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Exposure to environmental toxins such as heavymetals can perturb the development and

stability of microbial communities associated with human or animal hosts. Widespread

arsenic contamination in rivers and riparian habitats therefore presents environmental and

health concerns for populations living near sources of contamination. To investigate how

arsenic affects host microbiomes, we sequenced and characterized the microbiomes

of twenty larval zebrafish exposed to three concentrations of arsenic that are found

in contaminated water—low (10 ppb), medium (50 ppb), and high (100 ppb) for 20

days. We found that even a small concentration of arsenic changed the overall microbial

composition, structure and diversity of microbial communities, causing dysbiosis in

developing larval zebrafish microbiota. In addition, we found that a high concentration

of arsenic also increased the abundance of a class 1 integron, an integrase-dependent

system facilitating the horizontal transfer of genes conferring resistance to heavy metals

and antibiotics.

Keywords: microbiome, zebrafish, heavy metals, arsenic, integrons, DADA2, QIIME

INTRODUCTION

Arsenic, a metalloid element that can cause poisoning due the inhibition of acetyl-CoA and
succinic dehydrogenase, is naturally present in many aquifers used for drinking water (Mukherjee
and Bhattacharya, 2001; Bhadury, 2014). Since industrialization, however, runoff produced
from mining, agricultural and industrial waste has vastly increased arsenic contamination in
the environment (Sarkar and Bhattacharya, 2002). In humans, extended exposure to arsenic
contamination can result in arsenicosis, which in turn can lead to skin cancer, keratosis, or
important metabolic diseases such as diabetes (Guha Mazumder et al., 1998; Saha et al., 2003;
Navas-Acien et al., 2008; Martinez et al., 2011). The effects of arsenic contamination have been
extensively documented in Bangladesh, where up to 65 million people are exposed to drinking
water with high concentrations of arsenic far exceeding the limit set by the World Health
Organization (i.e., 50 ppb) or by local government (i.e., 10 ppb) (Smith et al., 2000; Mukherjee
and Bhattacharya, 2001; World Health Organization, 2001). Still, more than seventy countries,
including the United States, reported severe cases of arsenic poisoning in the past decades (Smedley
and Kinniburgh, 2002; Saha et al., 2003), making arsenic contamination one of the principal
environmental causes of cancer in humans (Hughes et al., 2011).

In addition to causing arsenicosis, arsenic in drinking water can also impact microbial
communities associated with exposed hosts, also known as microbiota, or microbiomes (Palmer
et al., 2007; de Theije et al., 2014; Narrowe, 2015; Claus et al., 2016). Previous studies showed that
adult mice exposed to arsenic present important changes in their gastrointestinal intestinal (GI)
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tract microbiota (Lu et al., 2014; Dheer et al., 2015). Indeed, high
concentrations of arsenic inhibit the growth of many bacterial
species common in the GI (Summers et al., 1993; Lu et al., 2014).
Arsenic can also alter hosts’ microbiota by supporting the growth
of arsenic-metabolizing bacteria such as Sediminibacterium and
Methylobacterium (Oremland and Stolz, 2005; Mateos et al.,
2006; Liao et al., 2011; Andres and Bertin, 2016). Such bacteria
can metabolize arsenite or arsenate, often producing arginine
metabolites toxic to the host (Dheer et al., 2015).

Microbial communities associated with hosts carry multiple
functions that are essential to the hosts (Yan et al., 2016; Raymann
and Moran, 2018). For this reason, microbiome aberrations,
also called dysbiosis, are linked to disease occurrence in hosts
ranging from diabetes and cardiovascular diseases to allergies
and inflammatory diseases among other things (Turnbaugh et al.,
2006; Foxx-Orenstein and Chey, 2012; Kong et al., 2012; Olszak
et al., 2012; Qin et al., 2012). Because microbiomes are highly
variable and are least stable during early developmental stages (As
discussed by Palmer et al., 2007; Costello et al., 2012; Vallès et al.,
2014), the effects of contaminants such as arsenic on dysbiosis are
likely to be accentuated during early developmental stages (Neu
and Rushing, 2011; Torrazza and Neu, 2011; Olszak et al., 2012).
Investigating the effects of arsenic on microbial communities
during the initial microbial establishment within hosts is thus
crucial to predict outcomes on host health.

