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This work aims to explore the capacity of a Bacillus methylotrophicus (later heterotypic
synonym of Bacillus velezensis) strain named XT1 CECT 8661 against the necrotrophic
plant pathogen Botrytis cinerea and to identify the compounds responsible for its
activity. Q_TOF electrospray mass spectrometry analysis allows us to detect several
lipopeptides – surfactin, bacillomycin, and fengycin – in XT1 cultures. In vitro antibiosis
studies demonstrated the efficiency of the lipopeptide fraction for the inhibition of
fungal growth. In fact, microscopy studies (SEM/TEM) revealed, an alteration of the
morphology of the phytopathogen in interaction with lipopeptides, with resistance
structures appearing in the early stages of growth of the fungus. Our studies, carried out
with tomatoes, grapes, and strawberries have demonstrated the efficiency of Bacillus
XT1 CECT 8661 lipopeptides against B. cinerea infection and it capability to trigger
the antioxidant activity in fruit. Overall, the results of this study highlight the potential of
lipopeptides of this strain as an effective biological control agent against the colonisation
of B. cinerea.
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INTRODUCTION

Botrytis cinerea [teleomorph: Botryotinia fuckeliana (de Bary) Whetzel] is a necrotrophic fungi
known to be the cause of grey mould. These fungi can infect more than 200 plant species, including
horticulturally important crops (Gao et al., 2018). Therefore, it has significant economic relevance,
causing huge economic losses (Dean et al., 2012). The ability to produce conidiophores that contain
conidia gives it the ability to remain quiescent until conditions are favourable enough to produce
the infection (Gao et al., 2018). The production of lytic enzymes along with other phytotoxic
metabolites induces cell death in plant tissues, mainly affecting those in a state of senescence or
with wounds on their surface (Finiti et al., 2014; Gonzalez-Fernandez et al., 2015; Yu et al., 2015;
Yahaya et al., 2016). The aforementioned ubiquity, together with the capacity to produce resistant
structures and the high mutation rate of B. cinerea, makes the fight against this fungus a challenging
task (Gonzalez-Fernandez et al., 2015; Haidar et al., 2016).

Currently, the most popular treatment to combat grey mould is the extensive use of pesticides;
however, recent regulations of these products have considerably restricted the possibility of
their use. These pesticides produce residual waste and contaminate ground water increasing the
risks for human health and the environment (Perez-Garcia et al., 2011; Romanazzi et al., 2012;
Finiti et al., 2014). As a consequence, one of the biggest challenges for sustainable agriculture
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is the development of environmentally friendly alternatives such
as the use of microorganisms. The biological control through
bacterial strains has been an objective of particular interest
due to their multiple modes of action against different plant
diseases. One of these mechanisms is the production of a wide
variety of biologically active compounds with great potential
for biotechnological applications (Gond et al., 2015; Martinez-
Hidalgo et al., 2015; Mnif et al., 2016).

Although several microorganisms have been described as
potential candidates for biological control agents, numerous
research studies have focused on members of the genus Bacillus.
Species from this genus have been considered biologically safe
and are commonly used in agriculture. The sporulation capacity
of these microorganisms gives them a high resistance, high
ubiquity in diverse habitats and stability in formulated products
(Ongena and Jacques, 2008; Tanaka et al., 2015; Mnif et al., 2016).
Members of the genus Bacillus are well known for their capacity
to colonise roots, promote plant growth (PGPR) and induce
systemic resistance mechanism in plants (Sicuia et al., 2015).
In addition, they can produce a broad spectrum of biologically
active molecules, with potential antimicrobial and antifungal
properties. One of the major factors related with the antifungal
activity of members of the genus Bacillus is due to the production
of lipopeptides (Ongena and Jacques, 2008).

Lipopeptides are low-molecular-weight cyclic amphiphilic
oligopeptides synthesised by multi-enzyme complexes called
non-ribosomal peptide synthetases (NRPSs) (Romero et al., 2007;
Gond et al., 2015; Han et al., 2015; Deng et al., 2017). Species
from the genus Bacillus produce molecules which are mainly
classified into three families depending on their amino-acid
sequence: surfactin, iturin, and fengycin. These families share
a cyclic β-amino or β-hydroxy fatty acid linked to a lipid tail
(Tapi et al., 2010; Sumi et al., 2014; Jemil et al., 2017). Biological
activities may differ from one compound to another depending
on the type of amino-acid residues, the cyclisation of the peptide
and the length and branching of the fatty acid chain (Ongena and
Jacques, 2008; Frikha-Gargouri et al., 2017).

