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Metatranscriptomics has recently been applied to investigate the active biogeochemical

processes and elemental cycles, and in situ responses of microbiomes to environmental

stimuli and stress factors. De novo assembly of RNA-Sequencing (RNA-Seq) data can

reveal a more detailed description of the metabolic interactions amongst the active

microbial communities. However, the quality of the assemblies and the depiction of

the metabolic network provided by various de novo assemblers have not yet been

thoroughly assessed. In this study, we compared 15 de novo metatranscriptomic

assemblies for a fracture fluid sample collected from a borehole located at 1.34 km

below land surface in a South African gold mine. These assemblies were constructed

from total, non-coding, and coding reads using five de novo transcriptomic assemblers

(Trans-ABySS, Trinity, Oases, IDBA-tran, and Rockhopper). They were evaluated based

on the number of transcripts, transcript length, range of transcript coverage, continuity,

percentage of transcripts with confident annotation assignments, as well as taxonomic

and functional diversity patterns. The results showed that these parameters varied

considerably among the assemblies, with Trans-ABySS and Trinity generating the best

assemblies for non-coding and coding RNA reads, respectively, because the high

number of transcripts assembled covered a wide expression range, and captured

extensively the taxonomic and metabolic gene diversity, respectively. We concluded that

the choice of de novo transcriptomic assemblers impacts substantially the taxonomic

and functional compositions. Care should be taken to obtain high-quality assemblies for

informing the in situ metabolic landscape.

Keywords: RNA-Sequencing, de novo metatranscriptomics, taxonomic composition, metabolic functions,

metaproteomics

INTRODUCTION

Metatranscriptomics has been applied to investigate environmental microbiomes in recent years
(e.g., Stewart et al., 2011; Jiang et al., 2012; Tveit et al., 2013; Baker et al., 2013; Hultman et al.,
2015; Lau et al., 2015, 2016; Fortunato and Huber, 2016). Compared to analyzing DNA sequences
from amixed-species community (metagenomics), the analysis of total cellular RNA sequences can
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distinguish active members from inactive microbial members,
and can identify functional traits that the active members
likely exhibited under in situ conditions. However, it remains
challenging to fully exploit the massive information stored
in the short RNA sequences generated by next-generation
sequencing platforms (Schliesky et al., 2012). If we could extract
more information from metatranscriptomic data, it will greatly
enrich our knowledge in geobiology and microbial ecology by
adding insights into, for instance, the active biogeochemical
processes and elemental cycles, as well as microbial responses to
environmental stimulants and stress factors.

RNA-Sequencing (RNA-Seq) has proven to be a powerful
tool in cataloging transcriptomes in samples due to its
high throughput at relatively low cost and low background
noise compared to Sanger sequencing and hybridization-
based technologies (reviewed by Wang et al., 2009). De novo
transcriptomic assemblies for isolated single species have gained
much attention, as shown by the rapid development and usage
of many open-source assembly programs in the past 5 years
equipped to handle high-volume RNA-Seq data (e.g., Robertson
et al., 2010; Grabherr et al., 2011; Bankevich et al., 2012;
Schulz et al., 2012; Peng et al., 2013; Tjaden, 2015) that span a
dynamic range of 102 to 105 copies per transcript. However, this
approach has not yet been widely applied to metatranscriptomics
in environmental microbiology studies; and when applied, the
quality of these assemblies has not been thoroughly assessed.

We define the metabolic landscape of an environment as a
representation of the metabolic network utilized by participating
active taxonomically and functionally diverse microorganisms
over space and time. We also define the quality of a de novo
metatranscriptomic assembly by how well it renders taxonomic
and functional compositions of an active community, and
therefore the comprehensiveness of the resultant metabolic
landscape of the studied environment. This evaluation relies on
the number of transcripts, transcript length, range of transcript
coverage, continuity, and percentage of transcripts with confident
annotation assignments, taxonomic and functional diversity
patterns, and functional inference validated by metaproteomic
data. This study aimed to compare the quality of de novo
assemblies generated by five de novo metatranscriptomic
assemblers, namely Trans-ABySS, Trinity, Oases, IDBA-tran, and
Rockhopper. The best-performing assembler for coding and non-
coding reads was identified based on the criteria outlined above.

MATERIALS AND METHODS

RNA-Sequencing and Proteomic Datasets
Fracture water was collected in 2012 from a borehole in the
Beatrix gold mine (shaft No. 3 Level 26) located SW of South
Africa’s Witwatersrand basin. A detailed description of the study
site, sample collection and sample extraction protocol of this
sample, BE326FW270712 Bh2 (BE2012), has been published in
Lau et al. (2014), Magnabosco et al. (2014), and Lau et al. (2016).
In brief, the valve that sealed the borehole from the ambient
tunnel conditions was opened to allow the fracture water to
flow through a sterile stainless-steel manifold for several minutes.
The water flowed at > 50 L per min, flushing out fracture water

near the borehole opening that might have been contaminated
by tunnel air, and preventing oxygen from getting into the
borehole. A massive filter contained in a stainless-stain housing
was left onsite for 15 days to accumulate sufficient biomass.
Upon collection, the filter was immediately preserved in RNA-
preservation solution (Lau et al., 2016), and then stored frozen at
−80◦C until extraction. The topic of potential contamination is
discussed in the Supplementary Text.

RNA and proteome samples were extracted in parallel with
DNA from the filter sample using phenol/chloroform. Total
RNA was purified by ethanol precipitation and subsequently
treated with DNase I (Sigma-Aldrich). PCR amplification of
the treated RNA yielded no PCR products after 35 cycles,
indicating the sample was DNA-free. Methodology of directional
RNA-Sequencing and quality-filtering has been described in Lau
et al. (2016). Briefly, Illumina 2500 HiSeq platform generated
29,980,240 single-end reads of 141-nt in length. Reads with 90%
of the bases with Q score ≥30, without adaptor sequences, and
without ambiguous bases were kept for analysis.

As described in Lau et al. (2016), total protein was purified
by methanol/acetone purification, fractionated, trypsin-digested,
and subsequently analyzed using ultrahigh-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS).
The 10 fractions of tandem MS/MS data were aggregated
and analyzed using the SEQUEST HT search engine in
ProteomeDiscoverer v1.4 (Thermo Fisher Scientific). All
predicted protein-encoding genes (PEGs) in the five coding RNA
(cRNA) assemblies were compiled into a single protein database.
This protein database differs from that used by Lau et al. (2016),
which was constructed from Trinity cRNA assembly alone.
[How coding and non-coding RNA (ncRNA) were separated is
explained in the next section]. The search criteria described in
Lau et al. (2016) were adopted to identify PEGs. Expression of a
PEG in the metaproteomic data was considered valid (Lau et al.,
2016): (i) if the PEG was identified by matches to at least two
unique peptides in a single or replicated UPLC-MS/MS runs; or
(ii) if it was identified only in one run and by a single unique
peptide, but at least five peptide spectral matches (PSMs) were
assigned to the PEG.

The raw RNA-Seq data have been made available at the
National Center for Biotechnology Information (BioProject ID:
PRJNA308990; BioSample ID: SAMN04419122; Lau et al., 2016).
The raw mass spectrometry proteomics data have been deposited
at the ProteomeXchange Consortium via the PRIDE partner
repository (dataset identifier PXD004634; Lau et al., 2016).