In this study, we investigate the potential effects of arsenic
contamination on the developing microbiota of zebrafish (Danio
rerio). In addition to being a robust model organism for the study
of themicrobiome and development in vertebrates (Veldman and
Lin, 2008; Roeselers et al., 2011; Fritz et al., 2013; Kostic et al.,
2013), zebrafish are native to arsenic-contaminated regions of
Bangladesh and West Bengal (Spence et al., 2006). We exposed
experimental populations of larval zebrafish to 10 ppb, 50 ppb,
and 100 ppb sodium meta-arsenite for 20-days and used targeted
16S rRNA gene sequencing to characterize the fish microbiota
after exposure. Additionally, we quantified the abundance of int1,
a type 1 integron associated with the presence of antimicrobial
resistance genes, in tested microbiomes. Our approach not
only investigates how an environmental contaminant alters
communities of microbes in developing hosts, but also how
such contaminants may contribute to the spread of antibiotic
resistance.

MATERIALS AND METHODS

Zebrafish Husbandry and Maintenance
Zebrafish (Danio rerio) were maintained in the laboratories of
the Biology Department of Bard College in accordance with
standard protocols for zebrafish husbandry (Lawrence, 2007).
Zebrafish strain Et20, a transgenic animal expressing GFP in
the neuromast supporting cells (Moon et al., 2011), were raised
in a 14-h light:10-h dark cycle in standard recirculating rack
water kept at 28.5◦C with pH ranging from 7.0 to 7.4 unless
specified. Prior to starting the experiment, embryos (0 days post-
fertilization—or dpf) from a single mating were bleached twice
in 0.5% sodium hypochlorite solution for 4min. Embryos were
then pooled into four groups of 30–60 animals and housed in

petri dishes filled with 1x E3 media (5mM NaCl, 0.17mM KCl,
0.33mMCaCl2, 0.33mMMgSO4, 0.5 mg/L methylene blue) and
one of the following treatments: 0, 10, 50, or 100 ppb sodium
meta-arsenite (NaAsO2; A3+). At 48 h intervals, 80% of the
media was exchanged for fresh media and sodium meta-arsenite
solution. This was done to minimize cross-contamination due
to dead cell tissue and to maintain a constant concentration of
arsenite throughout the experiment.

Following larval hatching, between 72 and 96 h post-
fertilization (hpf), populations were transferred to respective
sterile glass dishes with growth conditions and experimental
conditions similar to those described above. Again, media and
sodium meta-arsenite concentrations were changed every 48 h.
Animals were fed generously three times daily withmicro powder
food containing rotifers and Paramecium. At 20 dpf, zebrafish
were sacrificed using sterile tricaine methane sulfonate solution
(250 mg/l) according to established euthanasia techniques (NIH,
2009; Matthews and Varga, 2012). Fish were removed from
tricaine following cessation of opercular movement (∼10min)
and rinsed several times with nuclease free water to minimize the
presence of free-living bacteria. All protocols were approved by
the Bard College Institutional Animal Care and Use Committee
(IACUC; most recent approval ID “Perron 2018”).

DNA Extraction
For each treatment, microbial DNA was extracted and purified
from five individual fish larvae using a modified protocol for
the DNeasy Blood and Tissue kit (QIAGEN, Germantown, MD)
described in Hang et al. (2014). Briefly, sacrificed fish were
treated with an enzymatic lysis buffer (20mM Tris HCL, pH8.0;
2mM sodium EDTA; 1.2% Triton X-100; and 20 mg/ml egg
lysozyme) and incubated at 37◦C for 60min. To reduce protein
contamination, we added 25 µl of Proteinase K solution (10
mg/ml; Qiagen, Germantown, MD) combined to 200 µl of
Buffer AL (Germantown, MD), which we incubated at 56◦C
for 120min. Following larval lysis and protein degradation, we
used the DNeasy Blood & Tissue kit (Qiagen, Germantown,
MD) to purify DNA from individual larval zebrafish. When
necessary, gDNA concentrations were increased by evaporation
using the SpeedVac System (ThermoFisher Scientific, Asheville,
NC). Purified genomic DNA (gDNA) samples were stored in
nuclease free H2O at−20◦C.

Primers and PCR Amplification
Fish microbiota were characterized via targeted gene
amplification of the 16S rRNA V4 region using Golay-barcoded
primers 515F and 806R as described by Caporaso et al. (2012).
Duplicate 25 µl PCR reactions (12.5 µl NEB Taq 2X Master
Mix, 5.5 µl nuclease free PCR water, 1.0 µl of each forward
and reverse primers (0.4µM final concentration), and 3.0 µl
genomic DNA template) were cycled as follows: denaturation
at 94◦C for 3min; 35 cycles for 94◦C/45 s, 50◦C/60 s, and
72◦C/90 s; and a final extension at 72◦C for 10min to complete
amplification. Libraries were then were gel-purified, pooled
at equimolar ratios, and sequenced on the MiSeq paired-
end Illumina platform adapted for 150-bp paired-end reads
(Wright Labs, Juniata College, Huntingdon, PA). The unfiltered
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forward reads are available on the Sequence Read Archive
of the National Center for Biotechnology Information (SRA:
SRP082969).

