portion of
the bole in the foliar sheath (closer to the soil) to the superior

portion of the bole in the apical meristem (Figures 2D,E).
AsA. welwitschiae commonly occurred in the soil around the root
zone of adult symptomatic plants (Table 1) and apparently only
penetrates sisal tissues via natural or artificial openings (Wallace
and Dieckmahns, 1952), damaged foliar sheaths in the inferior
portion of the bole near the soil must be the most likely site
of fungal penetration into the host, and the histopathological
findings corroborate this hypothesis.

Neto and Martins (2012) described the histologies of leaves,
rhizomes and roots in adult healthy A. sisalana plants in
field conditions. The main histological differences between our
sampled infected adult plants and healthy adult plants were the
cell wall degradation of both the parenchymatic and vascular
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cylinder cells (Figures 2M,N,P), corroborating the external
symptom of leaf wilting. Therefore, in symptomatic sisal plants,
A. welwitschiae acts as a typical general necrotrophic pathogen,
which destroys living cells and feeds on their contents, living
saprotrophically on these dead remains.

Similar fungus-plant pathosystems in plant stems occur
between soil-borne black aspergilli and peanuts (Arachis
hypogea) (Gibson, 1953; Moraes, 2006) and Dracaena
sanderiana (Abbasi and Aliabadi, 2008). However, only the
macromorphological external symptoms (yellow-brown lesions
extending into the plant tissues) and signals (black conidiophores
and conidia) were described without any histopathological
description.

After the fungal species that causes sisal bole rot was
taxonomically and phylogenetically characterized and defined,
we investigated the genetic diversity of A. welwitschiae both on
a local scale (those isolated from plants of the sisal-producing
area) and on a global scale (all the A. welwitschiae recorded
worldwide). Surprisingly, even using one molecular marker (the
partial CaM gene), three distinct haplotypes were identified in
sisal isolates from the sisal-producing area of northeastern Brazil
from a total of 10 haplotypes identified in all the publicly available
sequences around the world (including the sisal isolates). Five
SNPs, four transitions and one transversion were identified and
confirmed to have rather distinct proportions of the variant
types (Table 4). Moreover, the most frequent haplotype of the
sisal isolates contained all these SNPs, and it occurs in only the
sisal-producing area in Brazil.

Using molecular phylogenetic analyses, our study
unequivocally demonstrated that Aspergillus welwitschiae
(and not A. niger) is the causal agent of the sisal bole rot disease.
A total of 10 haplotypes of the CaM gene in all A. welwitschiae
were identified in the entire world, and three of these haplotypes
occurred in one of the largest sisal-producing regions of Brazil,
which is the highest sisal-producing country worldwide. One of
the three haplotypes from sisal isolates (accounting for almost
80% of the total) was present in only sisal plants and the sampled
region. All the Aspergillus welwitschiae strains isolated from the
endospheres (roots/stems/leaves) and corresponding soils in
the root zones of adult symptomatic plants in field conditions
induced the typical symptomatology in healthy bulbils. Inside
the host, the fungus destroyed the parenchymatic and vascular
cylinder cells, growing inter- and intracellularly via dead cells,
and induced the necrosis of internal stem tissues. Therefore, sisal
bole rot disease is the consequence of a saprotrophic fungus that
opportunistically invades sisal plants and behaves as a typical
necrotrophic pathogen.

Although there have been significant advances in
understanding sisal bole rot disease, there still are many
open questions regarding the relationships between Aspergillus
welwitschiae and sisal, such as the role of the mycotoxins in
the progression of the disease, the innate and adaptive immune
responses of the plant, and the structure and function of
the microbiomes in healthy and symptomatic plants. We are
currently investigating these questions using an integrative omics
approach.
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