De Novo Metatranscriptome Assembly
To test whether dividing the RNA reads into protein-coding
and non-coding sequence pools would enhance assembly quality,
the quality-filtered (hereafter, good-quality) RNA-Seq reads were
organized into two subsets, coding RNA (cRNA) sequences
and non-coding RNA (ncRNA) sequences (Figure 1). All good-
quality RNA reads were searched against four databases using
USEARCH (Edgar, 2010) for its shorter run-time comparing to
BLAST, as described in Lau et al. (2016). The four databases
(DB) were transfer RNA DB (Abe et al., 2011, 2014; 872,667
sequences), 5S ribosomal RNA (rRNA) DB (Szymanski et al.,
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FIGURE 1 | An overview of the bioinformatics workflow. The color arrows indicate the generation of 15 assemblies using five de novo transcriptomic assemblers,

namely Trans-ABySS (blue), Trinity (red), Oases (olive), IDBA-tran (purple), and Rockhopper (orange). Abbreviations: ncRNA, non-coding RNA; cRNA, coding RNA;

tax. class., taxonomic classification; PEG, protein-encoding gene; protein ID, protein identity; SCX, strong cation exchange; MS/MS, tandem mass spectrometry.

2002; last updated in Sept, 2005; 1,379 sequences), small and
large rRNA DBs (Quast et al., 2013; version 119.1; 4,346,329
sequences in SSUParc_tax_silva.fasta.gz and 446,998 sequences
in LSUParc_tax_silva.fasta.gz). RNA reads were assigned into the
ncRNA subset when they shared at least 80% of identity in global
alignment with any of references in the four DBs, regardless of the
orientation. The options used were “-usearch_global,” “-uid 0.8,”
“-strand both,” and “-threads” for multithreading. The remaining
RNA reads were assigned into the cRNA subset. A python script
was used to parse the total RNA reads into cRNA and ncRNA
subsets, which contain 1,498,563 (7%) and 20,078,828 (93%)
reads respectively.

De novo assembly was then performed on all RNA
reads, cRNA and ncRNA subsets separately (Figure 1). Five
transcriptomic assemblers were tested, namely Trans-ABySS
(Robertson et al., 2010), Trinity (Grabherr et al., 2011), Oases
(Schulz et al., 2012), IDBA-tran (Peng et al., 2013), and
Rockhopper (Tjaden, 2015). These license-free assemblers use
substrings of reads (k-mers) and de Bruijn graphs to construct
contigs. However, each assembler is designed to address different
problems that transcriptomic data pose to assembly, as reviewed
by Martin and Wang (2011). Thus, each has adopted different
sorting, clustering, pruning, merging, and information-storing
strategies to construct and examine possible paths before
outputting the final set of contigs. We recommend referring to
the original articles for the details of each algorithm. Presented

here is how each assembler was applied to our RNA-Seq data
(Table 1).

All input files used were in fasta format. For all assemblers,
the first step is to create a k-mer hash table. The strand-specific
option, if available, was indicated in the execution command.
Contigs in the final assemblies have a minimum length of 200
and 300 nt for IDBA-tran.

(i) Trans-ABySS (version 1.5.2; Robertson et al., 2010): Contigs

were constructed from k-mer size = 61–101, with 4-
mer step increments, as separate assemblies using ABySS

(version 1.5.2) (Simpson et al., 2009). For each assembly,

overlapping k-mers were used to build de Bruijn graphs.
Erroneous parts were removed to simplify the paths

and create contigs, which were linked as guided by the

original, good-quality RNA-Seq reads. Pairs of assemblies
with adjacent k values were reciprocally compared to

find representative contigs. Representative contigs were the

longest parent contig to which the shorter contigs had an
exact match. The merging step was reiterated to obtain a

single, non-redundant set of contigs.
(ii) Trinity (version r20131110) (Grabherr et al., 2011): The

default (and non-adjustable) k-mer size was 25. Contigs
were extended from both ends of the “seed” sequence by

a greedy approach of (k-1) overlap, and the longest contig
sequence generated from each “seed” was kept. Contigs that
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TABLE 1 | Summary of strategies used for generating metatranscriptomic assemblies.

Trans-ABySS Trinity Oases IDBA-tran Rockhopper

Version 1.5.2 r20131110 0.2.0 1.1.0 2.0

Assembly method De novo assembly using de Bruijn graph

k-mer size

(min, max, step)

61, 101, 4 25 61, 101, 4 61, 101, 4 25

Minimum contig size 200 bp 200 bp 200 bp 300 bp 200 bp

Option

“strand-specific”

specified?

Yes Yes Yes Not available Yes

No. of intermediate

assemblies generated

11 1 11 11 1

Merging of assemblies Pairs of assemblies with adjacent

k values were reciprocally

compared to find representative

contigs. Representative contigs

were the longest parent contig to

which the shorter contigs had an

exact match. The merging step

was reiterated.

No applicable Contigs in the 11 assemblies

were used as input for assembly

in Velvet. The k-mer (or KMERGE)

size of 27, options “-long,”

“-conserveLong,” and

“-read_trkg” were used. Identical

graphs across the 11 assemblies

were removed.

Assemblies were generated

reiteratively with the contigs

generated in the previous

assembly being used to generate

k-mers for the next assembly.

No applicable

shared common region(s) were clustered. De Bruijn graphs
were then drawn for each cluster. The original information
present in good-quality RNA-Seq reads was used to simplify
and verify the paths in order to decompose the de Bruijn
graphs into the final set of contigs.

(iii) Oases (version 0.2.0) (Schulz et al., 2012): Contigs were
constructed from k-mer size = 61–101, with 4-mer step
increments, yielding 11 assemblies using Velvet version
1.2.10 (Zerbino and Birney, 2008). For each assembly,
overlapping k-mers were used to build de Bruijn graphs
(Velveth and Velvetg in Velvet). Oases reiteratively visited
the parallel paths for contig correction. After correction,
contigs were connected by referencing the good-quality
RNA-Seq reads and subsequently organized them into
clusters representing different loci. Redundant connections
among contigs within each locus cluster were removed
before the graphs were decomposed into contigs. Contigs
in the 11 assemblies were used as input for assembly in
Velvet. The k-mer (or KMERGE) size of 27, as recommended
by the authors, and option “-long” were used to build the
hash table for each assembly. Options “-conserveLong” and
“-read_trkg” were then used at the graph-traversing step.
Identical graphs across the 11 assemblies were removed
during the merging step to reduce the redundancy in the
final set of contigs.

(iv) IDBA-tran (version 1.1.0) (Peng et al., 2013): Contigs
were first constructed from k-mer size = 61. Paths were
pruned based on a probability model built from the input
dataset, and verified by referencing to the good-quality
RNA-Seq reads. The contigs generated were broken into
k-mer size = 71, and the k-mers were then used as input

for assembly. The pruning and validation processes were
repeated for larger k-mer sizes with the maximum k-mer
size= 101, at an increment of 10.

(v) Rockhopper (version 2.0) (Tjaden, 2015): The default k-
mer size was 25. K-mers were used to build a de Bruijn
graph, which was turned into candidate contigs stored in a
Burrows Wheeler Index (BWI). If the k-mer already existed
in the contigs, it was ignored; otherwise, the de Bruijn
graph and BWI were updated. Good-quality RNA-Seq reads
were mapped against the candidate contigs to finalize the
assembly.

From this point forward, contigs are referred to as transcripts.
These transcripts were partial or near-complete in length. In
total, 15 assemblies of transcripts were generated from the three
datasets (all good-quality RNA-Seq reads, ncRNA reads, and
cRNA reads) by the five de novo assemblers. Mean base coverage
for each transcript was calculated by first multiplying the number
of quality-filtered reads mapped to the transcript by the average
read length, and then this value was divided by the transcript
length, as described in Lau et al. (2016).

