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Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place

in various kinds of foodstuffs and feeds. Human beings and animals are inevitably

threatened by OTA as a result. Therefore, it is necessary to adopt various measures

to detoxify OTA-contaminated foods and feeds. Biological detoxification methods,

with better safety, flavor, nutritional quality, organoleptic properties, availability, and

cost-effectiveness, are more promising than physical and chemical detoxification

methods. The state-of-the-art research advances of OTA biodetoxification by

degradation, adsorption, or enzymes are reviewed in the present paper. Researchers

have discovered a good deal of microorganisms that could degrade and/or adsorb OTA,

including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA

to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important

OTA biodegradation mechanism. The most important influence factor of OTA adsorption

capacity of microorganisms is cell wall components. A large number of microorganisms

with good OTA degradation and/or adsorption ability, as well as some OTA degradation

enzymes isolated or cloned from microorganisms and animal pancreas, have great

application prospects in food and feed industries.
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INTRODUCTION

Ochratoxin A (OTA), 7-carboxyl-5-chloro-8-hydroxyl-3,4-dihydro-3R-methyl-isocoumarin-7-L-
β-phenylalanine (Figure 1; Wu et al., 2011), is a secondary fungal metabolite with low molecular
weight that is mainly produced by various species of Aspergillus and Penicillium (Shen et al.,
2013; Susca et al., 2016; Freire et al., 2017). Critical steps of OTA biosynthesis are shown in
Figure 1 (Huff and Hamilton, 1979; Harris and Mantle, 2001; El Khoury and Atoui, 2010; Gallo
et al., 2013, 2017; Wang et al., 2016). Common OTA-contaminated feeds (Streit et al., 2013;
Li et al., 2014; Sherazi et al., 2015; Pinotti et al., 2016) and food commodities include cereals
(maize, wheat, rice, sorghum, barley, oats, and rye) (Duarte et al., 2010; Liang et al., 2015; Lim
et al., 2015; Sun et al., 2017), cereal products (bread, flour, and pasta) (Shen et al., 2014), wine
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FIGURE 1 | Critical steps of Ochratoxin A biosynthesis [adapted from (Gallo et al., 2017)].

(Quintela et al., 2013; Freire et al., 2017), dairy products (milk
and cheese), meat (pork, fish, and poultry), eggs (Dai et al.,
2014), fruit (grapes, apples, peaches, pears, strawberries, oranges,
watermelons, mangoes, and figs) (Marin and Taranu, 2015;
Freire et al., 2017), vegetables (yam, garlic, onions, potatoes, and
tomatoes) (Pfohl-Leszkowicz and Manderville, 2007; Zhao et al.,
2017), beans (coffee beans, peanuts, chickpeas, and soybeans)
(Pfohl-Leszkowicz and Manderville, 2012; Wang et al., 2017),
dried products (dried beans, smoked or salted dried fish, raisins,
and jerky), nuts, sesame seeds, rapeseed, spice (Abrunhosa et al.,
2010; Bui-Klimke andWu, 2015), infant cereals (Cappozzo et al.,
2017), and even milk-based baby formulae (Raiola et al., 2015;
Zhao et al., 2017). According to the latest statistics from 2006
to 2016, the maximum concentration and incidence of OTA in
raw cereal grains was 1,164 µg/kg and 29%, respectively (Lee
and Ryu, 2017). Therefore, it is difficult to completely avoid the
risk of OTA exposure. In 1993, OTA was classified as a group
2B carcinogen (possible human carcinogen) by the International
Agency for Research on Cancer (IARC) (IARC, 1993). Although
OTA has not been classified as a group 1 carcinogen (human
carcinogen), such as aflatoxins, this does not mean that OTA is
significantly less toxic than aflatoxins. In fact, OTA is a powerful
carcinogen for rodents and poultry (Bondy et al., 2015), but
the epidemiological evidence in human beings is very scarce
(Bui-Klimke and Wu, 2015). That is to say, the carcinogenic
evidence of OTA is not as sufficient as that of aflatoxins in
human beings (Bui-Klimke and Wu, 2015). A great deal of
animal or cell experiments have reported that the exposure
of OTA can result in various toxicological effects, including
the disruption of the gut microbiota homeostasis (Liew and

Mohd-Redzwan, 2018), teratogenicity, carcinogenicity (Pfohl-
Leszkowicz andManderville, 2012), mutagenicity, hepatotoxicity
(Zheng et al., 2013; Qi et al., 2014), genotoxicity (Pfohl-
Leszkowicz and Manderville, 2007), immunotoxicity (Marin and
Taranu, 2015), embryotoxicity (Hong et al., 2000), developmental
toxicity, neurotoxicity (Bhat et al., 2016), testicular toxicity
(Schwartz, 2002), blood-brain barrier damage (Jackson and Ryu,
2017), and especially nephrotoxicity (Zhao et al., 2017). The
primary target organ of OTA is the kidney (Zhang et al., 2014).
Although the human epidemiological evidence is inadequate,
the association between OTA exposure and Balkan Endemic
Nephropathy (BEN), Chronic Interstitial Nephropathy (CIN),
and other kidney diseases is more or less existed (Bui-Klimke and
Wu, 2015; Zhao et al., 2017). Thus, OTA attracts global concern
based on its ubiquitous nature in feeds and foods and the adverse
health effects in humans and animals (Duarte et al., 2010).