Different studies have demonstrated the activity of
lipopeptides produced by Bacillus subtilis (Farace et al.,
2015; Wang et al., 2015; Arroyave-Toro et al., 2017). However,
the information about the antifungal activity of lipopeptides
produced by B. methylotrophicus against B. cinerea is almost
non-existent.

The objective of this study is to analyse the antifungal activity
of B. methylotrophicus XT1 CECT 8661 (later reclassified as
heterotypic synonym B. velezensis) (Ruiz-García et al., 2005)
against B. cinerea. For this purpose, the lipopeptides produced
by B. methylothrophicus by this strain were identified, the genes
involved in their biosynthesis were detected and their antifungal
activity was tested in vitro. Alterations of the morphology of
the phytopathogen in interaction with these macromolecules
was examined via microscopy studies. Furthermore, studies of
antibiosis in vivo and determination of antioxidant compounds
on grapes, tomatoes, and strawberries were carried out in order
to demonstrate the ability of these compounds to protect against
B. cinerea infection and to activate antioxidant mechanisms. To
the best of our knowledge, this is the first report that describes the

ability of lipopeptides to trigger the antioxidant activity in fruit,
a mechanism involved in the elicitation of an induced systemic
resistance phenomenon.

MATERIALS AND METHODS

Bacterial and Fungal Strains
The bacterial strain used in this study was the patented strain
Bacillus XT1 CECT 8661, licenced to Xtrem Biotech S.L., which
was isolated from a rhizospheric soil sample in the south of
Spain (Béjar et al., 2014). The strain was originally classified as
B. methylotrophicus and it was later reclassified as a heterotypic
synonym of B. velezensis. It was routinely cultivated on a nutrient
broth and nutrient agar at 28◦C. The phytopathogenic fungus
B. cinerea was kindly provided by the University of Zaragoza
(Spain) and was maintained on potato dextrose agar (PDA) and
potato dextrose broth (PDB) and incubated at 24◦C.

Antifungal Activity of XT1 Strain
The antifungal activity of XT1 strain against B. cinerea was
determined in both solid and liquid mediums. For the solid assay
strain XT1 was spread on a 1 cm2 area on one side of a PDA
agar plate (at 1 cm from the plate wall) and an 8-mm-agar disc
of the mycelium of fungi was deposited on the opposite side.
The maximum and minimum values of the fungal mycelium
radius obtained were measured after a 15-day incubation
period at 25◦C. The results were expressed as a percentage of
the mycelium inhibition rate (IR% = A− B

/
A× 100) where

A was the maximum value of the mycelium radius and B
was the minimum value. For the antifungal assay in liquid
medium, first, the time in which the antifungal activity was
the maximum was determinate cultivating the strain XT1 in
MOLP (medium optimal for lipopeptide production) (Ahimou
et al., 2000) at different times (24, 48, 72, and 96 h), then
the supernatant was tested against B. cinerea following the
procedure described below. A 15-day culture of B. cinerea in
PDB was crushed in a breaker and filtered with gauze, all
under sterile conditions. The spore concentration was adjusted
to 5 × 107 conidia mL−1 and penicillin G (2.5 mg mL−1) and
streptomicin (10 mg mL−1) was added to the spore suspension.
The experiment was carried out on multiwell culture plates
(Cellstar∗) with 48 wells where 900 µl of the spore solution
was subjected to 300 µL of different times XT1 supernatant,
obtained after centrifugation of the XT1 culture in MOLP at
10000 rpm 20 min. Inoculated medium with cycloheximide 50 µg
mL−1 was used as a positive control for growth inhibition, whilst
PDB inoculated with spore suspension without treatment was
considered as the negative control. The plates were incubated
at 25◦C for 7 days. The results were obtained by observing the
presence or absence of fungal growth (Frikha-Gargouri et al.,
2017).

Lipopeptide Production
Three different liquid media have been tested for lipopeptide
production: MOLP medium (Ahimou et al., 2000); SG medium
(Schaeffer et al., 1965; Leighton and Doi, 1971), and a commercial
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concentrated beef medium (CM) (ox concentrate 43% and
yeast extract 24%). Lipopeptides were extracted according to
Yazgan et al. (2001) with slight modifications. Briefly, the culture
supernatant of strain XT1 was subjected to an organic extraction
with one volume n-butanol three times using a decantation
funnel. Then, the organic phase was evaporated with a vacuum
concentrator.