Quality Assessment of the Assemblies
Basic statistics were computed using a python script for each
assembly. They included the number of transcripts ≥200 nt,
total assembled length, maximum transcript length, minimum
transcript length, average transcript length, the N50 and N90
lengths and the number of transcripts contributed to these two
indices.

To evaluate a transcriptomic assembly originating from
an isolate for which well-annotated complete genome
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sequences exist, the genome sequences serve as a benchmark.
For samples that have incomplete genomic record such as
environmental samples containing uncultivated species, there
is no reliable benchmark dataset available to assess the quality
of metatranscriptomic assemblies. Hence, we evaluated the
representativeness of assembled transcripts by mapping the read
datasets back to the corresponding assemblies generated from
the read datasets. The mapping rate was estimated using Bowtie2
version 2.2.5 (Langmead and Salzberg, 2012), options “–end-to-
end” for global alignment, “–norc” for known strand-specificity
and “–very-sensitive” mode for higher accuracy.

Assemblies generated from each of the three datasets were
also evaluated using RSEM-EVAL (RNA-Seq by Expectation
Maximization-EVALuation) in the DETONATE (DE novo
TranscriptOme rNa-seq Assembly with or without the Truth
Evaluation) package (Li et al., 2014). RSEM-EVAL constructs a
customized probabilistic model for an assembly based on the
number of reads, the number of contigs and read coverage. The
scores provide a quantitative basis to select the best assembly for
RNA-Seq data, for which an ideal reference does not exit (Li et al.,
2014). The RSEM-EVAL score imposes a parsimony preference
in that a greater percentage of RNA-Seq reads is represented
by fewer number of contigs. The lengths of coding genes in
30 published genomes, representing 30 genera that have been
detected in the crustal fluids in South Africa (Lau et al., 2014),
was used to calculate the expected transcript length distribution.
The average length and standard deviation for all genes, protein-
coding genes alone, and ribosomal RNAs alone were determined
to be 985.29± 709.53, 944.2± 709.70, and 2,216.95± 703.60 nt,
respectively. These values were used in the calculation of RSEM-
EVAL scores for the 15 assemblies. Alignment was performed
using the “very_sensitive” mode of Bowtie2.

Additionally, assemblies were compared to determine the
differences in the taxonomic and functional compositions
of the mixed-species community. Transcripts of ncRNA,
primarily rRNA genes, generated from different assemblers
were clustered using CD-HIT-EST in the CD-HIT package
version 4.6.4 (Fu et al., 2012), at an identity cutoff level of
95% (word size “-n”= 10). The representative sequences were
searched against the rRNA database that was comprised of
SILVA small and large rRNA gene sequences, or SSU and LSU,
respectively (version 119.1). Taxonomic assignment was based on
the taxonomic classification of their BLASTn results. Ten best
hits were collected, and those that aligned ≥50% of the query
sequence, had an e-value of <1e-5 and a bitscore of ≥50 were
considered, or else, discarded. The query sequence was assigned
with the consensus rRNA identity (SSU or LSU) by majority
rule, and taxonomic rankings by the lowest common ancestor
(LCA) principle (threshold = 80%). The same rRNA database
was used to identify chimeric rRNA gene sequences using
UCHIME (Edgar et al., 2011). Transcripts were clustered into
operational taxonomic units at 95% identity (t-Tag0.95), and being
conservative, any ncRNA transcripts in clusters represented by
chimeras were omitted from further analysis.

PEGs were predicted from transcripts generated from the
cRNA dataset. Prodigal version 2.6.1 (Hyatt et al., 2010) was
used to identify open reading frames using the option “-p” for
metagenome, and the translation table 11. As the orientation

of the RNA-Seq reads was known and all the transcripts ran
in the sense direction, any predictions made for the anti-sense
orientation were discarded. A python script was used to extract
the amino acid sequences translated from the sense strands. The
similarity of the peptides generated from different assemblers
was compared using CD-HIT. Peptides were clustered at 90%
of identity (word size “-n” = 5) for local alignment (“-G” = 0),
using a slow mode (“-g” = 1) such that the query sequence
would be clustered into the most similar cluster that met a
threshold defined by 80% alignment of shorter sequences to the
respective representative sequences (“-aS” = 0.8). The longest
sequence in each cluster (f-Tag0.90) was searched against the
NCBI non-redundant protein (nr) database using BLASTp. Ten
best hits were collected, and those that aligned≥50% of the query
sequence, had an e-value of ≤1e-5 and a bitscore of ≥50 were
considered, or else discarded. Finally, the query sequence was
assigned by majority rule with the consensus protein identity
based on the description of entries in the NCBI nr database.

Availability of Scripts and Assembled Data
The workflow has been segmented into sections and wrapped
into shell scripts to make it more user friendly. Details of
how to implement and customize the workflow are available
in Supplementary Materials File 1, and on GitHub (https://
github.com/maglau/De-novo-metatranscriptomic-analysis-
workflow). The representative sequences of transcripts generated
from cRNA (Supplementary Materials File 2) and ncRNA
(Supplementary Materials File 3) reads are also included
in Supplementary Materials. Transcripts of individual 15
assemblies will be made available upon request.

RESULTS

Number of Transcripts and Their
Expression Levels
The total number of transcripts assembled varied by three orders-
of-magnitude, ranging from hundreds to tens of thousands of
transcripts per assembly (Table S1). Trans-ABySS assembled
the most number of transcripts for ncRNA and total RNA
datasets, i.e., 12,783 ncRNA transcripts and 23,180 transcripts,
respectively. However, the total length of these two assemblies
(4.9 Mbp in the ncRNA assembly, and 8.4 Mbp in the total
RNA assembly) was shorter than that of the Oases ncRNA
(6.3 Mbp) and total RNA (8.5 Mbp) assemblies. Trinity
generated the greatest number of transcripts (14,678) and
the greatest total assembled length (5.1 Mbp) for the cRNA
dataset. Whereas Rockhopper generated the least number of
transcripts and the least total assembled length for all three
datasets.

The ncRNA and total RNA assemblies showed a greater
expression range than the cRNA assemblies (Figure 2).
Transcripts in ncRNA and total RNA assemblies showed an
expression level up to 105-106, whereas the maximum expression
level estimated for cRNA transcripts were at least an order
of magnitude lower. Although the expression ranges in all
the assemblies spanned across few orders-of-magnitude, the
majority of transcripts had a mean base coverage of 200 times or
less (Figures 2A–C).
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FIGURE 2 | Expression levels of transcripts in assemblies generated from (A) all reads, (B) coding RNA reads, and (C) non-coding RNA reads. Coverage was

computed by normalizing read counts, that mapped to the transcript, to its length. For transcripts with zero coverage, log(coverage+1) was plotted.