Apart from causing health issues, OTA exposure results in
enormous economic losses via decreasing the productivity of
livestock and farm crops and increasing the medical fees of
humans and animals, the mortality rate of animals, and the
costs related to OTA precaution, control, and detoxication
(Duarte et al., 2010; Pfliegler et al., 2015). The best way to
avoid these negative health and economic effects would be
preventing the contamination of OTA. But in fact, it is nearly
impossible to completely avoid its contamination in feeds and
foodstuffs. Instead, to adopt various measures to detoxify OTA-
contaminated foods and feeds is more feasible and necessary
(Russo et al., 2016). According to present reports, physical,
chemical, and biological detoxification methods were mainly
applied to food and feed industries (Kabak and Dobson, 2009;
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Quintela et al., 2013). Among these three classes of methods,
biological methods, with better safety, flavor, nutritional quality,
organoleptic properties, availability, and cost-effectiveness, were
more promising than the other two classes (Kabak and Dobson,
2009; Rodriguez et al., 2011; Hathout and Aly, 2014; De Bellis
et al., 2015; Cho et al., 2016; Farbo et al., 2016). Thus, this review
principally focuses on the advances in biodetoxification of OTA.

BIODETOXIFICATION OF OTA BY
DEGRADATION

Microorganisms, including actinobacteria, bacteria, filamentous
fungi, and yeast, that are able to degrade OTA are summarized
in Table S1. Note that the direct in vivo experiments with
animals and the in vitro experiments with animal tissues or
body fluids that do not have specific microorganisms separated
are not summarized in Tables S1, S2, such as the research of
Xiao et al. (1991); Madhyastha et al. (1992); Özpinar et al.
(1999); Müller et al. (1998), and Müller et al. (2001). In
addition, microorganisms that could detoxify OTA but without
explicit adsorption and/or biodegradation mechanisms of OTA
elimination were neither shown in Tables S1, S2, such as the
research of Böhm et al. (2000); Štyriak et al. (2001), and Caridi
et al. (2006).

OTA Biodegradation Products and Their
Properties
As shown in Table S1, the degradation of OTA
to OTα (7-carboxy-5-chloro-8-hydroxy-3,4-dihydro-3-R-
methylisocoumarin) is the most important mechanism of OTA
biodegradation (Figure 2; Loi et al., 2017). Degradation products
OTα and L-β-phenylalanine are formed by the hydrolysis of the
amide bond via hydrolytic enzymes, such as carboxypeptidase A,
carboxypeptidase PJ_1540, protease A, lipase A, ochratoxinase,
etc. (Stander et al., 2000; Abrunhosa et al., 2006; Dobritzsch et al.,
2014; Liuzzi et al., 2016).

Rodrigues et al. (2009) reported that OTα was non-toxic, or
at least 500 times less toxic than OTA. The research of Ferenczi
et al. (2014) revealed that the administration of OTA (1 or 10
mg/kg BW for 72 h or 0.5 mg/kg BW for 21 d) to male CD1 mice
via oral gavage led to a significant increase of OTA concentration
in the blood, transcriptional alterations in OTA-dependent genes
(gadd45, gadd153, sulphotransferase, annexinA2, and clusterin)
and histopathological changes in the renal cortex. These OTA-
induced alterations in male CD1 mice were not observed in the
group which OTA was degraded into OTα by treating OTA with
Cupriavidus basilensis OR16 for 5 days (Ferenczi et al., 2014).
Rodriguez et al. (2011) verified that 0.04µg/mL of OTA was
converted completely to OTα by food-borne Brevibacterium spp.
strains (B. casei DSM 20657, DSM 9657, DSM 20658, RM101;
B. linens DSM 20425; B. iodinum DSM20626; B. epidermidis
DSM 20660) within 10 d. The tested strain, B. casei RM101,
could completely cleave OTA even at 40µg/mL, which is 1,000
times greater than the OTA concentration commonly found
in foodstuffs (Rodriguez et al., 2011). Bejaoui et al. (2006)
reported that OTαwas further degraded into unknown products.