Antifungal Activity of the Lipopeptides
Produced by XT1
Lipopeptide antifungal activity was tested by preparing 20 mL of
lipopeptide solution at different concentrations: 20, 10, 8, 6, 4,
2, 1, and 0.5 mg mL−1 (w/v in distilled water) in 50 mL tubes.
Then 0.8 g PDA was added to each lipopeptide solution; the
negative control was made with untreated PDA medium. The
tubes were then sterilised and the medium were poured into
90 mm Petri plates. Next, a fungal plug of 15 days of mycelial
growing B. cinerea was deposited in the middle of each plate and
maintained at 25◦C for 15 days. After that, the mycelial growth
inhibition percentage was calculated after 15 day’s incubation
by the comparison between the diameter of mycelial growing
in the control plates and the treatments according to the
following formula: mycelial growth inhibition= 100−[(diameter
of control mycelium diameter of mycelium in lipopeptide
medium /diameter of control mycelium) × 100] (Borah et al.,
2016).

Determination of Minimal Inhibitory
Concentration (MIC) and Minimal
Fungicidal Concentration (MFC) of the
Lipopeptides
The minimal inhibitory concentration (MIC), defined as the
smallest concentration of lipopetides that inhibits the fungal
growth totally and the minimal fungicidal concentration (MFC),
defined as the lowest concentration of lipopeptides capable of
killing the fungi, was determined. The experiment was carried out
in liquid medium according to the protocol described previously
in the “Antifungal Activity of XT1 Strain” section. However, in
this case 900 µl of the spore solution was exposed to 300 µL
of lipopeptide dilutions 20, 10, 8, 6, 4, 2, 1, and 0.5 mg mL−1.
The plates were incubated at 25◦C for 7 days. The results

were obtained by observing the presence or absence of fungal
growth. The whole content from each well, where there was no
growth of B. cinerea, was passed to tubes with PDB medium
and incubated at 25◦C for 7 days for the determination of MFC
(Frikha-Gargouri et al., 2017).

Stability of Lipopeptides to Heat and pH
The antifungal activity of a lipopeptide solution (10 mg mL−1)
from XT1 was determined after 10, 30, and 60 min of heating
at 100◦C and after 20 min at 121◦C. The stability was also
determined at different pH in the range comprised between 3
to 12 (Ghribi et al., 2012).The antifungal activity was tested in
liquid medium according to the method described above (Frikha-
Gargouri et al., 2017).

Genetic Characterization of Lipopeptides
Genes encoding NRPS production were amplified by polymerase
reaction chain (PCR) from genomic DNA of the XT1 strain.
PCR was carried out using the specific and degenerated primers
described in Table 1. PCR amplifications were achieved in 50 µL
mixtures with PCR buffer, 2 mM MgCl2, 4 mM of each primer,
5U Taq polymerase, 0.2 mM of each dNTP, and 80–100 ng
of genomic DNA. The amplification conditions were: 95◦C for
5 min, 40 cycles of 94◦C for 1 min, annealing temperature
for 1 min, 72◦C extension for 1 min; and a final extension
at 72◦C for 10 min. The annealing temperatures were 45,
43, 50, 53, and 50◦C for, Af2/Tf1, As1/Ts2, BmyBF/BmyBR,
ItuDF/ItuDR, and SrfA3/LicA3 primers, respectively. The
amplification products were analysed by electrophoresis in a 2%
(w/v) agarose gel.

Identification of Lipopeptides Using
UPLC – HDMS Q-TOF
The residue obtained from lipopeptide extraccion was dissolved
in 10% methanol and analysed by high-pressure liquid
chromatography (UPLC) (Acquity UPLC R© BEH300, Waters)
coupled to a high definition mass spectrometry (SYNAPT G2
HDMS Q-TOF. Waters). Mass spectrometry was carried out by
positive ionisation electrospray (ESI+). The obtained data were
processed by the MassLynxTM software (Waters).

TABLE 1 | PCR primers of lipopeptides biosynthesis genes in Bacillus XT1.

