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The widespread use of cefuroxime (XM) has resulted in the increase in its concentration

in hospital and domestic wastewaters. Due to the limited removal of antibiotics and

antibiotic-resistant genes in conventional systems, the drugs enter the surface water and

soils. Moreover, the introduction of XM and/or XM-resistant bacteria into soil may cause

a significant modification of the biodiversity of soil bacterial communities. Therefore,

the goal of this research was to assess the genetic diversity of a bacterial community

in the cefuroxime (XM1 – 1 mg/kg and XM10 – 10 mg/kg) and/or antibiotic-resistant

Pseudomonas putida strain MC1 (Ps – 1.6 × 107 cells/g)-treated soils as determined by

the DGGE (denaturing gradient gel electrophoresis) method. The obtained data were also

evaluated using a multivariate analysis and the resistance (RS)/resilience (RL) concept.

Strain MC1 was isolated from raw sewage in the presence of XM and was resistant not

only to this antibiotic but also to vancomycin, clindamycin and erythromycin. The DGGE

patterns revealed that the XM10 and XM10+Ps treatments modified the composition of

the bacterial community by the alteration of the DGGE profiles as well as a decline in the

DGGE indices, in particular on days 30, 60, and 90. In turn, the XM1 and XM1+Ps or Ps

treatments did not affect the values of richness and diversity of the soil bacteria members.

A principal component analysis (PCA) also indicated that XM markedly changed the

diversity of bacterial assemblages in the second part of the experiment. Moreover, there

were differences in the RS/RL of the DGGE indices to the disturbances caused by XM

and/or Ps. Considering the mean values of the RS index, the resistance was categorized

in the following order: diversity (0.997)> evenness (0.993)> richness (0.970). The soil RL
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index was found to be negative, thus reflecting the progressing detrimental impact of XM

on the genetic biodiversity of bacteria within the experiment. These results indicate that

the introduction of XM at higher dosages into the soil environment may exert a potential

risk for functioning of microorganism.

Keywords: cefuroxime, multidrug resistance, Pseudomonas putida, DGGE, microbial diversity, soil, multivariate

analysis

INTRODUCTION

Antibiotics and antibiotic-resistant genes are thought to be
emerging contaminants that attract considerable public attention
due to their potential to harmful effect on the environment
and increased risks to human health. They are primarily
introduced into soil with sewage sludge, municipal wastewater
or animal manures (Kümmerer, 2003; Xia et al., 2005; Chee-
Sanford et al., 2009). Recent works have suggested that
antibiotics also represent a significant pollution of sediments
and soils (Tamtam et al., 2011; de La Torre et al., 2012).
This group of pharmaceuticals may enter the fauna, plants
and microorganisms, exhibiting a risk to soil organisms
and favoring the spread of resistance to antibiotics (Fatta-
Kassinos et al., 2011; Gullberg et al., 2011; Brandt et al.,
2015).

The second-generation cephalosporins (CPs), active against
a wide group of microorganisms, are the most frequently used
antibiotics in 20 European countries and represent about 70%
of the total outpatient cephalosporin consumption (Versporten
et al., 2011). Among this group, cefuroxime (XM) is the most
frequently prescribed and, its consumption in Poland and many
other European countries constituted more than 50% of the total
cephalosporin administration (Coenen et al., 2006; Versporten
et al., 2011; Iatrou et al., 2014). Such a high consumption of
XM is related to its broad spectrum of antibacterial activity,
the resistance to β-lactamase from Moraxella catarrhalis and
Haemophilus influenza, and the activity against Streptococcus
pneumoniae strains susceptible and resistant to penicillin.
XM blocks the synthesis of bacterial cell wall, similarly to
antibiotics belonging to the group of β-lactams. It binds with
the proteins binding penicillin participated in the synthesis
of the peptidoglycan bacterial cell wall causing the lysis of
bacteria (Ishibiki et al., 1990; Cheng et al., 2012; Bhattacharya
et al., 2015). In the human body, XM is quickly eliminated
from the blood and, in unchanged form is nearly completely
removed via urine system within 1–3 days (Ishibiki et al.,
1990).