Aspergillus niger GX312, A. japonicus AX35, and A. carbonarius
SA332 (a weak OTA producer) could convert OTA to OTα by 99,
89, and 83%within 5 days, respectively. Then OTαwas converted
to an unknown compound after 9 days incubation (Bejaoui et al.,
2006). A small amount of authors reported that OTA could be
directly degraded into unknown products (Patharajan et al., 2011;
Shi et al., 2013, 2014).

Effects of Different Culture Conditions on
OTA Biodegradation
The degradation of OTA by the same microorganism in different
culture media has different manifestations (Varga et al., 2000,
2005; Abrunhosa et al., 2014). It is worth mentioning that
an atoxigenic A. niger CBS 120.49 could completely degrade
OTA (2.5µg/mL) to OTα in solid medium within 5 d, faster
than in liquid medium within 7 days (Varga et al., 2000).
The degradation product, OTα, was further decomposed to an
unknown compound within 7 days in solid media (Varga et al.,
2000). Among 55 isolated Rhizopus and Mucor strains, many
Rhizopus strains were able to degrade OTA (7.5µg/mL) to a
detection limit below concentration in liquid medium within
10 days (Varga et al., 2005). A. niger CBS 120.49 was able to
degrade more than 90% of OTA within 6 d, while R. stolonifer
var. stolonifer TJM 8A8 needed 12 days to degrade about 90%
of OTA in liquid medium. Only R. stolonifer var. stolonifer
TJM 8A8 was able to degrade 96.5% of OTA (7.5µg/g) in
moistened wheat during 10 days incubation (Varga et al., 2005).
Pediococcus parvulus UTAD 473 was able to degrade 90% of
OTA (1µg/mL) within 25 h in MRS broth medium, while only
degrading 80% of OTA (7 µg/L) after 6 days incubation in grape
must. Furthermore, no obvious degradation of OTA (7µg/L) was
observed in synthetic wine (Abrunhosa et al., 2014).

Oxygen is also one of the important factors that affect
the growth and reproduction of microorganisms. In
addition to certain aerobic microorganisms, some anaerobic
microorganisms were also able to degrade OTA (Schatzmayr
et al., 2006; Upadhaya et al., 2012). Anaerobic Eubacterium
biforme MM11, isolated from swine gut, was able to degrade
77.1% of OTA (0.1µg/mL) in modified M 98-5 liquid medium
within 12 h at 39◦C. This strain could completely degrade
1µg/mL of OTA in solid corn substrate within 24 h at 39◦C,
which suggests that anaerobic microorganisms might be suitable
for the development of feed additives that will function in the
targeted animal intestines. It is also worth noting that 26%
of the OTA (1µg/mL) was removed in the negative control
(corn) within 24 h at 39◦C (Upadhaya et al., 2012). Moreover,
anaerobic E. callanderi Due4_11 was able to degrade 95% of
OTA (0.2µg/mL) to OTα within 6 h (Schatzmayr et al., 2006).

Dually Functional Strains of OTA
Biodegradation
Some microorganisms were not only able to degrade OTA, but
also able to inhibit the biosynthesis of OTA. El Khoury et al.
(2017) reported that several actinobacterial strains (Streptomyces
AT10, AT8, SN7, MS1, ML5, G10, PT1) were able to degrade
22.83–52.68% of OTA (0.095µg/mL) within 5 d. At the same
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FIGURE 2 | The biodegradation mechanisms of Ochratoxin A.

time, Streptomyces AT10, AT8, SN7, G10, and PT1 could adsorb
16.07%-33.93% of OTA (0.045µg/mL) within 1 h. Furthermore,
the expression of biosynthesis genes (acOTAnrps, acpks, and
acOTApks) and regulatory gene (veA) of OTA in A. carbonarius
S402 was inhibited by StreptomycesMS1, ML5, and G10, with the
down regulation of 21.0, 11.9, and 11.9% for acOTAnrps, 37.1,
39.0, and 9.0% for acpks, 23.9, 23.0, and 18.3% for acOTApks, and
11.4, 0.0, and 7.0% for veA, respectively (El Khoury et al., 2017).

Some microorganisms have dual functions of OTA
degradation and adsorption (Péteri et al., 2007; Shi et al.,
2014). Shi et al. (2014) reported that the cell-free supernatant
of Bacillus subtilis CW 14 could degrade 97.6% of OTA
(6µg/mL) within 24 h, but no degradation product was detected.
Furthermore, 66.6 and 87.9% of OTA (6µg/mL) was adsorbed
by viable and dead B. subtilis CW 14 cells, respectively (Shi et al.,
2014). Péteri et al. (2007) verified that Phaffia rhodozyma CBS
5905 was able to degrade 90% of OTA (7.5µg/mL) within 15 d
and adsorb 23% of OTA (3µg/mL) within 2 h, respectively.