Lipopeptide Gene Primers Primer sequences (5′→3′) PCR product size (bp) Reference

Surfactin/Lichenicin srfA3/licA3 SrfA3/licA3(F) CAAAAKCGCAKCATACCAAKTTGAG 268 Randall Simpson et al., 2011

SrfA3/licA3 (R) AGCGGCAYATATTGATGCGGYTC

Fengycin fenC Af2 (F) GAATAYMTCGGMCGTMTKGA 443–455 Tapi et al., 2010

Tf1 (R) GCTTTWADKGAATSBCCGCC

Surfactin srfA-A As1 (F) CGCGGMTACCGVATYGAGC 419–431 Tapi et al., 2010

Ts2 (R) ATBCCTTTBTWDGAATGTCCGCC

Bacillomycin bmyB BmyB (F) GAATCCCGTTGTTCTCCAAA 370 Mora et al., 2011

BmyB (R) GCGGGTATTGAATGCTTGTT

Iturin ituD ItuD (F) TTGAAYGTCAGYGCSCCTTT 482 Chung et al., 2008

ItuD (R) TGCGMAAATAATGGSGTCGT
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Scanning Electron Microscopy and
Transmission Electron Microscope of
Mycelia Treated With Lipopeptides
Solid culture medium plates with the negative control treatments
and lipopeptides 10 mg·mL−1 from the previously experiment
described in the “Antifungal Activity of the Lipopeptides Produced
by XT1” section, were used to observe the morphology
of B. cinerea. The samples were fixed and observed in
a FIB-FESEM (CrossBeam NVision 40 R©, Carl Zeiss SMT)
Scanning Electron Microscope and Transmission Electron
Microscope.

Bioassay Against B. cinerea in Grapes,
Strawberries, and Tomatoes
Antifungal activity of lipopeptides produced by XT1 was tested
on grapes, strawberries, and tomatoes. B. cinerea was grown for
15 days on a PDA medium at 25◦C and conidia were collected
with sterile distilled water and filtered through four layers of
sterile cheesecloth. The surface of the fruit was sterilised with 5%
NaOCl for 5 min and rinsed three times with plenty of sterile
water. Wounds of 3 mm were performed with a sterile scalpel on
the surface of the grapes, then 15 µl of a 20 mg·mL−1 solutions
of lipopeptides were applied on the injury. One hour later, when
the fruit was dried at room temperature, 15 µL of a suspension
of B. cinerea 108 conidia mL−1 were inoculated into the wound.
Strawberries and tomatoes were cut into slices and treated by
spray with the same lipopeptide solution as in the previous case.
Then, after 1 h, the fruit was infected by spraying with the conidia
suspension of B. cinerea. All the treatments were incubated at
25◦C, 70% humidity for 6 days. For each treatment, a total of nine
fruits were used and three technical replicates were performed.
Effect was measured and expressed as disease incidence (% of
infected fruit).

Antioxidant Activity on Fruit Treated With
Lipopeptides
The antioxidant activity was measured extracting the soluble
phenols and by FRAP assay (ferric iron reducing antioxidant
power assay). Total soluble phenols were extracted from 0.1 g
of lyophilized fruits with 10 mL of 80% methanol and 0.1%
hydrochloric acid. The mixture was placed in the dark at 4◦C
for 2 h. The supernatant was filtered and the extract was used
for the determination of the phenol content and the FRAP assay.
The amount of total phenols was determined according to the
Folin-Ciocalteu’s procedure described by Ribereau-Gayon (1968)
with slight modifications. The phenol content was estimated
from a standard curve of gallic acid (GAE) and the results
expressed as mg of gallic acid 100 g−1 d.w (dry weight). In
FRAP assay an extract of fruit (0.2 mL) (prepared as for phenol
determination) was added to 2 mL of FRAP solution [0.25 mol
L−1 acetate buffer (pH 3.6) containing 1 mmol L−1 2,4,6-tris(2-
pyridyl)-s-triazine (TPTZ) and 20 mmol L−1 FeCl3.6H2O] and
incubated 5 min at room temperature measuring the absorbance
at 593 nm. A standard of 1 mmol L−1 L-ascorbic acid in
distilled water was prepared. Results were expressed as mmol

FIGURE 1 | Antifungal activity of Bacillus XT1 lipopeptides toward Botrytis
cinerea. Effect of different concentrations on the antifungal potency: negative
control (A) and in the presence of: 10 mg mL−1 lipopeptide (B), 6 mg mL−1

lipopeptide (C), 4 mg mL−1 lipopeptide (D), and 2 mg mL−1 lipopeptide (E).

L−1 of Fe2+ equivalents 100 g−1 dry weight (Benzie and Strain,
1999).

Statistical Analyses
Data obtained were subjected to ANOVA and multiple pair-wise
comparisons were performed by the Duncan’s multiple range test.