The CPs have been found in wastewater and surface water
all over the world; however, their highest concentrations were
detected in the effluents from hospitals and pharmaceutical
industry (Saravanane and Sundararaman, 2009; Oguz and
Mihçiokur, 2014; Yu et al., 2016). The concentration of
CPs in urban wastewater usually does not exceed 10 µg/L,
while their mean concentration in wastewater influent and
effluent of CPs producing wastewater is in the range of
about 13–142 and 0.1–24 µg/L, respectively. The highest noted

concentrations of XM in wastewater influent and effluent
reached the values of 210 and 35 µg/L, respectively (Yu
et al., 2016). Due to the fact that conventional wastewater
treatment plants remove XM from wastewater partially, this
antibiotic is introduced into soils through the agricultural
usage of sewage sludge. Unfortunately, there is no published
data on XM concentrations in soils. However, it may be
expected that the introduction of XM into soil may select
XM-resistant bacteria and spread the resistance to XM
to the bacteria in the environment (Rahube et al., 2014;
Luczkiewicz et al., 2015; Kittinger et al., 2016; Devarajan et al.,
2017).

Among the many bacteria resistant to antibiotics, some
strains of Pseudomonas putida have been recognized as
increasingly important human pathogens over the last 30
years (Carpenter et al., 2008; Bhattacharya et al., 2015;
Fernández et al., 2015; Sun et al., 2016). This opportunistic
pathogen is responsible for nosocomial infections, mainly in
immunocompromised patients (Yoshino et al., 2011). Outbreaks
of the bloodstream infections associated with contaminated
fluids have also been observed (Erol et al., 2014; Liu et al.,
2014a). P. putida is a gram-negative and aerobic bacterium
commonly presents in soils. Strains of P. putida characterize
a broad spectrum of biochemical activities related to the
ability to degrade various natural and synthetic compounds
(Rojas et al., 2001; Espinosa-Urgel et al., 2002; Nelson et al.,
2002). In the environment, antibiotic-resistant P. putida strains
may be participated in the spread of antibiotic-resistant genes
among other pathogens (Molina et al., 2014; Sun et al.,
2016).

Previously published papers revealed that antibiotics selected
antibiotic-resistant bacteria and had an impact on the abundance
of soil microorganisms and their activities (Chen et al., 2013;
Cui et al., 2013; Liu et al., 2014b; Xu et al., 2016). Moreover, the
impact of antibiotics on the genetic diversity and structure of soil
microbial communities were reported using the DGGE (Zielezny
et al., 2006; Reichel et al., 2013; Cleary et al., 2016; Orlewska et al.,
2018) and the phospholipid fatty acid analysis (PLFA) (Demoling
et al., 2009; Reichel et al., 2014; Cycon et al., 2016; Xu et al.,
2016), respectively. Based on the results related to the activity
of other antibiotics, the entry of XM and/or antibiotic-resistant
bacteria into soil may also affect the soil bacterial communities.
Findings concerning the effect of XM on the genetic diversity of
soil bacteria are limited, and therefore, the goal of this research
was to check the influence of XM and/or an antibiotic-resistant
Pseudomonas putida strain on the bacterial community using the
DGGE approach and the resistance (RS)/resilience (RL) concept.
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MATERIALS AND METHODS

Isolation and Characterization of the
Bacterial Strain
The strain designated as MC1 was isolated from raw sewage on
a TSA medium (Tryptone-Soya Agar) with addition of 30 µg
XM (Figure 1) (Cycon et al., 2016). Strain MC1 was identified
using the 16S rRNA gene analysis with the primers 27f and
1492r (Cycon et al., 2016) and additionally the API 20 NE
biochemical test (Cycon et al., 2011). The sequence of strain
MC1 was compared to other known sequences of 16S rRNA
gene using the BLAST server (NCBI; http://www.ncbi.nlm.nih.
gov/). Phylogenetic analysis was performed by the neighbor-
joiningmethod using theMEGA ver. 7.0 software. The sensitivity
of strain MC1 to XM, clindamycin (CM), ciprofloxacin (CI),
erythromycin (EM), vancomycin (VA), tetracycline (TC) or
streptomycin (SM) (Table 1) was determined with the use of the
disc diffusion and the E-test methods (Cycon et al., 2016).

Design of the Soil Experiment
Soil collected from an experimental plot located near the town of
Zywiec, Poland and, with the defined characteristics determined
with the use of methods described in the ISO standards (Cycon
et al., 2010), was used in this experiment. The soil was classified as
loamy sand (sand 67%, silt 24%, and clay 9%) with the following
main features: pH 6.9, density 1.4 g/cm3, water-holding capacity

FIGURE 1 | Chemical structure of cefuroxime.