Transcript Length and Continuity
The N50 values of ncRNA, cRNA, and total RNA assemblies
were 297–746, 296–417, and 309–645 nt. N90 values exhibited
a narrower range, from 214 to 334 nt (Table S1). For each of
the three datasets, Oases created the longest transcripts of all
assessed assemblers (Table S1; Figure 3). Published sequences of
large subunit of rRNA (LSU) genes are on an average about 3,000
bp long; however, about 1% of the Oases ncRNA transcripts,
comprised of small subunit of rRNA (SSU), were 10 times
longer than 3,000 bp. A BLASTn search of the five longest
Oases ncRNA transcripts (33,602–36,015 nt) revealed that the
top hits were prokaryotic LSU genes, yet there were multiple
alignment regions along the Oases ncRNA transcripts, meaning
the exceptionally long Oases ncRNA transcripts contained
fragmented LSU signatures. Similarly, from the total RNA
dataset, which was dominated by ncRNA reads (93% of all good-
quality RNA-Seq reads), Oases also assembled extraordinarily
long transcripts (Table S1, Figure 3). These long transcripts also
contained fragmented LSU signatures. The presence of these
suspicious transcripts explained the very lowmapping rates when
compared to other total RNA and ncRNA assemblies (Table S1).
These results clearly indicated that Oases has problem assembling
ncRNA genes in metatranscriptomic data. Though Rockhopper
generated the smallest assemblies, the range of transcript length
(Figure 3) and the percentage of mapped reads were comparable
to the larger assemblies (Table S1). Considering the speedy

runtime (less than 5min per run) of Rockhopper, these results
showed that the simple, straightforward assembly algorithm is in
fact quite effective and efficient. Its competence would increase
if the de Bruijn graph network and information storage scheme
could be modified to resolve more transcripts.

As an ideal reference does not exist for environmental
samples, RSEM-EVAL was used to evaluate continuity (Li et al.,
2014). The RSEM-EVAL scores are negative; the closer it is to
zero, the better the assembly. All assemblies showed an RSEM-
EVAL score within the same order-of-magnitude as the values
reported for simulated and empirical datasets (−2 × 109) (Li
et al., 2014). The RSEM-EVAL scores for the cRNA assembly,
the ncRNA assembly, and the assembly generated using all
RNA-Seq reads were increasingly negative for all assemblers
(Figure 4). This trend followed the dataset size because the
scoring model has a Bayesian information criterion (BIC) term
that penalizes proportionally with increasing size of dataset
(Li et al., 2014). The RSEM-EVAL scores for the five cRNA
assemblies were very similar, with those assembled by Trans-
ABySS and Trinity being higher (i.e., less negative). However,
the RSEM-EVAL scores of ncRNA assemblies were drastically
different among assemblers, and were very similar to the RSEM-
EVAL scores of the corresponding assemblies generated from
all RNA-Seq reads. This is likely because the total RNA-Seq
reads were comprised of ∼93% of ncRNA reads. Trans-ABySS
and Trinity generated ncRNA assemblies with greater continuity
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FIGURE 3 | Length distribution of transcripts in assemblies generated from (A) all reads, (B) coding RNA reads, and (C) non-coding RNA reads. Y-axis was truncated

in (A) and (C) to visualize the shorter transcripts, which dominated the assemblies.

than the remaining three assemblers. Oases ncRNA and total
RNA assemblies yielded the most negative RSEM-EVAL scores,
implying high discontinuity. This is in agreement with the
observation of segmented genes in these transcripts, and the low
number of mapped reads that were discussed earlier.

Quality Assessment Based on Homology
Search
By mapping all RNA-Seq reads to ncRNA and cRNA transcripts,
some reads were found to align with both types of transcripts
(data not shown). The complexity in the total RNA dataset
might have generated error-prone transcripts that mistakenly
joined ncRNA to cRNA reads (i.e., mis-assembly). In addition,
although all assemblers generated more transcripts from the total
RNA dataset than from the ncRNA or cRNA subsets (Table S1),
the transcripts generated from the ncRNA and cRNA subsets
together outnumber that from the total RNA, and have longer
assembled length in total. As a result, ncRNA assemblies were
analyzed for taxonomic composition, and cRNA assemblies were
analyzed for functional composition.

A considerable number of ncRNA transcripts were identified
as chimeras, ranging from 6% (Oases) to 27% (Trans-ABySS)
(Table 2). Up to 23% of non-chimeric transcripts matched to
none of the sequences in the SILVA rRNA database or had
matches that did not meet the quality thresholds specified in the

Methods (Table 2). These ncRNA transcripts were also discarded.
It was noted that all long, dubious transcripts generated by Oases
belonged to this low-quality bin.

Of all cRNA transcripts in the assemblies, 74% (Trans-ABySS)
to 92% (Trinity) contained PEGs (Table 2). As expected, the
number of PEGs predicted increased with the size of cRNA
assemblies, ranging from 258 (Rockhopper) to 15,705 (Trinity)
PEGs (Table 2). Of these, 51% (IDBA-tran) to 90% (Trinity)
contained PEGs that ran in the expected direction, indicating
that they are likely originated from real transcripts. Similar to the
analysis of ncRNA transcripts, PEGs that BLASTp returned with
no hits or that showed low-quality alignments with all 10 BLASTp
hits were discarded. This quality-filtering step removed from
11% (IDBA-tran) to 23% (Trans-ABySS) of the total number
of predicted PEGs from the cRNA assemblies. Even though
the assemblies were significantly downsized after filtering away
transcripts based on homology search, this has improved the
quality of these resultant assemblies and increased the confidence
to interpret the community compositions qualitatively and
quantitatively.

In the absence of ideal reference sets for environmental
samples, for evaluating the completeness of transcripts, the
maximum length of the qualified BLAST best hits of our
transcripts (expected length) was used as a benchmark to further
evaluate the transcript length assembled by different assemblers
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FIGURE 4 | RSEM-EVAL scores and BIC penalties of metatranscriptomic assemblies. The RSEM-EVAL scores computed for the assemblies generated from cRNA

(diamond), ncRNA (square), and all RNA (triangle) reads by the five novo transcriptomic assemblers were indicated using the same color scheme as in Figure 1. The

closer is the RSEM-EVAL score to zero, the better the assembly. The complexity of these assemblies was reflected by the Bayesian information criterion (BIC) penalty

score. An assembly’s complexity is assumed to be inversely proportional to its size.

(observed length). The results showed that the majority (≥98%)
of the rRNA transcripts in any ncRNA assemblies were shorter
than 80% of the expected SSU and LSU lengths, (i.e., ≤ 1,200
nt and ≤ 2,400 nt, respectively; Figure 5, Table 2); whereas, a
greater, albeit still low, percentage of PEGs (up to 8%) were
assembled to near full length (Figure 6, Table 2).

Taxonomic Composition
The five tested assemblers generated a total of 7,288 t-Tag0.95
(Table 2) representing 43 phyla. Only 16 phyla (indeed, all
that were detected by Rockhopper) and 35 t-Tag0.95 were
shared among the five assemblies. It is worth pointing out that
these values were limited by the performance of Rockhopper.
Otherwise, Trans-ABySS, Trinity, and Oases all detected 38
phyla, while IDBA-tran detected 35 of the 38. However, it is
important to note that Trans-ABySS captured 4,506 t-Tag0.95
(62% of the grand total), which is ∼1,600 t-Tag0.95 more than
Oases, the second-best-performing assembler (Table 2). Trans-
ABySS assembled 191 t-Tag0.95 belonging to Candidate divisions
vs. 149 by Oases, 78 by IDBA-tran, 72 by Trinity, and 7 by
Rockhopper.

The unweighted (presence or absence of t-Tag0.95) and
weighted (coverage-based) diversity patterns of all assemblies
presented some consistency (Figure 7, Table S2): all three
domains of life were present in the studied sample, with Bacteria
accounting for at least 96% of t-Tag0.95 (unweighted) and the
overall coverage (weighted), except in the Rockhopper ncRNA
assembly where only 79% of t-Tag0.95 (unweighted) was bacteria.