RESULTS

Antifungal Activity of Bacillus XT1
Antifungal production in the supernatant was detected after 24 h
of aerobic culture and reached its maximum at 72 h. The XT1
strain showed antifungal activity against B. cinerea in both solid
and liquid media (inhibition rates of 60 and 100%, respectively).

Lipopeptide Production
The production of lipopeptides was tested in different culture
media. The data showed that MOLP medium increased the
lipopeptide production compared with other media. The best
production yield was obtained with this medium (10 g L−1);
however, the production with other media such as SG and
the commercial medium (CM) decreased the production of
lipopeptide to 2.8 and 2.13 g L−1, respectively.

Antifungal Activity of the Lipopeptides
Produced by Bacillus XT1
The antifungal activity of Bacillus XT1 lipopeptides toward
B. cinerea was also analysed. The results demonstrated that
lipopeptides produced by XT1 inhibit the growth of B. cinerea.
Inhibition rates of 72, 48, 30, and 19% of the mycelium
diameter were observed for the concentrations of lipopeptides
of 10, 6, 4, and 2 mg mL−1, respectively, after 15 days of
treatment (Figure 1). In general, lipopeptides from XT1 showed
antagonistic activity against B. cinerea across a broad spectrum of
concentrations in a dose response manner (Figure 1).
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FIGURE 2 | Minimal inhibitory concentration (MIC) (A) and minimal fungicidal concentration (MFC) (B) of lipopeptides from XT1.

Determination of Minimal Inhibitory
Concentration (MIC) and Minimal
Fungicidal Concentration (MFC) of the
Lipopeptides
Lipopeptides from XT1 were also tested in multiwell culture
plates with 48 wells to test the MIC and in culture tubes to test the
MFC. As shown in Figure 2A lipopeptides concentrations tested
ranging from 20 to 0.5 mg mL−1 and a significant inhibitory
effect of lipopeptides was observed at concentrations as low as
8 mg mL−1 which corresponds to the MIC. The MFC was also
8 mg mL−1 (Figure 2B).

Stability of Lipopeptides to Heat and pH
The antifungal potency was not affected by any heat treatment.
However, the antifungal potency of lipopeptides from XT1 was
affected at pH 3 and pH 12. The optimum range of pH for the
maximum antifungal efficacy was between 7 and 9.

Detection of Genes Involved in
Lipopeptide Biosynthesis
Genomic analysis of Bacillus XT1 indicates that it contains gene
clusters for non-ribosomal lipopeptide synthetases. Amplicons

of the expected sizes were obtained for fengycin, surfactin,
bacillomycin, and iturin genes srf A-C, fenC, srf A-A, bmyB,
and ituD.

Identification of Lipopeptides Using
UPLC – HDMS Q-TOF
Electrospray quadrupole time-of-flight mass spectrometry (Q-
TOF MS) analyses were carried out in this study to identify the
metabolites produced by XT1. Figure 3 illustrates the total ion
chromatogram (TIC) spectrum of the lipopeptide extract from a
XT1 culture supernatant.

These analyses showed that the strain XT1 produces several
forms of different lipopeptides. Four known surfactins with an
acyl chain ranging from C12 to C15 were detected, whereas three
known bacillomycins D (C14, C15, and C16) were also detected.
Two peaks corresponding to the fengycin A and fengycin B were
also observed (Table 2). There were no mass signals for iturin.

Quadrupole time-of-flight mass spectrometry analysis
indicated five types of lipopeptides and two predominant
compounds. This analysis detected a [M+H] peak at m/z
1022.6729 and afforded the molecular formula C52H91N7O13
(i-Fit = 20.6 and DBE = 10.5) and corresponding to surfactin
and [M+H] peak at m/z 1463.8038 corresponding to fengycin
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FIGURE 3 | Total ion chromatogram (TIC) spectrum obtained from the surfactant of Bacillus XT1.

A with the molecular formula C72H110N12O20 (i-Fit = 30.2 and
DBE= 23.5) (Figures 4C and 4A, respectively).

Quadrupole time-of-flight mass spectrometry analysis
indicated five types of lipopeptides and two predominant
compounds. This analysis detected a [M+H] peak at
m/z 1031.5431 (1053.5276 corresponds to the complementary
sodium adduct molecular ion [M+Na]) with the molecular
formula C48H75N10O15 (i-Fit = 101.1 and DBE = 16.5)
corresponding to bacillomycin D, a [M+H] peak at m/z
1463.8038 with the molecular formula C72H110N12O20
(i-Fit = 130.3 and DBE = 23.5) corresponding to fengycin
A and a [M+H] peak at m/z 1022.6729 and afforded the
molecular formula C52H91N7O13 (i-Fit= 161.5 and DBE= 10.5)
and corresponding to surfactin (Figures 4A, 4B, and 4C,
respectively).