43%, cation exchange capacity 10 cmol+/kg, microbial biomass
932 mg/kg, Corg 1.6% and Ntot 0.2%.

The experiment included three replications of the following
treatments: C (control), XM1 – 1mg XM/kg soil, XM10 – 10mg
XM/kg soil, Ps – P. putida MC1, XM1+Ps – 1mg XM/kg soil +
P. putida MC1 and XM10+Ps – 10mg XM/kg soil + P. putida
MC1. Strain MC1 was introduced into soil at 1.6 × 107 cells/g
soil and, the preparation of its suspension was made with the use
of a previously described method (Cycon et al., 2016). Samples of
soil were incubated at 22 ± 1◦C and randomly collected during
the experimental period for the DGGE analysis.

Analysis of Microbial Community Structure
The genetic diversity of soil bacteria was analyzed using the
amplification of the 16S RNA gene fragment with the primers
(GC-clamp)-F338 and R518 (Muyzer et al., 1993) with the use
of a previously described method (Cycon et al., 2013). The
electrophoresis was run in polyacrylamide gel (8% w/v, 37.5:1
acrylamide:bis-acrylamide) with a linear gradient of denaturant
urea (40%−70) using a DCode Mutation Detection System (Bio-
Rad, USA). The patterns of the DGGE bands were visualized
using a G BOX F3 System (Syngene, UK) (Cycon et al., 2016).

Data Analysis
The patterns of the DGGE bands were evaluated using
BioNumerics software ver. 7.5 (Applied Math, Belgium), while
the phylogenetic trees were prepared with the use of the
unweighted pair-group method and the arithmetic averages
(UPGMA) (Cycon et al., 2016). The DGGE indices, i.e., Shannon-
Wiener index (H), richness (S) and evenness (E) were calculated
using appropriate equations (Cycon et al., 2013). The three-
way and two-way ANOVA analyses and the least significant
differences (LSD) test (P < 0.05) were used to evaluate the
obtained results. The data for the DGGE indices were subjected
to PCA, and additionally, the PC scores were also evaluated by
applying the three-way and two-way MANOVA. Indices adopted
from Orwin and Wardle (2004) were applied to assess the
resistance (RS) and resilience (RL) of the determined indices to
the disturbances caused by the antibiotic and/or bacterial strain.
All details of statistical analyzes were presented in a previously
published paper (Cycon et al., 2016).

TABLE 1 | Results of the sensitivity assays to selected antibiotics for strain MC1.

Disc-diffusion method E-test method

Antibiotic Concentration (µg) Growth inhibition (mm) Range of concentrations (µg/mL) MIC (µg/mL)

CI 5 28 0.002–32 0.094

CM 2 – 0.016–256 >256

EM 15 – 0.016–256 >256

SM 300 34 0.064–1024 8

TC 30 22 0.016–256 6

VA 30 – 0.016–256 >256

XM 30 – 0.016–256 >256

CI, ciprofloxacin; CM, clindamycin; EM, erythromycin; SM, streptomycin; TC, tetracycline; VA, vancomycin; XM, cefuroxime; –, no inhibition zone; MIC, minimum inhibitory concentration.
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FIGURE 2 | Phylogenetic tree of a multidrug-resistant strain MC1 based on the neighbor-joining method. Bootstrap values from 1,000 replications are indicated at the

branches. GenBank accession numbers are given in parentheses.

FIGURE 3 | Biochemical pattern and numerical profile of the isolated strain MC1. NO3, potassium nitrate; TRP, L-tryptophan; GLU, D-glucose (fermentation); ADH,

L-arginine; URE, urea; ESC, esculin; GEL, gelatin; PNG, 4-nitrophenyl-β-D-galactopyranoside; GLU, D-glucose; ARA, L-arabinose; MNE, D-mannose; MAN,

D-mannitol; NAG, N-acetyl-glucosamine; MAL, D-maltose; GNT, potassium gluconate; CAP, capric acid; ADI, adipic acid; MLT, malic acid; CIT, trisodium citrate; PAC,

phenylacetic acid; OX, oxidase.