BIODETOXIFICATION OF OTA BY
ADSORPTION

Microorganisms, including actinobacteria, bacteria, filamentous
fungi, and yeast, that were able to adsorb OTA are summarized in
Table S2. Themost important influence factor of OTA adsorption
capacity of microorganisms is cell wall components. However,
there are controversies among different scholars on specific cell
wall components, such as glucogalactans and β-glucans (Ben
Taheur et al., 2017), mannoproteins (Caridi et al., 2012), β-
glucans and mannans (Pereyra et al., 2015).

Effects of Different Culture Conditions on
OTA Adsorption
The adsorption of OTA by the same microorganism in different
culture conditions has different manifestations (Armando et al.,
2012; Piotrowska et al., 2013; Ben Taheur et al., 2017). Piotrowska
et al. (2013) certified that Saccharomyces cerevisiae Syrena LOCK
0201 and S. cerevisiae Malaga LOCK 0173 removed 85.1 and
82.8% of OTA (1µg/mL) in white grape juice as well as 65.2
and 10.7% of OTA (1µg/mL) in blackcurrant juice after 10
days incubation, respectively. Armando et al. (2012) simulated

mammalian gastrointestinal conditions, Yeast Peptone Dextrose
(YPD) broth (pH 2 and pH 7) and YPD with 0.5% bile salts
(pH 7), to study the effect of S. cerevisiae RC008, RC009,
RC012, and RC016 on OTA (100µg/mL) adsorption. Results
proved that the OTA binding level of S. cerevisiae RC008 and
RC009 was 82.3 and 80.2% in YPD broth (pH 2), 74.4 and
78.7% in YPD with 0.5% bile salts (pH 7), 56.7 and 67.1%
in YPD broth (pH 7), respectively. The OTA binding ability
of S. cerevisiae RC008 and RC009 was significantly stronger
in simulated mammalian gastrointestinal conditions than that
in YPD broth (pH 7), while the OTA binding ability of S.
cerevisiae RC012 and RC016 was not significantly different
between simulated mammalian gastrointestinal conditions and
YPD broth (pH 7). Mammalian gastrointestinal conditions
enhanced the adsorption of S. cerevisiae to OTA, or at least did
not reduce OTA-S. cerevisiae interactions (Armando et al., 2012).
Ben Taheur et al. (2017) reported thatAcetobacter syzygiiKFGM1
and Lactobacillus kefiri KFLM3 were able to bind 15 and 15% of
OTA in Man Rogosa Sharpe (MRS) medium while 50 and 81%
of OTA in milk during 1 d incubation, respectively. Kazachstania
servazzii KFGY7 could adsorb 6 and 62% of OTA in yeast extract
peptone dextrose (YPD) and in milk during 1 d incubation,
respectively. The reason might be that the nutrient components
of milk were better than those of MRS or YPD, which facilitated
the growth of microorganisms and the biosynthesis of cell wall
ingredients concerning OTA adsorption. The OTA adsorption
mechanism of L. kefiri KFLM3 and K. servazzii KFGY7 was
possibly involved in the function of hydrosoluble glucogalactan
exopolysaccharides and β-(1,3 and 1,6)-D-glucans of the cell wall,
respectively (Ben Taheur et al., 2017).

