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Insects harbor a community of gut bacteria, ranging from pathogenic to obligate
mutualistic organisms. Both biotic and abiotic factors can influence species composition
and structure of the insect gut bacterial communities. Dendroctonus valens is a
destructive forest pest in China. To overcome host pine defenses, beetles mass-attack
the pine to a threshold density that can exhaust pine defenses. The intensity of pine
chemical defenses and carbohydrate concentrations of pines can be influenced by
beetle attack, both of which are known factors that modify beetle’s gut microbiota.
However, little is known to what extent variation exists in the beetle’s gut communities,
and host monoterpenes and carbohydrates at different attack densities. In this study,
the gut bacterial microbiota of D. valens at low and high attack densities were analyzed,
and monoterpenes and carbohydrates in host pine phloem were assayed in parallel.
The results showed that no significant changes of gut bacterial communities of the
beetles and concentrations of D-glucose, D-pinitol, and D-fructose in pine phloem were
found between low and high attack densities. The concentrations of α-pinene, β-pinene,
limonene at high attack densities were significantly higher than those at low attack
densities. Our results suggested that different attack densities of D. valens influence
monoterpenes concentration of host pines’ phloem but have no significant impact on
gut bacterial community structures of D. valens and carbohydrate concentration of
host trees’ phloem in early attack phase. Similar gut bacterial community structures of
D. valens between low and high attack densities might be due to the quick adaptation
of gut microbiota to high monoterpenes concentrations.
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INTRODUCTION

The intestinal tract of insects is colonized by a dense microbiota
composed of diverse communities ranging from pathogenic to
obligate mutualistic organisms (Dillon and Dillon, 2004; Engel
and Moran, 2013). The gut microbes of insects have been shown
to confer advantages to the host in terms of nutrient provision
(Visotto et al., 2009; Muhammad et al., 2017), suppression
of pathogens and parasites (Koch and Schmid-Hempel, 2011;
Engel and Moran, 2013), detoxification of xenobiotics (Genta
et al., 2006; Kikuchi et al., 2012; Xu et al., 2016a), pheromone
production (Dillon et al., 2002; Cao et al., 2018), regulation of
immune response (Rodrigues et al., 2010; Blumberg et al., 2013),
and influencing insect behavior (Sharon et al., 2010). Besides
insect taxonomic position and physicochemical environment of
the insect gut, host’s diet and plant defensive chemicals are
well known factors that are capable of significantly influencing
herbivore insects gut bacterial communities (Colman et al., 2012;
Engel and Moran, 2013; Mason et al., 2015).

Bark beetles (Coleoptera: Curculionidae: Scolytinae), a group
of subcortical insects that feed as larvae and adults in the
phloem of trees and woody shrubs (Coulson, 1979), have caused
widespread coniferous tree mortality and severe economic losses
around the globe (Paine et al., 1997; Gitau et al., 2013; Sun
et al., 2013). Coniferous trees can produce defensive chemicals,
such as monoterpenes, in defense against bark beetle attack
(Smith, 1963; Byers, 1981; Phillips and Croteau, 1999; Seybold
et al., 2006). Previous studies suggested that both the intensity
of host chemical defenses and carbohydrate concentration are
influenced by beetles’ attack (Miller et al., 1986; Leufvén and
Birgersson, 1987). Gut bacterial communities of bark beetle
were shown to be less diverse than that of other insects
(Vasanthakumar et al., 2006; Durand et al., 2015; Briones-
Roblero et al., 2017; Hernández-García et al., 2017), which may
be linked to hosts’ diet, plant defensive chemicals, and gut’s
environment that exert a selective pressure on the diversity of
bacterial species (Colman et al., 2012; Engel and Moran, 2013;
Mason et al., 2015; Hernández-García et al., 2017). Furthermore,
gut bacteria of bark beetles were reported to possess many
beneficial ecological functions including degradation of defensive
chemicals and nutrition provision (Boone et al., 2013; Morales-
Jiménez et al., 2013; García-Fraile, 2018; Howe et al., 2018). These
previous studies described a complex and also elusive interaction
between gut microbiota of beetles and host pines. Although gut
bacteria communities of bark beetles at different life stages have
been investigated (Vasanthakumar et al., 2006; Briones-Roblero
et al., 2017; Durand et al., unpublished), little is known about
how gut bacterial communities of beetles vary in parallel with
carbohydrates and defensive chemicals concentration changes of
host pines at different attack densities.