Processing of 16S rRNA Sequence Data
Microbial communities were analyzed with two different
microbiome pipelines to identify the presence and abundance
of different microbial taxa based on the assembly of the
16S rRNA sequence reads. Before processing the 16S rRNA
sequence data, phiX control reads were removed by mapping
raw sequence reads against an indexed phiX genome provided
by Illumina (San Diego, CA) using the Bowtie2 platform.
Sequence reads were then processed, aligned, and categorized
independently using either the DADA2 1.2 (Callahan et al.,
2016: see scripts in Datasheet 1) or the QIIME 1.9.1 pipeline
primarily using QIIME defaults parameters (Caporaso et al.,
2010b).

The DADA2 microbiome pipeline (available at https://
github.com/benjjneb/dada2) describes microbial communities
using unique sequence variants present in the data, known as
amplicon sequence variants (ASVs) (Callahan et al., 2016), rather
than clustering groups of similar sequences into operational
taxonomic units (OTUs) used by many other pipelines such as
QIIME (Callahan et al., 2016). In brief, sequence reads were
first filtered using DADA2’s recommended parameters (i.e., an
expected error threshold of 2 combined with the trimming of
10 nucleotides from the start and end of each read). Filtered
reads were then de-replicated and de-noised using DADA2
default parameters. De-replication combines identical reads into
unique sequences and constructs consensus quality profiles
for each combined lot of sequences; the consensus quality
profiles then inform the de-noising algorithm which infers error
rates from samples and removes identified sequencing errors
from the samples. After building the ASV table and removing
chimeras, taxonomy was assigned using the Ribosomal Database
Project (RDP) classifier (v2.2) (Wang et al., 2007) natively
implemented in DADA2 and trained against the Greengenes
reference database (13.8) (Werner et al., 2011) (McDonald et al.,
2011). A phylogenetic tree was built using FastTree (v2.1.3) (Price
et al., 2010) from a multiple sequence alignment made with the
PyNAST alignment tool (Caporaso et al., 2010a), against the
Greengenes Core reference alignment (DeSantis et al., 2006).
Lastly, we pruned sequences positively mapping to zebrafish
mitochondrial gDNA (GenBank: KT624622.1) using a BLAST
alignment.

For comparison purposes, we also processed the raw reads
using QIIME 1.9.1 (available at https://github.com/biocore/
qiime) as described elsewhere (Caporaso et al., 2010b; Edgar et al.,
2011). We first quality-filtered reads using default parameters,
removing reads with Phred quality scores below 30, and removed
chimeric sequences using UCHIME (Edgar, 2010; Edgar et al.,
2011). The OTU table was built using the uclust method (Edgar,
2010) at a ≥97% identity threshold and the open reference
picking method using the PyNAST sequence aligner against the
Greengenes Core reference alignment (DeSantis et al., 2006;
Caporaso et al., 2010a) for the closed reference alignment. Again,
we pruned sequences identified as zebrafish mitochondria DNA.

Data Visualization and Statistical Analyses
of 16S rRNA Sequence Data
Patterns of diversity within the ASV and OTU tables were
analyzed using a custom bioinformatic pipeline implemented in
R 3.2.3 (http://www.r-project.org) and described in Datasheet 2

(mapping file linking sample names and arsenic concentration is
also included in Datasheet 3). First, we visualized phylum and
family level community composition using phyloseq (v1.14.0)
(available at https://joey711.github.io/phyloseq/) (McMurdie and
Holmes, 2013) implemented in ggplot2 (v.2.0.0) (Wickham,
2009), with visualization optimized by filtering taxa at cutoffs
of 0.1 and 0.3% for phylum and family respectively. Using the
RNA-Seq DESeq2 differential abundance comparison (Love et al.,
2014) adapted for use with microbial count data (McMurdie
and Holmes, 2014), we investigated changes in community
composition at the taxa level. This method stabilizes sample
variance using an implementation for count data that is built on a
negative binomial distribution, therefore allowing for the use of a
non-normalized and not rarefied ASV table. This is preferred to
rarefying since subsampling inflates variance, resulting in a loss
of power and often producing false positive results (McMurdie
and Holmes, 2014).