Effects of Different Statuses on OTA
Adsorption
The adsorption of OTA by the same microorganism but
in different statuses (viable/dead) has similar or different
manifestations (Bejaoui et al., 2004, 2005; Péteri et al., 2007;
Mateo et al., 2010; Fiori et al., 2014; Piotrowska, 2014). Péteri
et al. (2007) reported that viable and dead Phaffia rhodozymaCBS
5905 were able to remove 23 and 45% of OTA (3µg/mL) within
2 h, respectively. Mateo et al. (2010) demonstrated that the OTA
adsorption capacity of Oenococcus oeni 6G and O. oeni 124M
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was not significantly different between viable and dead cells
after 30min incubation with 2 µg/L of OTA. Fiori et al. (2014)
tested the OTA adsorption capacity of viable/dead yeast strains.
Results demonstrated that viable and dead Candida friedrichii
778, Candida intermedia 235, Lachancea thermotolerans 751,
Cyberlindnera jadinii 273 could adsorb 70, 73, 75, and 0% of
OTA (0.02µg/mL) and 72, 74, 84, and 82% of OTA within 8
days, respectively. The OTA adsorption capacity varied greatly
between viable and dead yeast strain C. jadinii 273 (Fiori et al.,
2014). Bejaoui et al. (2005) reported that the OTA adsorption
ability of dead A. niger GX312, A. carbonarius SA332 (a weak
OTA producer), andA. JaponicusAX35, with the OTA (2µg/mL)
reduction of 47.5, 66.5, and 41.5% within 2 h, was at least
10% higher than that of viable A. niger GX312, A. carbonarius
SA332 (a weak OTA producer), and A. Japonicus AX35, with
the OTA (2µg/mL) reduction of 30, 55, and 30% within 2 h.
While viable or dead A. niger GX312, A. carbonarius SA332
(a weak OTA producer), and A. Japonicus AX35 displayed the
same adsorption ability to low concentration of OTA that 80%
of OTA (0.01µg/mL) was removed within 2 h (Bejaoui et al.,
2005). Bejaoui et al. (2004) demonstrated that viable and dead
S. cerevisiae LALVIN Rhône 2056 was able to remove 17 and
75% of OTA (2µg/mL) within 2 h in liquid yeast peptone glucose
(YPG) medium, respectively. Furthermore, the OTA adsorption
ability was not significantly influenced by different treatment
methods that lead to microbial cell death, since no significant
difference was observed between heat and acid treatments of S.
cerevisiae LALVIN Rhône 2056 cells. Heat treatment resulted in
the formation of Maillard reaction products, the denaturation of
proteins, the reduction of cell wall thickness of peptidoglycan,
or the enlargement of pore size, which may be responsible for
more exposure of OTA adsorption sites than viable cells. Acid
treatment led to the formation of monomers and aldehydes
products via breaking down polysaccharides, the reduction of cell
wall thickness of peptidoglycan, or the enlargement of pore size,
which may be responsible for more exposure of OTA adsorption
sites as well (Bejaoui et al., 2004). Piotrowska (2014) verified that
the dead Lactobacillus plantarum LOCK 0862, L. brevis LOCK
0845, and L. sanfranciscensis LOCK 0866 could reduce 46.29–
59.82% of OTA (1µg/mL) within 30min in PBS buffer, but
the alive L. plantarum LOCK 0862, L. brevis LOCK 0845, and
L. sanfranciscensis LOCK 0866 needed 24 h to remove 14.80–
26.42% of OTA (1µg/mL) in PBS buffer. The adsorption of
OTA to the surface structures of the lactic acid bacteria cell wall
is influenced by hydrophobic, acceptor/acidic, and donor/basic
properties of the cell surface (Piotrowska, 2014).

Effects of Microbial Cell Wall Components
on OTA Adsorption
In addition, some researchers have specifically studied the
OTA adsorption ability of microbial cell walls (Pereyra et al.,
2015). Two commercial yeast cell walls (YCW) with different β-
glucans/mannans percentages, YCW1 (23.3% of polysaccharides
containing 17.4% of β-glucans and 5.9% of mannans) and YCW2
(44.0% of polysaccharides containing 23.0% of β-glucans and
21.0% of mannans), were used to evaluate their OTA adsorption
ability in simulated stomachal conditions of monogastric animals

by Pereyra et al. (2015). Results proved that the OTA adsorption
ability was not significantly influenced by different percentages of
polysaccharides or β-glucans/mannans (Pereyra et al., 2015).

Effects of Strains and Their Statuses on
the Firmness of OTA Adsorption
The firmness of OTA adsorption was strain-specific (Caridi et al.,
2012; Petruzzi et al., 2015). Petruzzi et al. (2015) reported that
S. cerevisiae W28 and W46 was able to bind 34.51–70.17% and
42.79–76.44% of OTA (2 µg/L) in grape must, respectively. But,
the binding of S. cerevisiae-OTA was reversible with 80%-85%
of the initially binding OTA releasing back into the washing
solution. The binding ability of S. cerevisiae-OTA complex varied
among different kinds of strains. The S. cerevisiae W13 could
remove 30.69–53.79% of OTA (2 µg/L) in grape must, but
its releasing-back percentage was 55%, which was significantly
lower than that of S. cerevisiae W28 and W46 (Petruzzi et al.,
2015). Caridi et al. (2012) verified that there is a great difference
between descendants and their parents (S. cerevisiae TP5 and
TT173) in the homogeneity of OTA adsorption capacity. The
different content of mannoproteins might contribute to the
difference of OTA adsorption capacity of yeast cells, because OTA
and mannoproteins were linked through ionic and electrostatic
interactions (Caridi et al., 2012).

The firmness of OTA adsorption by the same microorganism
in different statuses (viable/dead) was also different (Piotrowska,
2012). The bond between microbial cells and OTA was partially
reversible. Piotrowska (2012) reported that the complex of viable
cells-OTA was firmer than the complex of dead cells-OTA, with
11 and 22% of initially binding OTA releasing back into PBS
buffer, respectively. Protoplasts of S. cerevisiaeBS lost the capacity
to bind OTA, indicating that the components of the cell wall were
strongly associated with the adsorption of OTA (Piotrowska,
2012).