Dendroctonus valens LeConte (Coleoptera, Curculionidae,
Scolytinae) is a destructive pine-killing invasive pest in China,
which was introduced in the early 1980s from North America
and has killed more than ten million Pinus tabuliformis Carrière
trees thus far (Yan et al., 2005; Sun et al., 2013). Pioneer
beetles arrive at susceptible pine trees and attract conspecifics
to the host tree (Wood, 1982; Sullivan, 2016). Beyond a critical

attack density threshold, host tree defenses are exhausted (e.g.,
monoterpenes defense), resulting in beetle establishment (Raffa
and Berryman, 1983; Guérard et al., 2000). Beetles with low
attack density are unable to colonize the trees and are typically
killed by host pine defenses (Hedden and Pitman, 1978; Gao
et al., 2005). Gut bacteria of D. valens have been shown
to degrade host defensive monoterpenes in vitro and affect
carbohydrate allocation in the consumed host tissue to benefit
larval development (Xu et al., 2016a; Zhou et al., 2016), both
of which influence bacterial community structure. A stable gut
bacterial community is important for community function (Xu
et al., 2016c), however, exactly how the bacterial communities
change in response to fluctuations in host carbohydrates and
defensive chemical concentrations during attack at different
densities of beetles remains to be determined.

The purpose of this study was to evaluate the effect of low
and high attack densities on gut bacterial community structure of
D. valens, defensive chemicals and carbohydrate concentrations
of host pines. We also discussed the connection between
the change in bacterial community structure and defensive
monoterpenes and carbohydrate variation of host pines, which
may reveal how gut bacterial communities facilitate successful
attack by D. valens.

MATERIALS AND METHODS

Insects and Samples
Adult beetles were collected from the Lindgren funnel traps
baited with kairomone lure [(+)-α-pinene: (−)-β-pinene: (+)-
3-carene=1:1:1] (99%, 98%, 97% respectively. Sigma-Aldrich,
China) in the Tunlanchuan Forestry Station (N 37◦ 48′, E 111◦
44′, average elevation 1,400 m), west of Gujiao City, Shanxi
province in July 2015. Sexes of bark beetles were distinguished
based on the stridulation of males (Lyon, 1958). Uninfested
P. tabuliformis trees were cut into 50 cm lengths (diameter
≥30 cm), and both ends of the bolts were immediately dipped
into melted paraffin to delay desiccation. Three evenly spaced
holes (80 mm in diameter) were drilled into each bolt, and a pair
of adult beetles was introduced into each of the predrilled holes.
The holes were secured with wire mesh (mesh size, 2.0 mm).
The bolts were checked every 24 h until each pair of beetles
entered the bark. If they failed to enter, a new pair of beetles
was introduced. The bolts were placed vertically in plastic boxes
(40 cm in diameter, 50 cm height). The lids of plastic boxes were
open to keep air flowing before beetles emerged from the bolts
and were closed to collect beetles when beetles emerged from
bolts. The containers were stored at room temperature/humidity
throughout the rearing period.