Effect of XT1 Lipopeptides on B. cinerea
Mycelial Growth
Microscopy data of B. cinerea mycelial growth treated with
XT1 lipopeptides are shown in Figure 5. Scanning electron
microscopy (SEM) analyses of B. cinerea mycelium treated
with the MIC/MFC of lipopeptides (8 mg mL−1) from
XT1 showed important alterations of pathogen morphology.
Hyphae treated without lipopeptides grew normally with straight
appearance and their surfaces were smooth (Figure 5A).
However, after exposure to lipopeptides, one of the most
striking features was the appearance of structures of resistance
(Figure 5B).

Transmission electron microscopy (TEM) images of normal
hyphae treated without lipopeptides showed smooth surfaces,
intact cells, well defined enclosing cell walls and the cellular

TABLE 2 | Lipopeptide production by Bacillus XT1 as detected by Q-TOF MS.

Lipopeptide Fatty chain length [M+H]+ Retention time (min) Area (%) Peak intensity

Bacillomycin D C14 1031.5431 4.18 5.97 1.02e4

C15 1045.5585 4.32 4.61 8.35e3

C16 1059.5726 4.55 0.35 1.31e3

Fengycin A C16 1463.8038 4.75 9.86 4.81e3

Fengycin B C15 1477.8329 4.86 0.60 1.65e3

C16 1491.8481 4.86 0.60 1.01e3

Surfactin C12 994.6413 5.71 1.20 4.22e3

C13 1008.6564 5.80 8.65 1.06e4

C14 1022.6729 5.94 36.96 8.40e4

C15 1036.6867 6.03 25.25 6.60e4
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FIGURE 4 | Quadrupole time-of-flight mass spectrometry (Q-TOF MS) spectra obtained from the surfactant produced by Bacillus XT1: protonated linear derivatives
of the [M+H] of bacillomycin D (A), fengycin A (B), and surfactin (C).
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FIGURE 5 | Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) micrographs of hyphae of Botrytis cinerea treated with
lipopeptides. Hyphae treated without and with lipopeptides (SEM) (A,B,
respectively). Hyphae treated without and with lipopeptides (TEM) (C,E and
D,F, respectively).

organelles in normal arrangements (Figures 5C,E). TEM images
of hyphae confirmed that in the treatment of B. cinerea with
lipopeptide organelles were degenerated and gathered in clumps
(Figures 5D,F).

Bioassay Against B. cinerea in Grapes,
Strawberries, and Tomatoes
The MIC/MFC of lipopeptide extract from XT1 (8 mg mL−1)
was applied in order to evaluate the protector effect with different
fruit infected with B. cinerea. The lipopeptides were injected in
grapes and sprayed onto strawberries and tomatoes. The level
of disease infections decreased in all the fruit treated with XT1
lipopeptides.

The disease incidence in grapes, strawberries, and tomatoes
treated with B. cinerea was 71, 100, and 100%, respectively. The
disease reductions in fruit treated with XT1 lipopeptides were
100, 12, and 50%, respectively (Table 3 and Figures 6, 7). The

results show that antifungal lipopeptide treated fruit reduced the
disease symptoms significantly compared to non-treated fruits
except in strawberries where the effect was not so evident. This
reduction is higher for grapes.

Antioxidant Activity on Fruit Treated With
Lipopeptides
The antioxidant activity was tested in grapes where the highest
disease reduction was observed. The antioxidant activity of grape
extracts, as estimated by the FRAP assay increased significantly
with the inoculation of the MIC/MFC of lipopeptides produced
by XT1 (Figure 8A). Although an increase in the antioxidant
activity was also observed in grapes infected with the pathogen,
the highest increases were observed in the treatment with the
lipopeptides.

On the other hand, total phenol content also increased with
the exposure of fruit to the lipopeptides but the increase is only
significant in the uninfected grapes. In this case the increase of
total phenol content is of 30% (Figure 8B).

DISCUSSION

The strain Bacillus XT1 is a gram positive, sporulated, and
halotolerant rod that grows in a wide range of salt concentrations
(0–12% w/v), temperature (15–40◦C), and pH (5–10) (Béjar et al.,
2014). The strain was originally classified as B. methylotrophicus
XT1 CECT 8661 (deposited according to the Bucharest Treaty
for patenting purposes and licenced to Xtrem Biotech S.L.). The
species B. methylotrophicus was later reclassified as a heterotypic
synonym of B. velezensis (Dunlap et al., 2016).