The unweighted diversity at the phylum level varied from one
assembly to another. Trinity and Rockhopper appear to produce
relatively more archaeal rRNA transcripts (more than 10% of
t-Tag0.95) (Figure 7). A closer examination found that these
archaeal t-Tag0.95 were represented by less than a hundred
transcripts, i.e., fewer than the number of archaeal t-Tag0.95 and
transcripts detected in the Trans-ABySS and Oases assemblies.
Interestingly, the high percentage of eukaryal rRNA transcripts
in the Trinity assembly (Figure 7) was indeed supported by
the highest number of eukaryal transcripts observed among
the assemblies, including five unique eukaryal t-Tag0.95 clusters.
Though Trinity assembledmore transcripts related to eukaryotes,
if they were added to Trans-ABySS or Oases assemblies, they
would still constitute a minute component (∼0.4%) of the overall
richness at the phylum level. Considering the highly diverse
taxonomic compositions at both the t-Tag0.95 and phylum levels,
we conclude that Trans-ABySS is the best among the tested
algorithms for assembling ncRNA—andmore accurately rRNA—
reads in metatranscriptomic data.

For each of the assemblies, compared to the unweight
diversity pattern, taking into account the abundance record (i.e.,
weighted diversity) drastically changed the relative distribution
of the detected phyla (Figure 7). However, the weighted
diversity of the assemblies looked more similar to one
another. Proteobacteria largely overtook all of the assemblies,
representing 67–87% of the overall community (Figure 7)
and 72–89% of the bacterial community (Table 3), whereas
the immensely diverse phyla made up a small percentage.
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TABLE 2 | Summary of de novo metatranscriptomic assemblies of non-coding (nc) and coding (c) RNA-Seq reads based on homology search.

Trans-ABySS Trinity Oases IDBA-tran Rockhopper

ncRNA TRANSCRIPTS

1 Total number of transcripts 12,783 1,300 9,762 2,376 144

2 Number of chimeric sequences (% of row 1) 3,488 (27%) 217 (17%) 590 (6%) 358 (15%) 25 (17%)

3 Number of non-chimeric transcripts that has no or low confidence

hit against SILVA rRNA database (% of row 1)

867 (6%) 185 (14%) 2,217 (23%) 15 (1%) 9 (6%)

4 Number of transcripts included for taxonomic composition

analysis (% of row 1)

8,428 (66%) 898 (69%) 6,955 (71%) 2,003 (84%) 110 (76%)

5 Number of SSU transcripts ≥1,200 nt (% of row 4) 58 (0.6%) 0 (0%) 83 (0.9%) 32 (1.6%) 1 (0.8%)

6 Number of LSU transcripts ≥2,400 nt (% of row 4) 22 (0.2%) 3 (0.3%) 27 (0.3) 2 (0.1%) 2 (1.7%)

7 Number of t-Tag0.95 clusters (% of the grand total, i.e., 7,288) 4,506 (62%) 777 (11%) 2,949 (40%) 1,287 (18%) 90 (1%)

8 Number of consensus phyla (% of the grand total, i.e., 43) 39 (91%) 39 (91%) 39 (91%) 35 (81%) 17 (40%)

cRNA TRANSCRIPTS

9 Total number of transcripts 11,743 14,678 6,683 2,113 310

10 Number of transcripts containing protein-encoding genes (PEGs)

(% of row 9)

8,643 (74%) 13,509 (92%) 5,343 (80%) 1,829 (87%) 233 (75%)

11 Number of transcripts containing sense PEGs (% of row 9) 6,877 (59%) 12,319 (84%) 4,413 (66%) 964 (46%) 204 (66%)

12 Total number of PEGs 9,429 15,705 6,032 2,232 258

13 Number of PEGs in sense direction (% of row 12) 7,507 (80%) 14,197 (90%) 4,976 (82%) 1,130 (51%) 222 (86%)

14 Number of PEGs that has no or low confidence hit against NCBI

NR database (% of row 12)

2,197 (23%) 2,802 (18%) 1,157 (19%) 246 (11%) 49 (19%)

15 Number of PEGs included for functional composition analysis (%

of row 12)

5,310 (56%) 11,395 (73%) 3,819 (63%) 884 (40%) 173 (67%)

16 Number of PEGs within 95% of the length of their BLASTp best

hits (% of row 15)

153 (3%) 461 (4%) 127 (3%) 38 (4%) 0 (0%)

17 Number of PEGs within 90% of the length of their BLASTp best

hits (% of row 15)

249 (5%) 648 (6%) 226 (6%) 70 (8%) 4 (2%)

18 Number of f-Tag0.90 clusters (% of the grant total, i.e., 9,760) 3,767 (39%) 9,148 (94%) 2,515 (26%) 677 (7%) 148 (2%)

19 Number of consensus protein ID (% of the grant total, i.e., 2,290) 1,227 (54%) 2,209 (96%) 945 (41%) 373 (16%) 88 (4%)

The Trans-ABySS rRNA assembly showed that many of the
remaining 42 phyla accounted for less than 1% of the total
community. These results from ncRNA assemblies confirmed
that Proteobacteria, known to dominate the 16S rRNA gene
amplicon data (Magnabosco et al., 2014), are indeed the most
active microorganisms, and that the rare biosphere detected in
the DNA communities (Magnabosco et al., 2014) is not dormant
(Table 3).

Functional Composition
A total of 9,760 f-Tag0.90 clusters, comprised of 2,290 consensus
protein IDs, were assembled by the five assemblers (Table 2).
Only 68 f-Tag0.90 and 65 consensus protein IDs were common
to all assemblies. With the largest collection of PEGs successfully
assigned with a consensus protein ID, Trinity contributed 990
unique f-Tag0.90 (10% of the total) that were not found in
other assemblies. The assembly size of cRNA transcripts had a
much greater effect on the functional gene profiles than that
of ncRNA transcripts on the taxonomic profiles. IDBA-tran
and Rockhopper cRNA assemblies would therefore be a poor
choice because many PEGs were missing. Trinity is the obvious
choice for assembling cRNA reads as it captured the majority of

annotations (99% of f-Tag0.90 and 96% of consensus protein IDs;
Table 2).

The performance of these five assemblers to inform functional
compositions was compared based on the profiles of 863
consensus protein IDs collectively being detected by Trans-
ABySS, Trinity and Oases (Figure 8, Table S3). They were
encoded by 3,352 (Trans-ABySS), 6,876 (Trinity), and 2,428
(Oases) f-Tag0.90. On average, Trinity assembled two to three
times more f-Tag0.90 per each of the shared consensus protein
IDs. In order to understand whether these f-Tag0.90 were genuine
variants or they were unlinked fragments potentially originated
from the same transcript, we constructed multiple sequence
alignments for the f-Tag0.90 related to 2-isopropylmalate
synthase, and alkyl hydroperoxide reductase subunit C, and
their reference sequences in the NCBI nr database. These two
enzymes were selected becausemultiple PEGs related to these two
enzymes were assembled by Trans-ABySS, Trinity, and Oases.
The alignment of 2-isopropylmalate synthase-related PEGs
assembled by Trans-ABySS (10 f-Tag0.90), Trinity (21 f-Tag0.90),
and Oases (7 f-Tag0.90) showed that the PEGs overlapped and
displayed variations in the amino acid sequence. Examination
of alkyl hydroperoxide reductase subunit C-related PEGs of 12
f-Tag0.90 from the three assemblers also suggested that many
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FIGURE 5 | Evaluation of ribosomal RNA (rRNA) transcript length. The length of quality-filtered rRNA transcripts (observed) was compared to the maximum length of

qualified BLASTn best hits of the query transcript sequence (expected). The solid and dotted lines denote the average length of large and small subunits (LSU and

SSU) of rRNA genes calculated from the all respective qualified BLASTn hits.