In June 2016, we randomly collected 480 adult beetles (240
females and 240 males) that emerged from these bolts and
randomly chose 8 healthy P. tabuliformis pines (≤100 m apart,
the average diameter at breast height is 38.3 ± 1.2 cm) in
the Tunlanchuan Forestry Station (N 37◦ 48′, E 111◦ 44′,
average elevation 1,400 m), west of Gujiao City, Shanxi province.
Four pines were set as high density group, and one hundred
adult beetles (50 females and 50 males) were introduced into
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the main stem of each pine at 0.2–0.7 m height using the
methods described above. The other four were set as low density
group, and 20 adult beetles (10 females and 10 males) were
introduced into each tree. After 72 h, almost all beetles have
bored in the phloem with the whole body under the surface
and constructed 4–6 cm length galleries, which is considered
as successful colonization (Birgersson et al., 1984; Zhang et al.,
2000). We then dissected the phloem tissue to collect adult
beetles and excise phloem tissues around inoculation point
(5 mm around the inoculation points) in each tree. Complete
guts were stretched out by cutting the head and separating
the abdomen from the thorax of beetles, and gut samples
that missed foregut, midgut or hindgut were discard. Each gut
sample (n = 9) was put into a 2 mL Eppendorf tube, stored
at −80◦C for DNA extraction. These phloem tissues (n = 12)
were immediately frozen in liquid nitrogen for monoterpene
(α-pinene, β-pinene, limonene) and carbohydrate (D-glucose,
D-pinitol, and D-fructose) quantification.

DNA Extraction, PCR, Illumina MiSeq,
and Sequence Processing
DNA extraction from each adult beetle gut sample from two
groups (high attack density group and low attack density group)
was carried out using the TIANamp Bacteria DNA kit (TianGen,
China) according to the manufacturer’s instructions. The
V3-V4 region of 16S rRNA gene was amplified from the
bacterial DNA by polymerase china reaction (PCR) using 16S
rRNA primers 341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R
(5′- GGACTACHVGGGTWTCTAAT-3′) (Xu et al., 2016c). The
PCR reaction mixture contained 10 ng of DNA, 1 µL of 10 µM of
each primer, 2 µL of 2.5 mM dNTPs, 0.3 µL Fastpfu polymerase
(Transgene, China), and 4 µL 5 × Fastpfu buffer in a 20 µL
final volume. The PCR were carried out in an ABI GeneAmp R©

9700 thermal cycler, cycling conditions were: 95◦C for 10 min;
followed by 30 cycles of 95◦C for 30 s, 55◦C for 30 s and 72◦C
for 45 s; followed by the final extension at 72◦C for 10 min.
Each sample was amplified in three technical replicates 20 µL
PCR reaction and subsequently pooled together. The final PCR
products were purified on 1.5% agarose gel by electrophoresis.
Sequencing was performed on an Illumina platform (Illumina
MiSeq PE250).

The sequencing data were preprocessed. Sequences were
assigned to samples according to specific barcodes and removed
barcodes and primers. Paired-end reads were assembled with
FLASH (V1.2.71). High-quality data (clean reads) were acquired
using the QIIME (Quantitative Insights Into Microbial Ecology)
software packages (V1.9.02) by filtering low-quality data with
default parameters (Caporaso et al., 2010). Chimeric sequences
were detected and removed using UCHIME Algorithm (Edgar
et al., 2011). All effective reads from each sample were initially
clustered into Operational Taxonomic Units (OTUs) of 97%
sequence similarity with a UPARSE algorithm (Edgar, 2013).
The most abundant sequence in each OTU was selected as the

1http://ccb.jhu.edu/software/FLASH/
2http://qiime.org/index.html

representative OTU using Greengene database3 and annotated
by the RDP classifier algorithm implemented in QIIME under a
confidence threshold of 80% (DeSantis et al., 2006; Wang et al.,
2007). The raw sequence reads were obtained and deposited
in the NCBI Sequence Read Archive under accession number
SRR5349096 (reference: BioProject PRJNA379332).