This paper describes the antifungal activity of the strain and
its lipopeptides against B. cinerea, a filamentous fungus classified
as the second most important phytopathogen worldwide. Also
demonstrate the implication of XT1 lipopeptides in the in vivo
antibiosis and in the alteration of fungus structures and in the
induced systemic response of fruits affected with the fungi.

One of the major factors related with the antifungal activity
of members of the genus Bacillus is due to the production
of lipopeptides synthesised by NRPSs such as iturin, fengycin,
and surfactin (Romero et al., 2007; Ongena and Jacques, 2008;
Pramudito et al., 2018). Lipopeptides are produced as a mixture of
macromolecules belonging to the same family or class. Genomic
analysis of Bacillus XT1 indicated that it contains gene clusters for
non-ribosomal lipopeptide synthetases related to the production
of surfactin, iturin, fengycin, and bacillomycin. Detection of the

TABLE 3 | Disease incidence in grapes, strawberries, and tomatoes.

Disease incidence (%)

Control XT1 lipopeptides Botrytis XT1 lipopeptides + Botrytis

Grapes 0 ± 0.00a 0 ± 0.00a 71 ± 0.18b 0 ± 0.00a

Strawberry 43 ± 0.25b 33 ± 0.00a 100 ± 0.00d 88 ± 0.58c

Tomato 25 ± 0.20b 0 ± 0.17a 100 ± 0.00d 50 ± 0.13c

Values followed by the same letters for each fruit did not differ significantly according to Duncan’s multiple range test (p < 0.05).
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FIGURE 6 | Lipopeptides from XT1 inhibited disease severity in grapes. Disease severity of grey mould on grapes. (A) Grapes treated with sterile water as the
negative control. (B) Grapes treated with lipopeptides from XT1. (C) Grapes infected with Botrytis cinerea. (D) Grapes infected with B. cinerea and treated with
lipopeptides from XT1.

FIGURE 7 | Lipopeptides from XT1 inhibited disease severity in tomatoes.
Disease severity of grey mould on tomatoes. (A) Tomatoes treated with sterile
water as the negative control. (B) Tomatoes treated with lipopeptides from
XT1. (C) Tomatoes infected with Botrytis cinerea. (D) Tomatoes infected with
B. cinerea and treated with lipopeptides from XT1.

produced lipopeptides by XT1 was performed by Q-TOF MS
analysis showing that strain XT1 produces all lipopeptides except
iturin. Some of these macromolecules were previously shown
to be produced by other B. methylotrophicus strains (Frikha-
Gargouri et al., 2017).

Lipopeptides biosynthesis from XT1 was tested in different
culture media. The data showed that the culture medium used
in the growth of the microorganism could decisively influence
the production of lipopeptides. Ahimou et al. (2000) described
an optimum medium (named MOLP medium) for lipopeptide
production by Bacillus subtilis. This study concluded that the
medium MOLP is also the best to increase the lipopeptide
production yields in B. methylotrophicus by Bacillus XT1. The
influence of culture conditions on lipopeptide production was
previously described for other strains of Bacillus genus like
B. subtilis or B. amyloliquefaciens (Monteiro et al., 2005; Medeot
et al., 2017). In terms of stability, the thermostable nature of
XT1 lipopeptides and the fact that these antifungal compounds
were affected by extremely alkaline pH were also observed in the
evaluation of the activity of the B. subtilis biosurfactant (Ghribi
et al., 2012).

FIGURE 8 | Antioxidant activity evaluated with the FRAP assay (A) and total
phenols (B) of grapes treated with lipopeptides from XT1, infected with
Botrytis cinerea and infected with B. cinerea but treated with lipopeptides
from XT1. Values followed by the same letters did not differ significantly
according to Duncan’s multiple range test (p < 0.05). Vertical lines represent
the standard errors of the mean.