BIODETOXIFICATION OF OTA BY
ENZYMES

Enzymes, including crude and purified, that were able to cleave
OTA, are summarized in Table S3.

The first report about the biodetoxification of OTA took
place in 1969 (Pitout, 1969), which was only four years after
the discovery of OTA (Van Der Merwe et al., 1965). It used
bovine pancreatic carboxypetidase A (CPA) to cleave OTA to
OTα (Pitout, 1969).

Abrunhosa et al. (2006) reported that Ancex, a crude enzyme
isolated from A. niger MUM 03.58, was able to degrade 99.8%
of OTA (1µg/mL) to OTα after 25 h incubation at pH 7.5 and
37◦C. Commercially purified enzymes did not degrade nearly
as much. For example, 87.3 and 43.4% of OTA was degraded
by Protease A and Pancreatin after 25 h incubation at pH 7.5
and 37◦C, respectively (Abrunhosa et al., 2006). Furthermore,
another commercially purified enzyme, Prolyve PAC, was able to
degrade only 3% of OTA (1µg/mL) to OTα after 25 h incubation
at pH 3 (optimal pH) and 37◦C (Abrunhosa et al., 2006). A crude
metalloenzyme, with 12.8 times higher OTA hydrolytic activity
than that of CPA at pH 7.5 and 37◦C, was isolated from A. niger
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by Abrunhosa and Venâncio (2007). Finally, an OTA hydrolytic
activity of 36 U/mg was obtained from the purified enzyme
(Abrunhosa and Venâncio, 2007). Cho et al. (2016) reported that
97.5 and 91.3% of OTA (0.04µg/mL) was removed by crude
enzymes of A. tubingensis M036 and M074 at pH 5 and 25◦C
within 24 h, respectively.

Dobritzsch et al. (2014) reported that the purified
recombinant ochratoxinase was about 600 times more efficiently
hydrolyzed OTA than CPA at an optimal pH of CPA (pH 7.5).
The optimal OTA-degrading activity of this novel ochratoxinase
was obtained at 66◦C and about pH 6 (Dobritzsch et al., 2014).

In general, although researchers have isolated many OTA
biodegradable microorganisms, there is still a lack of isolation
and purification of enzymes and performance studies among
them. This may be mainly due to the relatively small number
of interdisciplinary studies, and relatively few experts familiar
with the relevant studies of both microorganisms and enzymes,
thus limiting the subsequent in-depth study of abundant
microorganisms with excellent biodegradability.

INDUSTRIAL APPLICATION PROSPECTS
OF OTA BIODETOXIFICATION

It has been reported that a large number of patented
microorganisms have great application prospects in food and
feed industries (Guan et al., 2009; Jiang et al., 2016a,b,c,d). After
72 h incubation with Bacillus licheniformis MZH-11, 0.1, 0.5,
and 5µg/g of OTA in corn flour was degraded by 84.4,78.3,
and 73.5%, respectively (Guan et al., 2009). Although the
concentration of OTA in corn flour increased by 10-fold from
0.5 to 5µg/g, the decreased degradation rate of OTA from 78.3
to 73.5% was very little, which indicated the great application
prospects of B. licheniformisMZH-11 in the feed industry (Guan
et al., 2009). Jiang et al. (2016b) reported that 0.02µg/g of OTA
in corn-soybean feed was degraded by 71% after 72 h incubation
with Stenotrophomonas sp. CW117. Moreover, 0.02µg/g of OTA
in corn-soybean feed was degraded by 48.3, 53.2, and 68.7%
following 48 h incubation with Luteimonas sp. CW574 (Jiang
et al., 2016d), Silanimonas sp. CW282 (Jiang et al., 2016c), and
Lysobacter sp. CW239 (Jiang et al., 2016a), respectively.

It is essential for industrial application of strains to maintain
good performance during processing, such as lyophilization.
Schatzmayr et al. (2006) used an in vitro model with whole
pieces of pig gut to evaluate the OTA-degradation activity of
lyophilized powders of Trichosporon mycotoxinivorans (MTV,
115) and Stenotrophomonas nitritreducens 041-9 strains. Results
revealed that the lyophilized powders of T. mycotoxinivorans
(MTV, 115) or S. nitritreducens 041-9 could degrade about 90% of
OTA (0.4µg/mL) within 6 h, which displayed great potential to
be applied as OTA-detoxifying feed additive (Schatzmayr et al.,
2006). Due to the excellent OTA-detoxification performance of
T. mycotoxinivorans (MTV, 115), it was made into a product
named Mycofix R© PlusMTVINSIDE by Biomin GmbH (Austria)
(Hanif et al., 2008). Hanif et al. (2008) added 1‰ and 2‰
Mycofix R© PlusMTVINSIDE (containing 6. 0 ×108 count T.
mycotoxinivorans MTV cells/g) to the feed containing OTA (0.5