FIGURE 6 | Evaluation of the length of assembled PEGs. The length of quality-filtered PEGs (observed) was compared to the maximum length of qualified BLASTp

best hits of the query transcript sequence (expected). The solid line denotes the full-length annotations.

of the f-Tag0.90 clusters represent genuinely different variants
of the metabolic gene. Of these 863 consensus protein IDs,
89 were related to conserved single-copy genes and 29 were
related to hypothetical proteins (see Supplementary Text for
discussion).

The presence of transcripts in the cytoplasm is a good
indicator of the actual occurrence of represented biochemical
reactions; however, their translation into functional proteins
or enzymes is governed by post-transcriptional modification
and regulation. If the predicted PEGs were translated into

Frontiers in Microbiology | www.frontiersin.org 10 June 2018 | Volume 9 | Article 1235

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Lau et al. Quality Assessment of Metatranscriptomic Assemblies

FIGURE 7 | Unweighted and weighted taxonomic compositions revealed by five de novo assemblers. For unweighted diversity, distribution of phyla was estimated

from the number of the small and large subunits of ribosomal RNA (rRNA) transcripts; whereas coverage, read counts normalized to corresponding transcript length,

was used to determine the weighted diversity. The classification of Eukaryota in the database is not as clearly defined as those of Archaea and Bacteria, so taxonomic

level immediately below the Domain Eukaryota was taken as “phyla.” Archaeal, bacterial and eukaryal phyla are indicated, respectively, by single black line, double

black lines and single gray line to the left of each bar graph. The data is provided in Table S2.

proteins, that would further validate the functional inference.
The manifestation of PEGs predicted from all transcripts in
the metaproteomic data was therefore investigated. In total,
855 cRNA transcripts were detected in the metaproteomic
data, which represent 784 f-Tag0.90 and 363 consensus protein
IDs. For the consensus protein IDs, their expression level,
as indicated by the relative abundance of peptide-spectral
matches, showed no correlations with the length of PEGs
(Figure S1) or the relative abundance of PEGs (Figure S2).
Incongruences between transcript and protein expression levels
have been documented at the single-cell level and attributed to
differences in their decay rates (Moran et al., 2013). Of these
expressed proteins, no f-Tag0.90 and only hypothetical proteins
were detected by all five assemblers. Although Rockhopper
and IDBA-tran recovered fewer cRNA transcripts, the cRNA
assemblies encompassed a small number of unique f-Tag0.90 and
consensus protein IDs. Trans-ABySS andOases recovered similar
unique f-Tag0.90 (144 and 143, respectively) and consensus
protein IDs (103 and 105, respectively). As expected from the
large number of cRNA transcripts assembled by Trinity, the
Trinity cRNA assembly enabled the detection of the majority
of the unique f-Tag0.90 (65%) and consensus protein IDs (75%)
expressed.

DISCUSSION

Reasons to Assemble RNA-Seq Reads
Quality-controlled, unassembled RNA-Seq reads can be
interpreted by searching against a large, diverse database
(Jiang et al., 2012; Tveit et al., 2013) such as RDP and SILVA
for ribosomal RNA, and Pfam and Swiss-Prot for PEGs, but
the short read-length (∼100 bp) limits the confidence of the
gene annotation. It is less a problem if more stringent search
criteria are used to assign short reads with a taxonomic or
functional identity and, if the search is against a more specific
reference set, e.g., genomes (Stewart et al., 2011), metagenomes
from the same sample (Hultman et al., 2015) and, single-cell
genomes (Embree et al., 2014). Pipelines exist to facilitate such
(meta)genomic and (meta)transcriptomic data integration by
aligning RNA-Seq reads to genomic templates, for example, IMP
(Narayanasamy et al., 2016) and ATLAS (White et al., 2017).
Despite the growing number of published microbial genomes
that are generated from isolates (Dam et al., 2012), metagenomes
(Castelle et al., 2013) and single-cell genomes (Rinke et al.,
2013), only 1–2% of these genome-defined species have been
documented by environmental 16S rRNA gene sequences.
This number of genomes is then inadequate for annotating
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TABLE 3 | Taxonomic composition of bacterial phyla revealed by assembled transcriptomic data (this study) and 16S rDNA V6 amplicon data obtained from the same

sample.

Domain Phylum Trans-ABySS Trinity Oases IDBA-tran Rockhopper 16S rDNA V6 ampliconsa

(weighted) (weighted) (weighted) (weighted) (weighted)

Bacteria Acidobacteria 0.04% <0.01% 0.16% 0.03% <0.01% 1.54%

Bacteria Actinobacteria 0.06% 0.04% 0.11% 0.03% <0.01% 2.23%

Bacteria Armatimonadetes <0.01% <0.01% 0.01% <0.01% <0.01% ND

Bacteria Bacteroidetes 0.13% 0.12% 0.39% 0.11% 0.04% 3.34%

Bacteria Candidate divisions and unknown 4.85% 8.79% 12.23% 4.31% 13.01% 8.42%

Bacteria Caldiserica ND ND ND ND ND 0.04%

Bacteria Chlamydiae 0.16% 0.10% 0.37% 0.06% <0.01% 1.57%

Bacteria Chlorobi 0.37% 0.25% 0.56% 0.27% 0.46% 1.55%

Bacteria Chloroflexi 3.89% 6.56% 4.28% 4.10% 2.45% 5.32%

Bacteria Cyanobacteria 0.05% 0.01% 0.71% 0.03% <0.01% 0.69%

Bacteria Deferribacteres 0.01% <0.01% 0.03% <0.01% <0.01% 0.86%

Bacteria Deinococcus ND ND ND ND ND 0.49%

Bacteria Dictyoglomi <0.01% <0.01% <0.01% <0.01% <0.01% ND

Bacteria Elusimicrobia 0.01% 0.03% 0.09% 0.01% <0.01% 0.05%

Bacteria Fibrobacteria ND ND ND ND ND 0.08%

Bacteria Firmicutes 2.38% 2.95% 5.24% 1.57% 5.83% 8.00%

Bacteria Fusobacteria 0.01% 0.00% <0.01% <0.01% <0.01% 0.02%

Bacteria Gemmatimonadetes 0.02% 0.00% 0.05% 0.01% <0.01% 0.40%

Bacteria Lentisphaerae 0.28% 0.48% 0.25% 0.04% 0.32% 0.53%

Bacteria Nitrospirae 0.34% 0.22% 1.07% 0.30% <0.01% 3.17%

Bacteria Planctomycetes 0.17% 0.27% 0.68% 0.10% 0.15% 0.95%

Bacteria Proteobacteria 86.96% 80.01% 72.79% 88.92% 77.69% 59.38%

Bacteria Spirochaetae 0.17% 0.07% 0.50% 0.07% <0.01% 0.59%

Bacteria Synergistetes 0.02% 0.02% 0.11% <0.01% 0.03% 0.04%

Bacteria Tenericutes 0.03% 0.01% 0.15% 0.01% <0.01% 0.27%

Bacteria Thermotogae 0.02% 0.05% 0.17% 0.02% 0.02% ND

Bacteria Verrucomicrobia 0.02% 0.01% 0.08% <0.01% <0.01% 0.45%

aData from Magnabosco et al. (2014). See full citation in the article. Candidate divisions include BRC1, OD1, OP1, OP10, OP11, OP3, OP8, OP9, TA06, TG-1, TM6, TM7, WS3, and

WS6.