RESULTS

Characteristics of the Isolate
An analysis of the 16S rRNA gene sequence showed that
strain MC1 is a member of the genus Pseudomonas
with a high similarity to the species Pseudomonas putida
(Figure 2). The sequence of strain MC1 was submitted
to the GenBank under accession number MC327770. An
additional analysis using a biochemical test (Figure 3)
also confirmed (98.6% identity) the membership of
strain MC1 to the species P. putida (numerical profile
0043457). The obtained resistance pattern of strain MC1
to antibiotics showed its resistance to XM, CM, EM
and VA as was shown by the MIC values greater than
256µg/mL (Table 1). In turn, the highest sensitivity of
P. putida MC1 was noted for SM, TC, and CI, with
the MIC values of 8, 6 and 0.094µg/ml, respectively
(Table 1).

DGGE Analysis
The obtained results showed that XM affected the composition

of the bacterial members in soil microbial community
(Figures 4A–E). The DGGE profiles from XM-treated and non-

treated soils differed with regards to the absence and density of
the bands, in particular on days 30 (Figure 4C), 60 (Figure 4D),

and 90 (Figure 4E) of the experiment. The results also revealed

that XM at 10 mg/kg (XM10 and XM10+Ps) changed the overall

richness (Figure 5A) and diversity (Figure 5B) of the member

of bacterial community on days 30, 60, and 90. In contrast, no

differences in the S and H values were observed between the
lower XM and/or strain MC1 treatments (XM1 and XM1+Ps or

Ps) and the non-exposed soil during 90 days. Also, the EH values

were generally similar for both treated and non-treated soils on
each sampling day (Figure 5C).

The ANOVA revealed that the S-value was significantly
(P < 0.001) affected by the time, the XM dose and the interaction
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FIGURE 4 | Phylogenic dendrograms based on the DGGE profiles for the soil treated with cefuroxime and/or strain MC1 on days 1 (A), 15 (B), 30 (C), 60 (D), and 90

(E). C, non-exposed soil; XM1, cefuroxime at 1 mg/kg soil; XM10, cefuroxime at 10 mg/kg soil; Ps, P. putida MC1; XM1+Ps, cefuroxime at 1 mg/kg soil + P. putida

MC1; XM10+Ps, cefuroxime at 10 mg/kg soil + P. putida MC1.
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FIGURE 5 | Values of the richness (A), Shannon-Wiener (B), and evenness (C) indices for the cefuroxime (XM)- and/or Pseudomonas putida MC1 (Ps)-treated soils

obtained during the experimental period. The data are the means (n = 3) with standard deviations. Different letters within the values of each index indicate significant

differences considering the effects of the dose of XM, strain MC1 and incubation time (LSD post-hoc test; P < 0.05). The explanation of the treatment abbreviations is

given in Figure 4.

TABLE 2 | Analysis of variance (the three-way ANOVA) for the DGGE indices:

richness (S), Shannon-Wiener (H) and evenness (EH) as affected by the bacterial

strain (S), concentration (C), time (T) and their interactions.

SV S H EH

VE P VE P VE P

S <1 0.386 <1 0.701 <1 0.400

C 20 <0.001*** 14 <0.001*** 16 <0.001***

T 44 <0.001*** 67 <0.001*** 21 <0.001***

S × C <1 0.827 <1 0.093 <1 0.929

S × T 1 0.481 <1 0.711 2 0.554

C × T 12 <0.001*** 8 <0.001*** 11 0.087

S × C × T 1 0.860 1 0.413 3 0.840

SV, source of variance; VE, variance explained (%).

Asterisks represent the significance level according to the ANOVA (***P < 0.001).

between both factors. The time effect contributed to most of
the observed variability (44%) (Table 2). The H index was
primarly influenced by the time of incubation (P < 0.001),

which explained most of the variability (67%) (Table 2). The
ANOVA also showed that the concentration of XM and the
incubation time were the factors influenced (P < 0.01) the EH
index within 90 days and contributed to 16 and 21% of the
variability, respectively. All details related to the results of the
three-way ANOVA are presented in Table 2.

Resistance (RS) and Resilience (RL)
Indices
An evaluation of the resistance of the DGGE indices to XM
and/or P. putida MC1 showed that these factors affected the
values of the RS index within 90 days (Table 3). In general, the
ANOVA revealed that the tested factors had a significant impact
(P < 0.001) on the resistance of the DGGE indices. The time
effect contributedmost to the variability in the case of theH index
(42%), whereas this effect explained the least of the variability in
relation to the EH index (18%) (Table 4). The greatest decrease
in the values of the RS index was observed for richness and the
mean values of this index for all of the soil treatments were found
to be 0.967, 0.965, and 0.950 on days 30, 60, and 90, respectively
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TABLE 3 | Values of the resistance (RS) index for measured parameters obtained for each day of the experiment.