and 1µg/g) for studying the attenuating effects of Mycofix R©

PlusMTVINSIDE on the undesirable effects of OTA in 1-day-old
broiler chicks over a 42-days period. Results confirmed that
OTA induced adverse effects, such as poor feed conversion
ratio, depressed body weight gain, increased levels of serum
enzymes (lactate dehydrogenase, aspartate aminotransferase,
and γ-glutamyltranspeptidase) and significant histopathological
changes in bursa of fabricius, spleen, liver, and kidney, were
appreciably attenuated by Mycofix R© PlusMTVINSIDE (Hanif et al.,
2008). Although Mycofix R© PlusMTVINSIDE has many advantages
in OTA detoxification, T. mycotoxinivorans was recognized in
2009 as a possible novel human pathogen that is related to
cystic fibrosis (Hickey et al., 2009), suggesting that the secondary
metabolites of T. mycotoxinivorans are extremely complicated.
Therefore, T. mycotoxinivorans deserves further investigations
to reduce possible deleterious effects and should be used with
caution in food or feed industries. It is noteworthy that the
application of microorganisms to the food and feed industries
must be cautious, with particular attention to risks for human
health (Spano and Capozzi, 2011; Capozzi et al., 2017).

It has also been reported that many microorganisms with
good OTA adsorption ability have great application prospects in
food and feed industries (Moruno et al., 2005; Csutorás et al.,
2013; Farbo et al., 2016). Csutorás et al. (2013) used macro-
scale experiments (16 L glass balloons in wine cellar) to simulate
a real wine industrial system. During a 90-day fermentation
process, OTA (4µg/mL) was adsorbed to S. cerevisiae by 73,
85, and 90% in white, rose, and red wine musts, respectively
(Csutorás et al., 2013). Moruno et al. (2005) used S. cerevisiae
169-involving fermentation lees of red and white grape musts
to treat OTA-containing red wine samples. Results certified
that 4.12 and 7.09 µg/L of OTA was adsorbed by 58.7 and
71.4% in 80 d red wine fermentation with red lees and white
lees, respectively (Moruno et al., 2005). Farbo et al. (2016)
immobilized Candida intermedia 253 yeast cells into magnetic
calcium alginate beads to adsorb OTA in commercial grape
juice. Results showed that more than 80% of OTA (0.02µg/g)
was adsorbed within 48 h of incubation, while OTA was slowly
released back into the commercial grape juice from calcium
alginate beads in the following phases (72–120 h). Thus, the
authors developed a glass chromatography column-containing
prototype bioreactor encapsulating C. intermedia 253 yeast cells
in calcium alginate beads to decontaminate OTA in liquid
matrices. The concentration of OTA (0.02µg/g) in commercial
grape juice was reduced by 21 and 57% via the first column
filtration step and the fourth column filtration step, respectively
(Farbo et al., 2016). Furthermore, three industrial yeast by-
products including EX16 (a vinasse containing 16% liquid yeast
cell walls), LEC (a dry yeast cell wall fraction), and BETA (a
dried purified β-glucans of yeast cell wall fraction) were used to
adsorb OTA by Ringot et al. (2007). Both non-polar and polar
non-covalent interactions were involved in the plentiful OTA
adsorption onto LEC. The non-polar interactions concerned
the interactions between hydrophobic amino acids of LEC
and aromatic rings of OTA. The polar interactions could be
interpreted by four different complementary patterns as follows:
(a) electrostatic π-π interactions between aromatic amino acids

Frontiers in Microbiology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 1386

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chen et al. Advances in Biodetoxification of Ochratoxin A

of LEC and aromatic rings of OTA, (b) electrostatic ionic
interactions between basic amino acids of LEC and carboxylic
group of OTA, (c) hydrogen bond interactions between donor
groups of LEC and receptor aromatic rings of OTA, (d) hydrogen
bond interactions between donor groups (phenol and amide
group of OTA) and receptor groups of LEC. The relative
importance of these interactions between OTA and LEC still
needs to be further explored (Ringot et al., 2005).