For MiSeq data analysis, rarefaction curves were estimated
using the ‘alpha_rarefaction.py’ script in QIIME to test
whether the sequencing efforts adequately represented the
bacterial diversity within each sample. Two richness estimators
(the abundance-based coverage estimator (ACE) and a non-
parametric richness estimator based on distribution of singletons
and doubletons (Chao1) and two diversity indices (Shannon
and Simpson index) were calculated for the samples using
the ‘alpha_diversity.py’ script in QIIME. The diversity indices
of two groups and the relative abundances of different
genera were compared using an independent t-test. Non-metric
multidimensional scaling (NMDS) was used to visualize the
sample groupings based on Bray-Curtis similarity. Composition
differences were tested using ANOSIM with 10000 permutations
using PAST software, version 3.05 (Hammer et al., 2001). The
representative sequences of all OTUs were used to construct
neighbor-joining trees with QIIME. The phylogenetic tree
together with sample sequence abundance data was used for
weighted Unifrac PCoA (principal coordinate analysis) which
considers both relative abundance and different branch lengths
in a tree, through the online Fast Unifrac program (Hamady
et al., 2010). A Permutational Multivariate Analysis of Variance
based on the weighted UniFrac distance (PERMANOVA,
“PermanovaG” function in the “GUniFrac” package of R) was
used to test for differences in community composition between
two sample groups.

Monoterpenes Concentration in the
Phloem Tissue of Trees at Two Attack
Densities
The dissected phloem tissues were weighed and then ground
under liquid nitrogen until a fine dry powder was obtained.
Twelve phloem powder samples from each group (high attack
density group, low attack density group) were extracted
with hexane containing an internal standard (heptyl acetate)
separately and then stored at −20◦C for the chemical analysis.
The most three abundant monoterpenes (α-pinene, β-pinene,
Limonene) in the phloem were assayed (Leufvén and Birgersson,
1987; Xu et al., 2014).

Extracts (2 µL) were injected splitless into a gas
chromatography-mass spectrometer (GC-MS: Agilent 6980N GC
coupled 5973 mass selective detector) equipped with an HP5-MS
capillary column (0.25 mm internal diameter × 30 m; Agilent
Technologies, Inc., Palo Alto, CA, United States), and the column
temperature was programmed from an initial temperature of
50◦C for 1 min, then increased by 5◦C/min to 100◦C, by 3◦C/min
to 130◦C, and by 20◦C to 320◦C and held for 2 min. Components
of the extracts were identified by comparing retention times

3http://greengenes.secondgenome.com/
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and mass spectra with authentic standards and those in the
NIST02 library (Scientific Instrument Services, Inc., Ringoes, NJ,
United States). Quantification was performed using an internal
standard (heptyl acetate) that was added to each sample.

Carbohydrates (D-glucose, D-pinitol, and
D-fructose) Concentration in the Phloem
Tissue of Trees at Two Attack Density
Groups
Twelve phloem powder samples from each group, high density
group, low density group, were extracted by the method described
by Lisec et al. (2006) with little modification. Two hundreds
mg samples and 5 mL 100% methanol were put into a 10 mL
centrifuge tube and shaken for 20 min at 70◦C in a thermomixer
at 950 rpm. After the samples were centrifuged for 10 min at
11000× g and 350 µL supernatant with 80 µL 0.2 mg/mL ribitol
as an internal quantitative standard was transferred into 350 µL
100 % methanol. With 300 µL chloroform and 600 µL dH2O
added, the samples were vortexed for 30 s and centrifuged at
2200 × g for 20 min, and 150 µL of supernatant was transferred
to a new 1.5 mL centrifuge tube. After the extracts were dried in
a vacuum container, 40 µL of methoxyamination reagent were
added into the samples and the mixtures were shaken at 37◦C
for 3 h. Then 70 µL of MSTFA reagent were added into samples
and the mixtures were shaken at 37◦C for 30 s. The supernatant
was filtered with sodium sulfate anhydrous and kept in 2 mL vials
(Agilent, United States) at−20◦C for chemical analysis.