Several studies have previously highlighted the antagonistic
effect against different pathogens of NRP metabolites such as
lipopeptides (Chowdhury et al., 2015; Mnif and Ghribi, 2015).
For example, it has been demonstrated that the biocontrol of
Bacillus strains against different pathogenic bacteria and fungi
such as Aspergillus or Pseudomonas syringae is facilitated by
lipopeptides such as surfactin (Bais et al., 2004). According to
the literature, few studies describe the inhibitory activity of the
lipopeptides produced by Bacillus strains against B. cinerea. All
the studies reported the antibiosis of B. cinerea by the NRPs
metabolites produced by B. subtilis but do not demonstrate
directly the implications of these molecules in the antibiosis
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(Tareq et al., 2014; Farace et al., 2015; Wang et al., 2015; Arroyave-
Toro et al., 2017). The same occurs with B. amyloliquefaciens (Ji
et al., 2013; Pretorius et al., 2015; Tanaka et al., 2015; Zhang et al.,
2017), B. marinus (Gu et al., 2017), B. atrophaeus (Zhang et al.,
2013), and B. velezensis (Ge et al., 2016; Romero et al., 2016; Gao
et al., 2017).

With respect to the activity of lipopeptides, Romano
et al. (2013) reported the non-effect of B. amyloliquefaciens
lipopeptides against B. cinerea at concentrations of 0.1 mg mL−1.
Tareq et al. (2014) established a range of lipopeptide activity
in B. subtilis between 0.5 to 300 µg mL−1 and Zhang et al.
(2017) determined the maximum activity of lipopeptides of
B. amyloliquefaciens at 30 mg mL−1. Our study tested a range
of concentrations from 0.5 to 20 mg mL−1 and confirmed
the antifungal activity of XT1 lipopeptides with inhibitory and
fungicidal effects of these compounds at concentrations as low
as 8 mg mL−1 (MIC and MFC). This fact and the higher
productions of lipopeptides in MOLP medium may determine
the high fungicidal activity of Bacillus XT1 against B. cinerea.

Different studies show that lipopeptides from Bacillus sp.
strains produce damage to the hyphae and survival structures
of pathogenic fungi (Souto et al., 2004). Chitarra et al. (2003)
suggested that lipopeptides produced by B. subtilis YM 10-20
may permeabilize fungal spores and inhibit their germination.
Other studies show the swelling and the deformation of fungus
hyphae of Pestalotiopsis eugeniae when treated by the lipopeptides
of B. subtilis BS-99-H (Lin et al., 2010). The effects of the
lipopeptides produced by XT1 on the morphology of B. cinerea
were evaluated in solid media. SEM studies revealed an extensive
formation of fungal spores in the intersection of the fungus-
bacteria inhibition zone. The same results were observed in
previous studies where the biological activity of lipopeptides
from B. amyloliquefaciens against Fusarium solani was analysed
(Torres et al., 2017). Gong et al. (2014) studied the effect
of bacillomycin D from B. subtilis on Aspergillus flavus and
concluded that due to the amphipathic nature of bacillomycin
D, this compound entered the spores and the hyphae where it
caused pores to be formed in the membrane, resulting in the
leakage of cell contents. TEM images of hyphae confirmed that in
the treatment of B. cinerea with XT1 lipopeptides the organelles
degenerated probably due to the entry of these compounds.

In this study, the antifungal activity of lipopeptides from
XT1 against grey mould disease in different fruit was also
investigated. The inoculation results showed that grey mould
disease on grapes and tomatoes was significantly inhibited by the
lipopeptides produced by XT1. Previous studies have described
the involvement of lipopeptides from B. subtilis in grapevine
plant defence and local resistance against B. cinerea (Farace
et al., 2015). They also showed that lipopeptides are perceived by
grapevine plant cells and activate different signalling pathways.

Previous studies suggest that lipopeptides act as elicitors of
defence-related genes (Waewthongrak et al., 2014). However, and
to the best of our knowledge, our study is the first to highlight the
ability of lipopeptides to trigger the antioxidant activity of these
macromolecules in fruit. The total phenol content was increased
significantly with the exposure of the fruit to the lipopeptides
produced by XT1. The highest increases in antioxidant activity
were observed in the infected fruits and in those treated with the
lipopeptides. These data may suggest that the antimicrobial effect
of lipopeptides and the accumulation of antioxidant compounds
are closely related with pathogen resistance.

CONCLUSION

In this study, we have investigated the high antifungal activity
against B. cinerea of a patented strain, Bacillus XT1 CECT 8661.
The lipopeptides produced by XT1 are involved in the biological
control of B. cinerea and trigger the antioxidant activity in fruit.
Based on the inhibitory effect on the development of grey mould
on grapes and tomatoes, Bacillus XT1 CECT 8661 could be
considered as a potential alternative for chemical fungicides in
reducing the damage of grey mould disease.
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