We then estimated alpha diversity metrics using phyloseq’s
estimate_richness function on rarefied ASV tables. More
specifically, we estimated observes species S, i.e., observed ASVs
or OTUs, Simpson’s metric, Shannon diversity measurementsH′,
as well as Pielou’s evenness index. Pielou’s evenness metric was
computed with the following equation (Pielou, 1966):

J′ =
H′

H′
max

where H′
max is the maximum value of H′ if every species were

equally abundant:

H′
max =

S∑

i=1

1

S
ln

1

S
= lnS

We compared statistical models using Akaike’s Information
Criterion (AIC) in R’s base stats package.

Beta-Diversity
Phyloseq was used to perform ordinations, where Principle
Coordinate Analysis (PCoA) was employed on unweighted
UniFrac distance scores (Lozupone and Knight, 2005). To
confirm multivariate homogeneity of variances first among
treatments and second within treatments, the vegan (v2.3.2)
package implementation of PERMDISP2 via the betadisper
method was used (Oksanen et al., 2015). To test the effect
of arsenic as a continuous variable on group differences
according to UniFrac scores, a permutational analysis of variance
(PERMANOVA) using the adonis function as part of the vegan
package was used (Oksanen et al., 2015). An analysis of similarity
(ANOSIM) was conducted to compare the variation in UniFrac
distances between a grouped arsenic distance matrix and control
group distance matrix as again implemented in the vegan
package.
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Comparing ASVs and OTUs
We first tested the null hypothesis that the observed richness
of OTUs and ASVs after processing remained the same by
conducting a Wilcoxon test between sample counts. Differences
between log-transformed observed richness of OTUs and ASVs
from the same treatments were compared using an analysis
of variance (ANOVA) with treatment condition as a factor,
followed by Tukey’s honest significant difference (HSD) tests.
Differentially abundant ASVs and OTUs were identified using
the DESeq2 package (Love et al., 2014), adapted for use with
microbial community count data (McMurdie andHolmes, 2014),
with a local fit type. When performing Procrustes rotation
between matching points from ASV and OTU UniFrac distance
matrices, the ade4 package (v.1.7.3) was used as implemented in
R (Thioulouse and Dray, 2007). A PROcrustean randomization
TEST (PROTEST) was conducted to test the significance of
Procrustes matrix concordance again using the package ade4
package (Jackson, 1995). Data was visualized using ggplot2
(v.2.0.0) (Wickham, 2009). Finally, we used biom (v0.3.12) to
handle BIOM formatted files, dada2 (v0.10.6) for read processing
(Callahan et al., 2016), optparse (v1.3.2) to parse command
line options, stats (v3.2.3) to conduct R’s internal statistics, and
data.table (v1.9.6) to handle data frames.

qPCR of 16S rRNA and Int1 Genes
We quantified 16S rRNA and Int1 gene copy numbers using
quantitative real-time PCR as described in Gaze et al. (2011).
For each sample, triplicate PCR reactions using the PowerUp
SYBR Green Master Mix (Applied Biosystems, Foster City, CA)
were cycled using the Bio-Rad CFX96 Real-Time PCR Detection
System (Bio-Rad Laboratories, Hercules, CA) with the following
cycling conditions: Hot start at 50◦C for 2min; denaturation
at 95◦C for 10min; followed by 40 cycles of 95◦C/20 s and
60◦C/60 s; with an added dissociation step. An internal standard
curve constructed from a serial dilution of Escherichia coli
SK4903, an engineered E. coli strains harboring seven 16S rRNA
copies and six int1 copies, was processed with each qPCR run.
The relative abundance of int1 genes was normalized to 16S
rRNA copies of each sample before being analyzed via linear
modeling with int1 relative abundance as response variable and
arsenic concentrations as explanatory variable.

RESULTS

Processing 16S V4 Reads Using DADA2
We characterized the microbiomes of twenty individual zebrafish
larvae, five individuals per treatment (0, 10, 50, or 100 ppb of
arsenic) by sequencing the V4 region of the 16S rRNA. We
obtained a total of 10,108,755 forward reads with an average
read length of 151 base pairs, totaling ∼1.5G bases. The median
sequencing depth per sample was 497,470 reads. Reverse reads
were of poor quality due to a sequencing error and were therefore
removed from subsequent analyses along with one control
sample. After filtering, denoising, and removing chimeras, we
retained 8,678,233 (85.86% of initial) reads. With these reads,
we assigned taxa (see Datasheet 4 for unfiltered representative

ASVs) and plotted relative abundance of taxa across samples
(Figure 1).