Parameter Day Treatment x

XM1 XM10 Ps XM1+Ps XM10+Ps

Richness (S) 1 0.971a 1.000b 0.980abf 1.000b 1.000b 0.990A

15 0.980ac 1.000ab 0.980acf 0.961ce 0.980bc 0.980AB

30 1.000c 0.923d 1.000acf 0.971e 0.941d 0.967ABC

60 0.980ac 0.922d 1.000af 1.000ab 0.922d 0.965BC

90 0.971ae 0.923d 1.000f 0.971e 0.886g 0.950C

Shannon-Wiener index (H) 1 0.999a 0.999a 0.999af 0.998a 0.998a 0.999A

15 0.997b 0.997b 0.996b 1.000a 0.999a 0.998AB

30 0.998b 0.994c 0.998ab 0.999ab 0.992d 0.996B

60 1.000a 0.991e 0.999af 1.000a 0.990de 0.996B

90 1.000af 0.992e 1.000f 0.999af 0.991de 0.996B

Evenness (EH) 1 0.992a 0.995a 0.997ae 0.998af 0.998a 0.996A

15 0.998a 0.997a 0.998ae 0.989bf 0.994ab 0.995A

30 0.998a 0.982c 0.998ae 0.994abf 0.991bd 0.993AB

60 0.994a 0.985c 0.999ae 1.000a 0.986cd 0.993AB

90 0.992af 0.985c 1.000e 0.992f 0.974g 0.988B

Significant differences (P < 0.05, LSD test) within the mean values (n = 3) of each parameter, considering the effects of the treatment and incubation time, are indicated by different

lowercase letters. Significant differences (P < 0.05, LSD test) within the values of all of the treatments for each parameter considering the effect of the incubation time are indicated

by different uppercase letters. The values marked in gray or green indicate a significant inhibition or stimulation in relation to the non-treated soil, respectively. The explanation of the

treatment abbreviations is given in Figure 4.

TABLE 4 | Analysis of variance (the two-way ANOVA) for the RS indices as

affected by the treatment (Tr), time (T) and their interactions.

SV S H EH

VE P VE P VE P

Tr 27 <0.001*** 42 <0.001*** 18 <0.001***

T 16 <0.001*** 11 <0.001*** 8 <0.001***

Tr × T 14 <0.001*** 40 <0.001*** 6 <0.001***

SV, source of variance; VE, variance explained (%). Asterisks represent the significance

level according to the ANOVA (***P < 0.001).

(Table 3). This decrease was related to the inhibitory effect of XM
and/or strain MC1 on the S index (Figure 5A). A similar trend
was observed for the H index (Table 3 and Figure 5B). In the case
of the EH index, a decrease in the values of the RS index observed
for some soil treatments (Table 3) was generally associated with
the stimulatory effect of XM and/or strain MC1 during the
experimental period (Figure 5C). Taking into account the mean
values of the RS index that were calculated for all of the soil
treatments during the experimental period, the resistance of the
DGGE indices was categorized in the following order: diversity
(0.997) > evenness (0.993) > richness (0.970). A calculation of
the RL index at the end of the experiment (day 90) revealed that
although its value was different for each DGGE index, negative
mean values were obtained for all of the soil treatments (Table 5).

PCA of the DGGE Pattern
Based on the PCA of the DGGE indices it was revealed that
the introduction of XM and/or P. putida MC1 altered the

pattern of bacterial diversity. The PCA plot created for all days
indicated that the treatments were scattered along the PC1 and
PC2 axes, which explained 80 and 20% of the total variability,
respectively (Figure 6). Also, a three-way MANOVA analysis
confirmed this results. The time explained 48 and 28% of the
total variance for PC1 and PC2, respectively (Table 6). In turn,
the XM concentration explained 20% of the total variance only
along PC1. Strain MC1 did not affect the pattern of bacterial
biodiversity; it contributed to <1% of the total variance in the
PCA plot. All details related to the results of the three-way
MANOVA are presented in Table 6.

The PCA plots created for each sampling day revealed a
meaningful impact of the concentration of XM on the bacterial
diversity in the second part of the experiment (Figure 7). The
effect of the dose explained 77, 65, and 85% of the variability only
along PC1 on days 30, 60, and 90, respectively. On the contrary,
no effect of P. putida MC1 along PC1 and PC2 was observed
on any sampling day. All details related to the results of the
three-way MANOVA are presented in Table 7.