ND, not detected.

unassembled RNA-Seq reads. If one uses contiguous sequences,
or contigs, constructed from (meta)genomic assembly for
reference-based annotation of RNA-Seq reads, there are two
main caveats: a metagenomic assembly may be prone to
annotation errors, and rarely is an assembly large enough to
capture all organisms in the studied community. As a result, a
yet-to-be-quantified percentage of unassembled, short RNA-Seq
reads may either fail to be annotated due to poor matching
with the reference sequences, or may be assigned with a wrong
identity.

One of the ways to enhance our RNA-Seq data annotation is
to increase query sequence length. Nowadays, longer read lengths
can be achieved by using recently launched preparation kits (e.g.,
Illumina MiSeq Reagent Kit v3, Illumina TruSeq Synthetic Long-
Read Library Prep Kit) or other sequencing technologies [e.g.,
454, Pacific-Biosciences SMRT and Oxford Nanopore (Conesa
et al., 2016)]. Alternatively, post-quality-controlled reads can
be assembled into contigs or even near-full length transcripts,
which can then be used for gene prediction and annotation.
For data from environmental samples, guided-assembly by first

aligning reads to a reference is not always preferred due to
the lack of high-quality reference partial or complete genomes
for uncultivated organisms. Unlike guided-assembly, de novo
assembly reconstructs transcripts directly from RNA-Seq data,
and therefore does not suffer from errors inherited from poor
reference genomes derived from (meta)genome assembly that are
poorly annotated. In the absence of a priori templates as used in
guided-assembly, de novo assembly also allows the detection of
novel isoforms (Garber et al., 2011).

k-mer Size and Transcript Expression Level
As transcript expression levels within one single cell spans few
orders of magnitude (Bernstein et al., 2002), the range for
a community is likely to be as wide, if not wider, because
members in a diverse microbial community may occur at
different abundances, and each population may display different
degrees of cellular activity. It has been suggested that transcripts
of higher expression levels are better represented when longer
k-mer sizes are used, whereas lowly expressed transcripts are
better represented when shorter k-mer sizes are used (Robertson
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FIGURE 8 | Unweighted and weighted functional diversity profiles of 863 protein IDs. These 863 protein IDs, represented by the color bars, were shared by

Trans-ABySS, Trinity and Oases cRNA assemblies. Color intensity indicates the number of protein-encoding genes (PEGs) and coverage (read counts mapped to the

parent transcript, then normalized to transcript length) in (A) unweighted and (B) weighted profiles. Gray scale indicates the number of PEGs and number of

peptide-spectral matches (PSM) detected in the metaproteome that were mapped to the (A) unweighted and (B) weighted profiles, respectively. Abbreviations:

CSCG, conserved single-copy gene; HP, hypothetical protein. The data is provided in Table S3.

et al., 2010; Schulz et al., 2012). Assemblers that create multiple,
independent assemblies from different k-mer sizes, and merge
them afterwards are therefore expected to better capture the
few-orders-of-magnitude wide dynamic range of transcript
abundance. In contrast to this notion, the expression range of
transcripts in Trans-ABySS and Oases assemblies, created by
multiple k-mers, were relatively low when compared to the
assemblies generated by the other three assemblers (Figure 2).
The expression range of cRNA transcripts assembled by Oases
(0–1,692) was in agreement to the range (0–1,600) reported in
a study that applied a similar approach on a dataset at least
10 times larger (Baker et al., 2013). Therefore, the relatively
lower expression range detected by Oases assemblies in this
study was not likely due to insufficient RNA-Seq reads. Although
IDBA-tran assembled fewer transcripts (Table S1), it detected a
considerable range of transcript expression levels (0–243,188)
(Figure 2). Like Trans-ABySS and Oases, IDBA-tran also uses
multiple k-mer sizes for assembly. However, unlike Trans-ABySS
and Oases, the final assembly is dependent on the previous
assemblies that were constructed progressively with increasing
k-mer sizes. Moreover, the assemblies generated from single
k-mers displayed a wide transcript expression range, with 0–
218,655 for Trinity assemblies and 28–341,743 for Rockhopper
assemblies (Figure 2). Hence, the coverage distribution plots
showed that a larger-size assembly (e.g., Trans-ABySS, Trinity
and Oases) is more likely to capture more of the transcripts that

occurred at lower expression levels (<100 coverage), and the
use of multiple k-mers or single k-mers has no clear influence
on the expression range of transcripts detected in assembled
metatranscriptomes.

Completeness and Continuity of
Metatranscriptomic Assemblies
N50 and N90 are defined as the contig lengths that mark 50
and 90%, respectively, of the total assembled bases in contigs
longer than such length. These indices have commonly been
used to assess the quality of metagenomic assemblies based on
the assumption that better assemblies produce longer contiguous
sequences. Generally speaking, the N50 values suggested that
assemblies from multiple k-mers (Trans-ABySS, Oases and
IDBA-tran) tend to generate more and longer transcripts than
those from single k-mers (except the Trinity cRNA assembly)
(Table S1), whereas the N90 values are not informative at
all because the majority of all assemblies consisted of short
transcripts. Our results supported the argument that using N50
and N90 to evaluate RNA-Seq assemblies is not as meaningful
due to significantly narrower transcript length distribution of
transcripts (Li et al., 2014). Transcript continuity is evaluated
based on the concept that, with the same set of RNA-Seq reads,
the assembly with the greatest number of reads represented in
the least number of contigs will likely be the best, if not the true,

Frontiers in Microbiology | www.frontiersin.org 13 June 2018 | Volume 9 | Article 1235

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Lau et al. Quality Assessment of Metatranscriptomic Assemblies

assembly (Li et al., 2014). Transcript continuity is therefore a
more useful measure than the traditional indices when assessing
whether a metatransciptomic assembly is composed of many
fragmented contigs.

The higher RSEM-EVAL scores of cRNA assemblies than
that of ncRNA assemblies (Figure 4) indicated that constructing
continuous transcripts from cRNA reads is more achievable by
various de novo transcriptomic assemblers than from ncRNA
reads or all reads (i.e., ncRNA-dominated data). In other
words, assembling ncRNA reads that are primarily rRNA
genes is more challenging. One possible explanation is the
presence of micro-heterogeneities. rRNA genes are conserved
across all three domains of life. Variations in the rRNA genes
of diverse microorganisms, while useful for differentiating
lineages, however present a computational problem because
taxonomic diversity and complexity of a sample introducemicro-
heterogeneities. Hypervariable regions in the 16S rRNA gene
increases the number of possible paths by increasing bubbles
and frayed ropes, which can “trick” the assemblers. Micro-
heterogeneities greatly increase the complexity of the de Bruijn
graphs and/or halt the extension of a growing contig. Therefore,
the nature of input sequences is the a priori factor to consider
when choosing an assembler. Some assembly algorithms such
as EMIRGE (Miller et al., 2011) and, more recently, REAGO
(Yuan et al., 2015) are designed for assembling SSU genes and
quantifying their relative abundances. EMIRGE is popular and
produces reproducible results (Miller et al., 2013). However, these
algorithms were tested in this study because their performance in
assembling LSU, which is more abundant than SSU in total RNA,
has not been evaluated. Among the five assemblers tested in this
study, Trans-ABySS and Trinity generated cRNA assemblies with
similarly high continuity. The ncRNA assembly of the highest
continuity was generated by Trans-ABySS.