We identified 120 ASVs as part of the core microbiome among
the four zebrafish sampled from the control population (Table 1;
Table S1). Interestingly, we found that the core microbiome
described in this study, even though extracted from the whole
larvae, was compositionally similar to that of healthy zebrafish
gut microbiomes either living in wild or laboratory conditions
(Roeselers et al., 2011). This is most likely due to the fact that, as
in animals (Sender et al., 2016), fish microbiota are most dense in
the gastrointestinal tract.

Arsenic Exposure Alters Microbial
Community Composition
When comparing the composition of healthy fish microbiomes
to that of fish exposed to arsenic, we found that a total of
78 ASVs significantly differed in abundance (DESeq2; adj-P ≤

0.01; Figure 2; Table S2). ASVs that increased in abundance
included genera such as Acinetobacter (base mean: 125),
Sediminibacterium (base mean: 201) and Janthinobacterium
(base mean: 315), whereas genera that decreased in abundance
included Bdellovibrio (base mean: 110), and Pseudomonas (base
mean: 131) among others. Interestingly a Legionellales ASV
(ASV3) dominated the increase in the arsenic treatment (base
mean: 8,464), but could not be identified at the genus level.

When considering a less conservative alpha-level (α = 0.05)
for the detection of trends in taxa that changed in abundance in
response to arsenic treatment, we found that 186 ASVs differed
in abundance (DESeq2; adj-Ps < 0.05; Table S3). We found that
ASVs within individual genera at times responded differently to
arsenic exposure, indicative of phenotypic heterogeneity within
the genus. For example, within Pseudomonas, variant ASV32
(base mean: 1,200) increased by a ∼2.3x while ASV152 (base
mean: 131.1) decreased in abundance by a ∼5.2x under the
effect of arsenic when compared to its abundance in control
populations. Interestingly, certain species within the genus such
as P. aeruginosa are associated with antimicrobial resistance
(Perron et al., 2007).

Arsenic Exposure Alters Alpha Diversity in
Fish Microbiome
We compared the overall taxonomic diversity across treatments
using different metrics of alpha diversity that incorporate species
richness and evenness (Table 2). We estimated observed richness
(i.e., number of ASVs), as well as the Shannon index and Pielou’s
evenness metric from the ASV table rarefied to the lowest
sampling depth (119,609 ASVs). Looking at richness, we found
a quadratic relationship between the number of observed ASVs
and arsenic concentrations (F(2,15) = 9.83; P < 0.01; Figure 3A).
More specifically, we found that the highest number of ASVs
was observed at intermediate arsenic concentrations: the number
of ASVs increasing by 1.9-fold from ∼319.3 ASVs at 0 ppb
to ∼580.0 ASVs at 50 ppb before decreasing when exposed
to ∼393.2 ASVs 100 ppb. When considering both Shannon
diversity and Pielou’s evenness, however, we found that arsenic
generally decreased diversity at 10 and 50 ppb and increased
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FIGURE 1 | Relative abundance of taxa across treatments. (A) Phylum level classification, filtered to remove taxa below 0.001 abundance. (B) Family level

classification, filtered to remove taxa below 0.003 abundance. Lines within same-colored bars are of different ASVs of the same classification. Category “Other”

represents ASVs that were not classified to the family level. Grey areas are unclassified ASVs. Control n = 4; 10 ppb n = 5; 50 ppb n = 5; 100 ppb n = 5.

diversity at 100 ppb. Specifically, we found that, relative to
the control, Shannon diversity decreased by 1.2x from 0 to
50 ppb, but increased by 1.1x when compared to the control
at 100 ppb (F(2,15) = 4.32, P = 0.03; Figure 3B). Similarly,

Pielou’s evenness decreased by 1.3x from 0 to 50 ppb and
increased by 1.1x at 100 ppb (F(2,15) = 6.04, P = 0.01; Figure 3C;
Table S6). Because Shannon diversity index is calculated using
both observed ASVs and their relative abundance, the lack of
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TABLE 1 | Relative abundance (RA) for core phyla abundances ± s.e.

Phyla Mean RA (%) s.e. (%)

Proteobacteria 94.10 2.20

Bacteroidetes 4.17 0.29

Cyanobacteria 1.06 0.34

Gemmatimonadetes 0.29 0.12

Firmicutes 0.12 0.02

congruence between the latter and observed ASVs suggest that
changes in ecosystem diversity are likely due to fluctuations in
relative abundance of different ASVs following arsenic exposure.
In other words, even though the number of ASVs observed
in arsenic treatment is higher than in control population, the
microbiome exposed to arsenic is likely dominated by relatively
few taxa.