Quantification analysis was carried on GC (Aglient 7890A)
and FID (flame ionization detector). Chromatography
conditions were as follows: injection volume 1 µL without
split, helium as carrier gas at 1 mL/min constant flow mode,
injector temperature 230◦C, HP-5 silica capillary column
(60 m × 0.25 mm × 0.25 µm). Oven temperature program
was isothermal for 5 min at 70◦C, followed by a 5◦C per min
ramp to 310◦C, and holding at this temperature for 12 min.
Standard carbohydrates (D-glucose, D-pinitol, and D-fructose)
were also tested by GC-FID to check the retention time, by which
components of extracts were identified. Quantification was
performed using an internal standard (ribitol) that was added to
each sample.

Prior to analysis, we tested all variables for normality with the
Kolmogorov-Smirnov test and homogeneity of group variances
with Levene’s test, and data were analyzed using independent-
samples t-test. Differences between two groups were considered
as significant when P<0.05. Data were analyzed using SPSS 12.0
(SPSS Inc., Chicago, IL, United States) and figures were drawn
using Origin 8.5 (Origin Lab Corporation, Northampton, MA,
United States).

RESULTS

Illumina MiSeq Sequencing Data and
α-Diversity Analysis
In the 18 representative gut samples, we obtained a total
of 681 138 sequences (90.5% of the total trimmed 752 331)

and grouped into 1236 OTUs at 97% similarity cut-off level.
Rarefaction curves of the 18 gut samples almost reached
equilibrium, which indicated that our Illumina MiSeq analysis
covered the natural bacterial diversity well (Figure 1). Twenty-
six phyla were detected in the microbiota from 18 samples
associated with D. valens, and of these 26 phyla, five main phyla
(Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and
Deinococcus–Thermus) representing more than 0.01% of total
reads (Supplementary Table S1). At genus level, the sequences
could be assigned to 141 genera (Supplementary Table S1).
There were no significant differences between high density group
and low density group in all five diversity indices (Table 1).

β-Diversity Analysis
An NMDS ordination analysis based on Bray-Curtis similarities
across the samples suggested that the gut bacterial communities
of D. valens in the low attack density group were similar to
those in the high attack density group (Figure 2A; ANOSIM,
P = 0.54). No separation was obtained in phylogeny-based
weighted UniFrac principal coordinate analysis, which was
confirmed by PERMANOVA (Figure 2B, P = 0.57).

OTU and Genus Abundance Analysis
No difference in OTUs abundance between the two groups were
found (Supplementary Table S1). At the genus level, the genera
with an abundance of at least 0.01% of the total of number
of reads were present in Supplementary Table S2. The relative

FIGURE 1 | Rarefaction curves of the 18 samples based on Illumine MiSeq
sequencing of bacterial communities. Color-coded lines represent different
samples respectively.

TABLE 1 | Comparison of diversity indices (Mean ± SEM) of Dendroctonus valens
gut bacterial community between the low and high density groups.

Index Low density High density

Number of OTUs 273.67 ± 55.26 248.78 ± 21.43

ACE 417.26 ± 63.77 412.43 ± 35.18

Chao1 387.52 ± 57.67 373.15 ± 30.74

Shannon diversity (H) 1.71 ± 0.17 1.76 ± 0.17

Simpson diversity 0.49 ± 0.04 0.51 ± 0.04
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) and principal
coordinates analysis (PCoA) of the gut microbiota of Dendroctonus valens
between low and high attack density groups. (A) NMDS diagrams of 18
samples, based on Bray-Curtis distance matrix for bacterial communities that
consisted of OTUs (97% similarity level). Bacterial communities of the two
groups were not separated from each other. (B) PCoA plots based on the
weighted UniFrac metric for bacterial communities. Permutational multivariate
analysis of variance indicated that there were no differences between bacterial
communities of the two groups. The red represents samples from high density
group, and blue represents samples from low density group.

abundance of genera Erwinia and Halomonas were the highest
among all genera.