All five transcriptomic assemblers used in this studied were
designed and tuned to analyze data from a single species or
mammalian cell line. Their ability to assemble transcripts of
near-complete length has been reported. However, a large
proportion of incomplete transcripts were observed in our
ncRNA and cRNA assemblies (Figures 5, 6). With a mixture
of rRNA gene sequences from closely related species and
functional gene sequences from distantly related species, i.e.,
a higher data complexity, the performance of all assembler
on metatranscriptomic data was less optimal than their
performance on transcriptomic data from pure cultures (Celaj
et al., 2014). Our single-end reads are unsuitable for testing the
recent algorithms developed for assembling metatranscriptome
data, which require paired-end reads (Leung et al., 2014;
Ye and Tang, 2016). Nonetheless, the assembly of mouse
gut RNA-Seq data by transcriptomic assemblers Trinity and
Oases was shown to have better functional annotation rates
than that of metatranscriptomic assembler IDBA-MT (Celaj
et al., 2014). If transcriptomic assemblers are as good as
metatranscriptomic assemblers for assessing a highly diverse
and complex community, increasing the sequencing depth
would likely increase the completeness of assembled transcripts.
However, increased RNA sequencing depth requires greater
computational power.

Impact on Taxonomic and Functional
Compositions
Assemblies are commonly evaluated primarily based on the
physical properties of the assembled transcripts. However,
taxonomic and functional diversity patterns are the strong
foundations in environmental microbiology, from which further
investigations (e.g., microbial biogeography, biogeochemical
networks, microbial food-webs) can be pursued. Few studies
have compared the performance of different transcriptomic
assemblers on RNA-Seq data. Such a comparison performed on a
mixed-species microbial community is even scarcer.

Analyzing t-Tag0.95 in metatranscriptomes is useful for

elucidating the relative distribution of active archaeal, bacterial

and eukaryal members within a sample because primer bias is less

significant compared to hybridization-based detection methods

(e.g., reverse-transcription quantitative PCR and microarray).
Unlike sequences recovered from PCR-based methods, these t-

Tag0.95 do not cover the same region but encompass the entire

SSU or LSU genes instead. As these t-Tag0.95 were not assembled

to the (ideal) full length, the more identified t-Tag0.95 clusters
indicate a better coverage of the overall rRNA gene diversity. And
at least in the case of the SSU t-Tag0.95, the 200-nt minimum
length implies that the clusters contain both hypervariable
and conserved regions, which allow more reliable taxonomic
assignment than unassembled short reads do. Therefore, an
assembler is preferred if it captures the most phylum-level
diversity and the greatest number of t-Tag0.95 possible. Trans-
ABySS is superior because it detected 39 phyla, capturing 4,506 t-
Tag0.95 (62% of the grand total) in the ncRNA assembly (Table 2,
Figure 7). These ncRNA transcripts cover a good range of size
(Figure 3, Figure 5) and expression (Figure 2). Trans-ABySS
also assembled 191 t-Tag0.95 belonging to Candidate divisions.
Among the Candidate divisions, “Candidatus Desulforudis” was
represented by six t-Tag0.95 (20 transcripts) in the Trans-
ABySS assembly vs. four t-Tag0.95 (8 transcripts) in the Oases
assembly, one in the Trinity assembly and none in the remaining
two. “Candidatus Desulforudis” and its close relatives have
been detected exclusively in many subsurface environments
(Gihring et al., 2006; Chivian et al., 2008; Alawi et al.,
2011; Itävaara et al., 2011; Brazelton et al., 2012; Jungbluth
et al., 2013; Tiago and Veríssimo, 2013; Osburn et al., 2014;
Robador et al., 2015; Purkamo et al., 2016). The choice of
assemblers is crucial for providing the first empirical evidence
that this spore-forming sulfate-reducing bacterium, putatively
endemic in the subsurface, is transcriptionally active in the
subsurface.

For assembling cRNA reads, Trinity outperformed other

assemblers by reconstructing 9,148 f-Tag0.90, including 990

unique f-Tag0.90. These cRNA transcripts showed reasonable

range of size (Figures 3, 6) and expression (Figure 2). They

coded for 2,209 consensus protein ID (96% of all predicted

consensus protein IDs) (Table 2). Analysis of metaproteomic

data validated the functional inference of approximately 12%
of the predicted proteins (Figure 9, Table S4). To further
illustrate the importance of obtaining good cRNA assemblies,
we compared the nitrogen, sulfur, and carbon metabolisms
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FIGURE 9 | Expression of proteins predicted from cRNA transcripts. The Venn diagram illustrates the shared and distinct (A) f-Tag0.90 of cRNA transcripts and

(B) consensus protein IDs from the analysis of the metaprotoemic data. All cRNA transcripts generated from the five cRNA assemblies were compiled into one single

peptide datase for protein identification. The Venn diagram was generated using the tool at http://bioinformatics.psb.ugent.be/webtools/Venn/.

revealed by the best two cRNA assemblies generated by Trinity
and Trans-ABySS. Biogeochemical cycling of nitrogen, sulfur,
and carbon in the deep subsurface has strong implications
on the questions of how the subsurface environment shapes
the light-independent microbial community and vice versa. As
reported in by Lau et al. (2016), the Trinity cRNA assembly
showed the dominant pathway of N, S, and C metabolisms
in the studied borehole was denitrification, sulfur oxidation,
and Calvin-Benson-Bassham cycle for CO2 fixation, respectively.
Although the Trans-ABySS cRNA assembly revealed similar
results, this assembly missed many lowly expressed transcripts
detected in Trinity cRNA assembly (black ellipses in Figure
S3). Hence, the metabolic network shown by Trans-ABySS
cRNA assembly lacked details when compared to the one
shown by Trinity cRNA assembly. For example, the PEGs
coding for the key enzymes hydroxylamine oxidase (HAO)
in anaerobic ammonia oxidation, acetate kinase (ACK) and
phosphate acetyltransferase (PTA) for the conversion between
acetyl-CoA and acetate were absent. The coverage ratio of PEGs
coding for reverse-type dissimilarly sulfite reductase to that for
dissimilarly sulfite reductase was remarkably different between
the two cRNA assemblies. These two enzymes are indicators for
sulfur oxidation and sulfate reduction, respectively. A ratio of 1:1
in Trinity cRNA assembly vs. 1:5 in Trans-ABySS cRNA assembly
would suggest a different story about the subsurface sulfur
cycle. Only by the analyses of PEGs coding for adenylylsulfate
reductase (APR) and sulfate adenylyltransferase (SAT) could the
dominance of sulfur oxidation activity in both cRNA assemblies
be confirmed.

CONCLUSION

Metatranscriptomics of total RNA (i.e., non-rRNA-depleted
RNA) informs both taxonomic and functional compositions

of the active microbial community in environmental samples.
This information can be extracted by de novo assembly and
does not require (meta)genomic references. This study showed
that assemblies of RNA-Seq data generated by different de novo
transcriptomic assemblers vary in assembly size, length, and
coverage distributions of the assembled transcripts, taxonomic
and functional diversity patterns, and ultimately, the metabolic
network. Of the five tested assemblers, Trans-ABySS, and
Trinity are the recommended assemblers for ncRNA and cRNA
reads, respectively. Choosing a suitable assembler and careful
evaluation of the assemblies will enable a comprehensive view
of the in situ metabolic landscape, and will generate quality
expression profiles for differential expression analyses. Our
study provides useful aspects for designing metatranscriptomic
experiments.

Through de novo assembly of metatranscriptomic data,
active microorganisms from 43 phyla across all three domains
of life were detected in the studied sample, which makes
this sample one of the highest diversity samples reported for
deep subsurface environments and ecosystems with extreme
conditions. With modifications, the bioinformatics and
evaluation approach presented here should be applicable to
analyzing other terrestrial and oceanic samples that may show
a more complex transcriptional network (Aylward et al., 2015;
Yergeau et al., 2018).
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