Arsenic Exposure Alters Community
Composition in Fish Microbiome
We then tested whether arsenic exposure resulted in changes
in overall microbial community composition, or beta-diversity.
Using principle coordinate analysis (PCoA) on unweighted
UniFrac scores, we found that the two highest-ranked
dimensions, PCo1 and PCo2, explained 31.8 and 11.9% of
variance respectively (Figure 4A) and that arsenic exposure
itself explained 78.4% of the variance in bacterial composition,
resulting in clustering of arsenic treated microbiomes compared
to control microbiomes (ANOSIM; R = 0.784; adj-P < 0.01;
perm = 999; ANOSIM; Figure 4A; Table S4). When treating
arsenic concentration as a continuous variable, we found that
UniFrac scores tended to diverge away from control microbiomes
as concentration increased (ADONIS; R2 = 0.12; perm = 999;
adj-P = 0.034; Figure 4B; Table S5). We found no significant
differences in sample distances to their treatment centroids,
suggesting homogeneity of variance (adj-Ps > 0.05; ANOVA;
Tables S7,S8). Not surprisingly, many of the genera found to
increase in abundance in the presence of arsenic (Figure 2), e.g.,
Sediminibacterium, Methylotenera, Sphingomonas, and Dyella,
also clustered with arsenic samples.

Comparing OTUs and ASVs
We replicated the above analyses using the OTU table produced
by QIIME defaults, utilizing a method based on the uclust
algorithm which cluster reads into OTUs based on ≥97%
similarity (see Datasheet 5 for unfiltered representative OTUs).
On average, we observed five times more OTUs per sample
(mean: 3,502 ± s.e. 125.9) than ASVs (mean: 598.0 ± s.e.
46.16.) (Wilcoxon test; W = 361; P < 0.01; Figure S1).
We also observed higher variance in the number of OTUs
identified between samples (Fligner-Killeen test; χ2 = 6.58; P
= 0.0126). This difference was partly explained by the fact
that 40.80% of OTUs were doubletons while only 5.55% of
ASVs were doubletons, most likely due to DADA2 correcting
probable sequencing errors in sequences at low abundance
(Callahan et al., 2016).

When looking at species composition, we observed a similar
pattern among OTUs distribution: 148 OTUs significantly
differed in abundance in the presence of arsenic (DESeq2; adj-
Ps ≤ 0.01; Figure S2; Table S10) with an important overlap
between genera identified via OTUs and ASVs. However, we
did not detect significant changes in alpha-diversity between
arsenic and control treatments when using the rarefied OTU
table (using a depth of 96,879 reads per sample; Figure S3).
The differences between the two analyses are most likely due to
fewer reads post-quality filtering in the QIIME pipeline (median:
245,577) compared to the DADA2 methods (median: 497,470)
and increased spurious resolution when using OTUs rather than
ASVs. Despite the lack of difference at the alpha-diversity level,
we found that the presence of arsenic explained a high degree
of the variance (54.7%) in overall bacterial composition when
comparing arsenic and control sample measured as unweighted
UniFrac scores, in accordance with DADA2 (ANOSIM; R =

0.547; P < 0.01; perm = 999; Figure S4). Finally, a Procrustes
analysis revealed a high level of similarity between the two
analyses (PROTEST; P < 0.01; Observation = 0.758; perm =

999), confirming that despite differences between OTU and ASV
results, the two methods reveal similar taxonomic composition
throughout the experiment.

High Concentrations of Arsenic Increase
Int1 Abundance in Fish Microbiome
Finally, following the observation that certain taxa increasing
in abundance in the presence of arsenic were previously
associated with antimicrobial resistance, wemeasured the relative
abundance of int1 to investigate the possible link between arsenic
exposure and the spread of integron-like structures in microbial
communities. We found that that arsenic concentration had a
significant effect on the relative abundance of int1: exposure
to high arsenic concentrations correlated with an increase in
int1 copies (F(2,14) = 13.27; P < 0.01; Figure 5). The effect of
arsenic was especially strong at the highest concentration where
int1 relative copy number was 9 times higher than in control
populations. Using a dissimilarity matrix comparing principle
coordinate analysis (PCoA) to int1 abundance, we found that int1
did not significantly correlate with UniFrac clustering between
the different samples (ADONIS;R= 0.056; P= 0.56; perm= 999;
Figure S5), indicating that increases in int1 relative copy number
was not likely associated with one or a few specific taxa.