DISCUSSION

Strain MC1 identified as Pseudomonas putida was isolated
in this study. P. putida was considered as bacteria with low
pathogenicity and generally sensitive to antibiotics belonging to
different classes (Luczkiewicz et al., 2015; Devarajan et al., 2017).
The highest sensitivity of P. putida MC1 was determined for CI,
SM, and TC. The sensitivity assays to selected antibiotics also
showed that the isolated strain MC1 had a multidrug-resistant
ability. The disc diffusion and E-test methods revealed that this
strain was characterized by a resistance not only to XM but
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TABLE 5 | Values of the resilience (RL) index for the measured parameters obtained at the end of the experiment.

Parameter Treatment x

XM1 XM10 Ps XM1+Ps XM10+Ps

Richness (S) 0.000a −1.000b 1.000c −1.000b −1.000b −0.400

Shannon-Wiener index (H) 0.471a −0.823b 0.715a 0.139a −0.693b −0.038

Evenness (EH) −0.017a −0.466bc 1.000b −0.428ac −0.858c −0.154

The data are the means (n = 3). Significant differences (P < 0.05, LSD test) within the values of each parameter are indicated by different letters. The explanation of the treatment

abbreviations is given in Figure 4.

FIGURE 6 | The PC plot for the DGGE indices obtained for all of the sampling days. The explanation of the treatment abbreviations is given in Figure 4.

also to CM, EM, and VA as was shown by the MIC values
greater than 256µg/ml. Antibiotic-resistant strains of P. putida
are frequently found in the environment; however, a multidrug-
resistant P. putida has only been isolated from patients in recent
years (Lombardi et al., 2002; Bhattacharya et al., 2015; Fernández
et al., 2015; Kittinger et al., 2016). The presence of XM in
soil may significantly increase the pool of genes responsible

for resistance to XM among soil microorganisms. Bacteria can
develop resistance to XM and other CPs by producing extended-
spectrum lactamases (ESBL), taking up of genes encoding ESBL
from soil bacteria, and a high expression of lactamase (bla) genes
located on chromosome (Pfeifer et al., 2010). The spreading of
XM resistance genes may also result from the introduction of
XM-resistant bacteria into soil. There is a potential risk that
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TABLE 6 | Multivariate analysis of variance (the three-way MANOVA) for the PC1

and PC2 based on the data of the DGGE indices for all of the sampling days as

affected by the bacterial strain (S), concentration (C), time (T) and their interactions.

SV PC1 PC2

VE P VE P

S <1 0.409 <1 0.429

C 20 <0.001*** <1 0.661

T 48 <0.001*** 28 <0.001***

S × C <1 0.739 1 0.624

S × T 1 0.462 2 0.661

C × T 13 <0.001*** 3 0.922

S × C × T 1 0.832 5 0.758

SV, source of variance; VE, variance explained (%). Asterisks represent the significance

level according to the ANOVA (***P < 0.001).

genes responsible for the resistance to XM located on both
chromosomes and plasmids may be transferred between mobile
genetic elements and spread through horizontal gene transfer
(HGT) to autochthonous bacteria. Due to well adaptation of these
bacteria to soil conditions, they might be participated in the long-
term maintenance of antibiotic resistance genes in soils. HGT
may also facilitate the transfer of antibiotic resistance genes from
environmental to clinical strains (Pfeifer et al., 2010; Marti et al.,
2013).

The application of bacteria resistant to antibiotics into soil
may also produce significant changes within the soil microbial
assemblages. However, in our study introduction of P. putida
MC1 did not affect the genetic diversity of the autochthonous
microbial communities. This effect might resulted from the
competition between the introduced strain and indigenous
microorganisms. Furthermore, many compounds produced by
autochthonicmicroorganismsmay limit the growth of inoculants
(Karpouzas et al., 2000). The lack of any significant changes
exerted by strain MC1 in the bacterial diversity may also be
connected with the survival of inoculants in the soil environment.
Strain MC1 was originated from raw sewage and it probably did
not have the capability to adapt to soil conditions and compete
with residential microorganisms. In turn, the obtained results
indicated that XM may contribute to the modification of the
soil microbial diversity. The DGGE band patterns of the soil
samples treated with XM differed from the control what resulted
from a disappearance of some of the bands in a response to
the antibiotic presence, especially on days 30, 60, and 90 of
the experiment. Moreover, a decline in the DGGE indices for
soils treated with XM was found. There is no reported data
concerning the impact of XM and/or P. putida on soil microbial
diversity and therefore we cannot compare our results with those
reported by other authors. However, some previously described
results also showed alterations within bacterial communities
expressed by the alterations in the number and intensity of
bands in a response to the antibiotic application. Shifts in the
DGGE band patterns obtained for soil treated with tylosin (TYL)
were also noted by Westergaard et al. (2001). The authors
revealed that the application of TYL at 2,000µg/g soil altered