Quantification of the Monoterpenes and
Carbohydrates Concentrations
Quantification of the monoterpenes in the phloem tissues results
showed that α-pinene, β-pinene, limonene concentration in the

phloem of trees at high attack density are 1.48 ± 0.13 mg/g,
0.19 ± 0.02 mg/g, and 0.08 ± 0.01 mg/g respectively, which are
significantly higher than the concentration of the monoterpenes
at the low attack density group (Table 2).

Quantification of the carbohydrates concentration (D-glucose,
D-pinitol, and D-fructose) in the phloem tissues results showed
that D-glucose, D-pinitol, and D-fructose concentration in
the phloem at the high density group were not significantly
different from the concentrations at the low attack density group
(Figure 3), and D-glucose is the highest abundant carbohydrate
in the phloem, D-pinitol is the lowest abundant carbohydrate.

DISCUSSION

Our results confirmed that the different attack densities
of D. valens can influence host defensive monoterpenes
concentration. α-Pinene and β-pinene are the most abundant
defensive monoterpenes for host P. tabulaeformis (Chen et al.,
2006; Xu et al., 2014), and their concentrations rapidly
accumulate after beetle attack (Miller et al., 1986; Leufvén and
Birgersson, 1987). In comparison with the concentration of the
monoterpenes in healthy tree (α-pinene, 0.52 ± 0.17 mg/g;
β-pinene, 0.07 ± 0.02 mg/g; limonene, 0.02 ± 0.01 mg/g)
(Xu et al., 2014), our results showed that monoterpenes
concentrations are generally elevated by beetles’ attack in both
low and high attack density groups (Table 2). Furthermore,
we found that its concentration in the phloem at high attack
density is significantly higher than those at the low attack density
(Table 2). Plant defenses are basically regulated by genetic factors,
and many abiotic factors (e.g., light, ultraviolet radiation, seasonal
variation, altitudinal variation, drought) and biotic factors (e.g.,
phytophagous insect, pathogens, fungus) have also been shown to
influence its regulation (Close and McArthur, 2002; Solar et al.,
2006; Spitaler et al., 2006; Adams et al., 2008; Ballare, 2014;
Wang et al., 2015). Once being attacked by insects, plants release
a variety of volatiles from the insect feeding damage site, and
the profile of volatiles emitted is markedly different from those
undamaged plants (Paré and Tumlinson, 1999; Forkner et al.,
2004). Several studies showed that defensive monoterpenes of
pine trees significantly increased after attack by beetles (Miller
et al., 1986; Leufvén and Birgersson, 1987; Wallin and Raffa,
1999). It was also reported that some Chinese fungal associates
of D. valens induced higher concentration of other defensive
chemicals including diterpene resin acids and naringenin in
P. tabuliformis (Cheng et al., 2015, 2016). In the study, whether
or not the associated microorganisms of D. valens led to the
variation of monoterpenes concentration needs further study.

Although monoterpene intensity was significantly different
between the low attack density group and the high attack
density group, no significant differences of D. valens gut bacterial
community structure were found (Figure 2). This may partly
be explained by the quick adaptation of gut microbiota to high
concentration of α-pinene (Xu et al., 2016c). It was reported that
α-pinene can alter D. valens gut bacterial community structure
in 6 h, but this change was recovered to the original bacterial
community after 48 h (Xu et al., 2016c). Besides, diet has
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TABLE 2 | Monoterpene quantity (mg/g) (Mean ± SEM) in Pinus tabuliformis phloem at low and high attack densities.