DISCUSSION

Mounting concern over arsenic contamination in drinking water
has led to a better understanding of both arsenic’s negative
outcomes on human health (Smith et al., 2000) and its influence
on microbial communities in the environment (Cai et al., 2009;
Sarkar et al., 2012; Escudero et al., 2013; Bhadury, 2014; Farias
et al., 2015; Paul et al., 2015; Sultana et al., 2017). In this
study, we investigated whether environmental concentrations of
arsenic can perturb microbiota in developing zebrafish larvae.
We found that exposure to arsenic had a destabilizing effect on
the zebrafish microbiome, leading to dysbiosis both in terms
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FIGURE 2 | ASVs that significantly differ in abundance in the presence of arsenic. 186 ASVs were identified as significantly different in abundance in the presence of

arsenic (DESeq2; adj-P < 0.05; ST1 for complete list of differentially abundance ASVs). 43 ASVs that increased in abundance and 38 that decreased were not

assigned taxonomy to the genus level and were removed for plotting purposes. Genus-level classification is provided where available.
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TABLE 2 | Means for alpha diversity metrics of zebrafish microbial communities ±

s.e.

Treatment Observed Shannon Pielou

Control 319.25 ± 32.9 2.66 ± 0.30 0.46 ± 0.043

10 ppb 431.75 ± 15.1 2.19 ± 0.23 0.36 ± 0.037

50 ppb 580.00 ± 66.8 2.23 ± 0.17 0.35 ± 0.028

100 ppb 393.20 ± 26.0 3.03 ± 0.17 0.51 ± 0.033

of microbial diversity and in terms of microbial composition
between arsenic treatments. We also found that exposure to a
high concentration of arsenic increased the frequency of int1,
a genetic mechanism responsible for the horizontal transfer
of resistance genes. To the best of our knowledge, this is the
first study examining how arsenic affects developing zebrafish
microbiomes.

Overall, we found that arsenic created distinguishable
microbial communities comparable across the different level of
arsenic exposure. We found that even a concentration as low
as 10 ppb, considered safe by the World Health Organization,
altered the larval microbiome. Interestingly, 12 out of the 15most
abundant families present in the core microbiome of healthy
larvae significantly changed in abundance in the presence of
arsenic. We also observed a reduction in taxa evenness at all
levels of arsenic exposure and an increase in the total number of
observed taxa at 10 and 50 ppb. While a decrease in evenness was
associated with adverse health effects in premature infants with
necrotizing enterocolitis (Chang et al., 2008; McMurtry, 2015),
increases in taxa richness at low concentrations of arsenic were
also observed in contaminated aquifers (Li et al., 2015). These
observations agree with the perturbation theory of the subsidy-
stress gradient, stating that low levels of stress can potentially
enhance ecosystem productivity via the input of energy (Odum
et al., 1979).

Many of the taxa that increased in abundance in the
presence of arsenic were also observed in arsenic-contaminated
environments (Oremland and Stolz, 2005; Liao et al., 2011; Costa
et al., 2015). For example, Sediminibacterium and Acinetobacter,
found in streams contaminated with arsenic (Costa et al., 2015;
Li et al., 2015), were also found to harbor arsenic resistance genes
(e.g., ars operon and ACR3 protein). Interestingly, while the
26 ASVs belonging to Sediminibacteirum significantly increased
in abundance, this was not the case in other genera such as
Phenylobacterium, where two ASVs increased in abundance and
one decreased. These results suggest that the response of different
taxa to environmental perturbations is not predictable from the
phylogenetic relatedness of microbes alone. Not only bacterial
lineages can vary a great deal within a genus or even within a
species, but the spread of arsenic resistance genes such as ars can
also be influenced by the horizontal transfer of genetic material
(Sarkar et al., 2012).

Indeed, our results show that exposure to arsenic can increase
the abundance of int1 genes in microbial communities, an
important genetic factor responsible for the transmission of
gene cassettes conferring resistance to heavy metals and different
antibiotics (Naas et al., 2001; Fluit and Schmitz, 2004; Gaze

et al., 2011; Koenig et al., 2011). Interestingly, while our data
suggest that high concentrations of arsenic (i.e., 100 ppb)
strongly increased int1 abundance, Guo et al. (2014) noted
that type 1 integrons did not increase in the gut microbiota
of mice exposed to 3,000 ppb of arsenic trioxide. Our study
thus implies that arsenic contamination possibly exerts different
selective pressures in different hosts or could be stronger in
aquatic environments. Taken together, our results suggest that
arsenic exposure not only select directly for taxa harboring
resistance mechanisms, but also for strains of bacteria with high
recombinogenic activity, possibly contributing to the presence of
antibiotic resistance reservoirs in aquifers and animals (Baker-
Austin et al., 2006; Gullberg et al., 2014; Chen et al., 2015).