the bacterial structure in comparison with the control soil. A
lower number of bands in the TYL-exposed soils as compared
to the non-treated soil was noted after 2 and 3 weeks of the
experiment, however the small changes were seen to the end of
the experiment (Westergaard et al., 2001). Additionally, Cycon
et al. (2016) revealed that the glycopeptide antibiotic vancomycin
(VA) and/or the introduction of VA-resistant Citrobacter freundii
exerted a selective pressure leading to alterations in the genetic
diversity of soil bacterial communities within 90 days. Contrary,
Zielezny et al. (2006) noted that the antibiotic sulfadiazine
(SDZ) applied at different concentrations (1–50 mg/kg soil) did
not affect the bacterial diversity as determined using the PCR-
DGGE approach. The authors also revealed that chlortetracycline
applied at the same concentrations as sulfadiazine did not change
the microbial community structure.

The effect of antibiotics on soil autochthonous bacteria may
also be connected with the resilience and resistance of tested
microbial communities. The values of the RS and RL indices
show whether microbial communities exposed to various stress
factors can remain stable and/or achieve the original community
structure (Orwin and Wardle, 2004; Orwin et al., 2006). Our
experiment showed that the values of the RS index calculated
for the DGGE indices for the soils with a higher dosage of XM
(XM10, XM10+Ps) were significantly lower than those obtained
for the XM1-treated soil. The negative effect of XM applied at
a higher concentration on microbial diversity was also proven
by the values of the RL index, which were found to be negative,
thereby reflecting the progressing detrimental effect of XM on
the genetic diversity of bacterial communities during the 90-
day experiment. These results showed that in the soils that had
been treated with a lower dose of XM and bacteria inoculants,
the intrinsic properties of the soil microbial communities were
protected the stability of soil ecosystem (Song et al., 2015). Even
if some microbial populations were sensitive to the stressor, the
whole community was resilient and had the ability to return to
its original state (Allison and Martiny, 2008). Such an ability of
microbial communities was not found in the XM10-treated soils.
The high concentration of XM probably killed a significant part
of the microbial population.

Our results showed that the negative effect of XM applied at a
higher dosage (XM10 and XM10+Ps) was observed in the second
part of the experiment. Although the reason for this phenomenon
was not investigated in our study, a harmful effect of XM on
a sensitive bacterial population might be connected with the
stability and bioavailability of XM in soil and/or intermediates
of XM degradation pathways that might also be characterized
by antimicrobial properties. The stability of CPs and their
susceptibility to degradation strongly depends on environmental
conditions and, many biodegradation experiments conducted
in various water systems showed that the effectiveness of CP
removal varied significantly (Alexy et al., 2004; Gartiser et al.,
2007; Jiang et al., 2010). For example, Gartiser et al. (2007)
studying the inherent biodegradability of antibiotics using the
CO2 evolution test found that XM was degraded in activated
sludge up to 10% of the initial dosage within 28 days. The middle
persistence of XM was also observed in the closed bottle test, in
which about 23% of XM remained in the system after 28 days
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FIGURE 7 | PC plots for the DGGE indices obtained on days 1 (A), 15 (B), 30 (C), 60 (D), and 90 (E). The explanation of the treatment abbreviations is given in

Figure 3.

of the experiment (Alexy et al., 2004). The removal rate of about
30% of the initial XM concentration was also observed by Yu et al.
(2016) at 25◦C during the 144-h experiment. The authors also

reported that the persistence of XM was much higher than other
tested CPs, i.e., ceftriaxone, cafelexin, and cephazolin. In a study
by Jiang et al. (2010), up to 80% of XM was degraded in the lake
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TABLE 7 | Multivariate analysis of variance (the two-way MANOVA) for the PC1 and PC2 based on the data of the DGGE indices for each sampling day (1, 15, 30, 60 and

90) as affected by the bacterial strain (S), concentration (C), time (T) and their interaction (S × C).