Chemical Low attack density High attack density

Concentration Minimum Maximum Concentration Minimum Maximum t P

α-Pinene 0.44 ± 0.04 0.11 0.63 1.48 ± 0.13 1.08 2.47 7.65 <0.01

β-Pinene 0.07 ± 0.01 0.04 0.16 0.19 ± 0.02 0.12 0.35 4.83 <0.01

Limonene 0.04 ± 0.01 0.02 0.08 0.08 ± 0.01 0.04 0.12 5.12 <0.01

FIGURE 3 | The carbohydrates concentrations (D-glucose, D-pinitol, and
D-fructose) in the pine phloem tissue at low and high attack density groups.
The data were analyzed using independent t-test.

proved to play a major role in shaping gut bacterial communities
for model insect Drosophila melanogaster and insects that
ingest lignocellulose-derived substances (Chandler et al., 2011;
Colman et al., 2012). But the carbohydrates concentration
(D-glucose, D-pinitol, and D-fructose) in the diet of D. valens
between the two groups were similar (Figure 3), which is
independent of different attack density. Thus, whether different
carbohydrates in diet would influence the gut microbiota need
further study.

The most abundant genera in this study were Erwinia and
Halomonas (Supplementary Table S2), which is not consistent
with the results of gut microbiota in emerged insects which
were captured in newly attacked pine stumps or fed phloem
media without monoterpenes (Xu et al., 2015, 2016b). Erwinia
are common gut bacteria in D. valens described in previous
studies using both culture and uncultured method (Xu et al.,
2015, 2016b), but Halomonas was first reported in D. valens guts.
Halomonas have been found in other insects system, e.g., the
pine wilt disease insect vectors Monochamus galloprovincialis and
M. alternatus (Alves et al., 2016) and pine weevil (Ölander, 2013).
As the environmental acquisition of diverse microbes has been
shown to lead to the change of gut bacterial assemblage (Mason
and Raffa, 2014), D. valens may acquire the Halomonas bacteria
from host environment, which needs further study to confirm
e.g., setting a negative control to explore initial conditions of
microbiota of emerged beetles. In addition, Halomonas are able
to produce cellulase and have cellulolytic activity (Huang et al.,
2010; Shivanand et al., 2013). The genome analysis of Halomonas

sp. strain KO116 indicated that several relevant genes required
for lignin degradation were highly observed in KO116 genome
(Kameshwar and Qin, 2016). The phloem of P. tabuliformis is
rich in cellulose, thus, the high abundance of Halomonas in
the gut of D. valens may facilitate its nutrients uptake. Besides,
D. valens in host pines trees at both low and high attack
densities have a relative stable gut bacterial community structure
(Figure 2), which is also important for the communities to
conduct ecological functions.

Our result showed D-glucose concentration in the phloem is
the highest and D-pinitol is the lowest abundant carbohydrate
(Figure 3), which is not consistent with the results executed
in healthy P. tabuliformis (D-pinitol, 21.96 ± 4.10 mg/g;
D-fructose, 14.82 ± 3.68 mg/g; D-glucose, 18.12 ± 6.65 mg/g)
(Zhou et al., 2016). The phenomenon may attribute to the
bacteria-fungi interactions associated with D. valens that regulate
carbohydrate concentration in the phloem. Several dominant
culturable bacteria including Pseudomonas associated with
D. valens inhibited D-glucose consumption of Ophiostoma
minus and forced Leptographium procerum to consume D-pinitol
prior to D-glucose, thus, may lead to increase in D-glucose
concentration and decrease in D-pinitol concentration (Zhou
et al., 2016). Although soluble sugars and starch content in
phloem were significantly changed after 72 h attack initiated by
bark beetles (Miller et al., 1986), previous studies also suggested
that carbohydrates contents were changed by beetles’ attack after
several weeks or months (Dunn and Lorio, 1992; Wiley et al.,
2016), thus 72 h after the attack of D. valens may not long enough
to induce the variation of carbohydrates content in pine trees. In
future experiments, we plan to prolong the sampling time after
the attack of D. valens and inoculate the bacteria and fungi to the
phloem directly to confirm whether the interactions contribute to
the result.
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