The combination of two computational methods to analyze
the effect of arsenic on microbial communities offered the
opportunity to compare microbial diversity at different levels.
While uclust’s OTU picking method clusters similar sequences
based on sequence differences at a fixed 97% similarity threshold
(Caporaso et al., 2010b; Edgar, 2010), DADA2 integrates
sequence variation, quality scores and an error model in order
to infer exact sample sequences from amplicon reads (Callahan
et al., 2016). The coarse-grain method favored by OTU-picking
defined by uclust can be a good indicator of broad-scale patterns
in microbial communities, especially when prior functional
clades are known (Koeppel and Wu, 2013).

Crucially, the overall effect of arsenic on microbial
composition remained a significant factor when considering
both OTUs and ASVs, highlighting the fact that arsenic plays
an important role in dysbiosis both at the fine and coarse-grain
levels. Still, our results also suggest that sequence variants-based
analyses are more powerful for detecting changes associated
with final-scale microbial diversity. While OTU-based analyses
revealed more taxa overall, such analyses failed to detect
changes in abundance associated with important taxa. This
result likely reflects the fact that uclust clusters polyphyletic
reads into OTUs and misses variation at lower phylogenetic
levels (Koeppel and Wu, 2013). The higher number of taxa
observed in OTUs is likely due to the high false-positive rates
associated with Illumina sequencing (Callahan et al., 2016), as
supported by the fact that 40.8% of OTUs were doubletons and
only 5.55% of ASVs were doubletons. In addition to providing
a more accurate description of microbial communities, sequence
variant-based analyses are likely to provide the opportunity
to distinguish between similar sequences that can be crucial
to revealing the difference between harmless and virulent
strains as more information is gathered (McElroy et al.,
2013).

Finally, even though we replaced media every 48 h to
reduce cross-contamination between individual larvae, it is
possible that the environment in which the fish were raised
confounded the effect observed in this study. The fact
that fish from separate treatments were raised in the same
dishes could explain part of the variance observed among
the different microbiomes, a phenomenon known as batch
effect (Hurlbert, 1984). Still, microbiomes exhibited high inter-
samples variability as expected with most 16S amplicon studies
(Hiergeist et al., 2016), suggesting that the level of variability in
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FIGURE 3 | Alpha diversity metrics with arsenic exposure. (A) Observed ASV measurements [F (2,15) = 9.83; adj-P < 0.01]. (B) Shannon diversity measurements

[F (2,15) = 4.32; adj-P = 0.03]. (C) Pielou’s evenness measurements [F (2,15) = 6.04; adj-P = 0.01]. All metrics are plotted against arsenic concentration gradient; with

mean (diamond) and median (line), and hinges as first and third quartiles (25th and 75th percentiles).

FIGURE 4 | Principle coordinates analysis (PCoA) based on unweighted UniFrac scores of zebrafish microbiota. (A) PCoA on unweighted UniFrac scores with all

treatments labeled. Significant dissimilarity between samples when arsenic was treated as a continuous variable (ADONIS; adj-P = 0.036; R2 = 0.124; perm = 999).

(B) PCoA on unweighted UniFrac scores with arsenic pooled group and control. Significant dissimilarity between the pooled arsenic group and control group

(ANOSIM; adj-P < 0.01, R = 0.786, perm = 999). Ellipses are drawn at 0.95C.I.

our study was not limited by specific batches. Furthermore, we
observed a strong overall effect of arsenic on the investigated
microbiomes as well as linear trends in both int1 relative
abundance and diversity measurements in relation to arsenic
concentration, indicating that the data structure follows a
gradient along arsenic concentration rather than being randomly
assigned to batches. Taken together, these results suggest arsenic
most likely exerted a predictable effect on the microbial
communities.

In conclusion, our study demonstrates that concentrations of
arsenic, even below maximum concentration limits mandated
by local authorities, can alter the developing microbiota of
zebrafish and increase the relative abundance of integron 1
genetic elements. The possible risk of pathogenicity associated
with highly recombinogenic strains remains to be investigated
in this system (Stecher et al., 2013). Future studies should also
integrate multi-omics approaches with physiological studies to
determine how arsenic exposure alters the microbiome functions
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FIGURE 5 | Int1 abundance in response to arsenic concentration. Relative

abundance of int1 is taken as the proportion of int1 copies per 16S rRNA

copies, where copy numbers are calculated using standard curves and qPCR.

Error bars are ± standard error. Quadratic model suggests highest arsenic

concentration (100 ppb) significantly increased int1 abundance (F (2,14) =

13.27; P < 0.01).

in developing hosts with possible health consequences, as well as
the consequences of these changes for the health of humans and
other animals.
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