Furthermore, it has been reported that many microorganisms
could detoxify OTA, but the adsorption and/or biodegradation
mechanisms of OTA elimination were not reported (not shown in
Tables S1–S3). Kapetanakou et al. (2012) applied strains mixtures
(107 cfu/mL) with 16 yeasts isolated from different batches
of wine and 29 bacteria isolated from fermented flour, basil,
sourdough, sausage, and aniseed to degrade OTA (0.1µg/mL) in
grape juice, red wine, and beer at 25◦C for 5 days. Results shown
OTA reduction was 32, 22, and 12% in grape juice, red wine,
and beer, respectively (Kapetanakou et al., 2012). The licensed
probiotic preparation, including L. paracasei LOCK 0920, L.
plantarum LOCK 0945, L. brevis LOCK 0944, S. cerevisiae LOCK
0140, and Yucca schidigera extract, was applied to reduce OTA
in broiler feed by Slizewska and Piotrowska (2014). The 1 and
5 mg/kg of OTA was reduced by 73 and 55% in feed after
6 h fermentation with the probiotic preparation, respectively. At
the same time, aerobic spore-bearing bacteria were inhibited by
the probiotic preparation (Slizewska and Piotrowska, 2014). Cai
et al. (2014) patented a yeast strain isolated from pig feces and
nearby soil, Kluyveromyces marxianus C2, which could reduce
82.3% of OTA (0.5µg/mL) in YPD medium and 83.7% of OTA
(0.082µg/g) in moldy corn feed, respectively.

In addition, it has been reported that a number of
enzymes originating from some microorganisms with good OTA
degradation ability have great application prospects in food and
feed industries (Abrunhosa et al., 2006; Yu et al., 2015). Amidase
2, a patented food or feed additive, was cloned from A. niger to
degrade OTA to OTα by Yu et al. (2015). After 2.5 h incubation
with amidase 2 at 40◦C, the content of OTA was reduced from
47 ng/mL to less than 2 ng/mL in milk (Yu et al., 2015). After 20 h
incubation with amidase 2, 38µg/mL of OTA was reduced to less
than 2 ng/mL in corn flour and to 6.6µg/mL in corn soy based
feed, respectively (Yu et al., 2015). Because of the low toxigenicity,
A. niger is known as an GRAS (generally regarded as safe) strain,
which, to a certain degree, indicates that A. niger-derivatived
enzymes have great safety (Varga et al., 2000). Abrunhosa et al.
(2006) reported that Ancex, a crude enzyme isolated from A.
niger MUM 03.58, was able to degrade 87.9% of OTA (1µg/mL)
to OTα after 3 h incubation at pH 7.5 and 50◦C.

FUTURE DIRECTIONS

Since the discovery of which carboxypeptidase A could degrade
OTA in 1969, studies on OTA biodetoxification have been
carried out for nearly 50 years. However, there are still many
problems that remain to be solved. For example, compared to
a single-OTA exposure environment, is the biodetoxification
of strains equally effective in a multimycotoxins environment?

Moreover, is the strain equally effective in a variety of food or
feed complex systems? Furthermore, is it possible to screen a
large number of strains in pre-harvest period to prevent OTA
biosynthesis and in post-harvest period to biodetoxify OTA
at the same time? In addition, at present, the vast majority
of studies have been confined to the traditional isolation and
screen of strains from different sources. It is necessary to
make better use of transgenic technology in mutant strains to
obtain better biodetoxification performance of OTA or OTA
combined with several different mycotoxins. As the prevailing
situation is that a myriad of mycotoxins coexist in the food
or/and feed systems, obtaining high-performance strains that
simultaneously biodegrade or/and adsorb several mycotoxins
is bound to be a trend in the future. Of course, achieving
these must be based on the clear studies concerning the
biodetoxification mechanisms and genes of several different
mycotoxins.

CONCLUSION

On the basis of the development of about 50 years, researchers
have identified a good deal of microorganisms, including
actinobacteria, bacteria, filamentous fungi, and yeast, that
could degrade and/or adsorb OTA. The degradation of
OTA to non-toxic or less toxic OTα is the most important
OTA biodegradation mechanism. The OTA adsorption
capacity of microorganisms is possibly influenced by the
glucogalactan exopolysaccharide, β-(1,3 and 1,6)-D-glucans,
mannoproteins, and mannans of the cell wall and the
hydrophobic, acceptor/acidic, and donor/basic properties
of the cell surface via ionic and electrostatic interactions.
The formation of Maillard reaction products, monomers and
aldehydes products, the denaturation of proteins, the reduction
of cell wall thickness of peptidoglycan, or the enlargement of
pore size of dead cells (heat or acid treatment) resulted in more
exposure of OTA adsorption sites than that of viable cells, which
might be responsible for higher OTA adsorption. Numerous
OTA degradation enzymes were isolated or cloned from
bacteria, filamentous fungi, yeast, and animal pancreas. A large
number of microorganisms with good OTA degradation and/or
adsorption ability, as well as some OTA degradation enzymes,
have great application prospects in food and feed industries. It is
noteworthy that the application of microorganisms to the food
and feed industries must be cautious, with particular attention to
their safety.
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