PC SV 1 15 30 60 90

VE P VE P VE P VE P VE P

PC1 S 3 0.532 13 0.163 <1 0.917 <1 0.693 1 0.235

C 9 0.561 8 0.525 77 <0.001*** 65 0.002** 85 <0.001***

S × C 3 0.807 7 0.587 4 0.337 1 0.832 3 0.186

PC2 S 8 0.325 <1 0.990 4 0.349 1 0.708 3 0.492

C 0 0.993 6 0.463 7 0.468 31 0.107 16 0.325

S × C 0 0.985 49 0.012* 35 0.050 <1 0.997 2 0.887

PC, principal component; SV, source of variance; VE, variance explained (%). Asterisks represent the significance level according to the ANOVA (*P < 0.05, **P < 0.01, ***P < 0.001).

water and sediments within 168 h. Their results proved that the
biodegradation is the main process responsible for the removal of
CPs from sediments. Cefuroxime is slowly eliminated from soils
and 42.8–80% of the initial dose was degraded within 64 days
under aerobic conditions. Other studies also confirmed that the
soil properties and additional compounds, such as slurry, manure
or sewage, have a significant effect on the bioavailable fraction
and degradation of antibiotics in different soils (Hammesfahr
et al., 2008; Pan and Chu, 2016; Wang et al., 2016).

Because XM is characterized by a wide-spectrum activity
againstmany bacteria, some ofmembers of a bacterial assemblage
in the XM-treated soil were negatively affected. Microorganisms
that are sensitive to antibiotics are killed or their number
decreases significantly, which results in increased numbers of
bacteria resistant to antibiotics. Ding et al. (2014) observed a
high disturbance and a low stability of soil bacterial communities
in soil contaminated with SDZ (100 mg/kg soil) and manure
compared to bacterial communities from soil treated with
manure without SDZ. Moreover, numerous taxa such as
Gemmatimonas, Leifsonia, Devosia, Clostridium, Shinella, and
Peptostreptococcus containing also human pathogens dominated
in the SDZ-amended soil while in the soil with SDZ and
manure, the high number of the bacteria from the genera
Hydrogenophaga, Lysobacter, Pseudomonas, and Adhaeribacter
that typically are involved in in the maintenance of high
soil quality were found (Ding et al., 2014). In another study,
SDZ (10 and 100µg/g soil) applied into soil with manure
also altered the bacterial diversity (Hammesfahr et al., 2008).
Although the DGGE profiles proved the impact of SDZ+manure
on soil bacterial communities on days 32 and 61 after the
antibiotic introduction, these effects were not clearly visible for
pseudomonads and β-Proteobacteria and may be explained by
the resistance of many strains to sulfonamides (Hammesfahr
et al., 2008). Genetic changes within the β-Proteobacteria
and Pseudomonas group in manure and SDZ-amended soils
were also reported by Reichel et al. (2014). Additionally,
the presence of XM in soil might cause an overgrowth of
fungi that are not susceptible to XM. Such phenomenon was
earlier observed for soil treated with sulfadiazine (Hammesfahr
et al., 2008), tetracycline (Yang et al., 2009) and oxytetracycline
(Chessa et al., 2016).

CONCLUSIONS

The results of our study indicated that the antibiotic-resistant
Pseudomonas putida MC1 that was introduced into soil did
not affect the genetic diversity of the autochthonous microbial
communities. In turn, the obtained results showed that XM
may cause alterations in the diversity of the soil bacteria. The
DGGE patterns from the XM-treated soils differed from the
patterns for non-treated control via the dissipation of some
bands in a response to the XM application, especially on days
30, 60, and 90 of the experiment as was also evidenced by the
decline in the S and H values. Because XM is active against
different bacteria, some of members of bacterial communities
in the XM-treated soil were negatively affected. The negative
effect of XM observed in the second part of the experiment
might be related to the stability/bioavailability of XM in the
soil and/or more probably from the XM metabolites that are
formed, which might also be characterized by antimicrobial
properties. Moreover, differences in the resistance and resilience
of the DGGE indices to disturbances caused by XM and/or strain
MC1 have been demonstrated. The soil RL index was found
to be negative, thereby reflecting the progressing detrimental
impact of XM on the genetic diversity of soil bacteria within
90 days. These results that the introduction of XM at higher
dosages into the soil may exert a potential risk for functioning
of microorganism and further disturbances in the soil
activity.
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